dynamicalab.dynamics.SISDynamics

class dynamicalab.dynamics.SISDynamics(p, q, self_activation=0)[source]

Markovian discrete time Suceptible-infected-suceptible process on networks.

__init__(p, q, self_activation=0)[source]

Parameters

p : Float
Probability of infection
q : Float
Probability of recovery
self_activation : Float : (default=0)
Probability of spontaneous activation

Note that the __call__(G, T) method is independent of T[i]-T[i+1]. Only len(T) is taken into account for the number of steps.

Methods

__init__(p, q[, self_activation]) Parameters
best_x0(G) Convenient method to get a good initial state given as a random infection.