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Introduction

Au début, tout n’était que CHAOS,

rien que du vide, matière informe

et espace infini.

Hesiode

(Théogonie, 8th century a.C.)

Hamiltonian dynamics is a huge subject with a long history. Although nonlinear
dynamics is an interdisciplinary subject today, it was originally a branch of physics. The
subject began in the middle of the XVIIth century, when Newton invented differential
equations, discovered his laws of motion and universal gravitation, and combined them
to explain Kepler’s laws of planetary motion. The success and power of Newton’s laws
led to a great optimism about our ability to predict the behaviour of mechanical objects
and, as a consequence, led to the huge growth in science that we see today. In addition
it was accompanied by a deterministic view of nature which is best exemplified in the
writings of Laplace[1951]:

Given for one instant an intelligence which could comprehend all the forces
by which nature is animated and the respective situation of the beings who
compose it - an intelligence sufficiently vast to submit these data to analysis -
it would embrace in the same formula the movements of the greatest bodies
of the universe and those of the lightest atom; for it, nothing would be
uncertain and the future, as the past, would be present before its eyes.

This deterministic view of nature was completely natural given the success of New-
ton’s mechanics and persists almost up to the present day. Specifically, Newton solved
the two body problem - the problem of calculating the motion of the earth around the
sun given the inverse square law of gravitatinal attraction between them. In a sense
Newton was fortunate because the solar system has an amazingly regular behaviour
considering its complexity and one can predict its short-time behaviour with fairly
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2 INTRODUCTION

good accuracy [Gutzwiller,1998]. Newton’s equations are, indeed, the correct starting
point of mechanics, but in general they allow us to determine the long time behaviour
of integrable mechanical systems, few of which can be found in nature (including the
two-body problem). Subsequent generations of mathematicians and physicists tried to
extend Newton’s analytical methods to the three-body problem(e.g., sun, earth and
moon) using perturbation theory [Moser,1978]. The problem was so important that it
was the subject of a prize question posed by King Oscar II of Sweden in 1885:

For an arbitrary system of mass points which attract each other according to
Newton’s laws, assuming that no two points ever collide, give the coordinates
of the individual points for all time as the sum of a unifomly convergent
series whose terms are made up of known functions.

Poincaré won the prize by showing that such series could be expected to diverge and
because of this divergence it appears to be impossible to make long-time predictions
concerning the evolution of mechanical systems. He developed a powerful geometric
approach to analyzing dynamical systems. It was the genius of Poincaré which supplied
us with many of our present methods for exploring the unexpected wonder of even
simple dynamical systems. In particular, he emphasized the importance of obtaining a
global, qualitative understanding of the character of a system’s dynamics.

In the first half of this century, Poincaré’s geometric methods were being extended
to yield a much deeper understanding of classical mechanics, thanks to the work of
Birkhoff, Kolmogorov, Arnol’d and Moser. In the 1950s an entirely new tool of analy-
sis came into the scene- the digital computer. The computer allowed one to experiment
with equations in a way that was impossible before, and thereby to develop some in-
tuition about nonlinear systems. Such experiments led to Lorenz’s discovery [Lorenz,
1969] of chaos - the aperiodic behaviour of a deterministic system that depends sensi-
tively on the initial conditions, thereby rendering long-time prediction impossible and
making the system inherently unpredictable [Ott, 1993; Ott, Sauer and Yorke, 1994].

The period following 1960 has been particularly rich in new ideas and in the growing
application of these ideas to a wide variety of disciplines, such as physics, chemistry, bi-
ology, neurology, astronomy, geophysics, meteorology and economics. In addition many
new perspectives have been introduced from mathematics, along with the innovative
and potentially basic contributions of computer science.

In the present thesis, we would like to study the behaviour of a class of dynamical
systems, namely Hamiltonian systems. In doing so, we review the theory of the classical
Hamiltonian systems in chapter 1. We shall introduce a number of Hamiltonian
systems including the Diamagnetic Kepler Problem which is of our main interest.

One of the fundamental aspects of chaos is that many different possible motions
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are simultaneously present in the system. A particular manifestation of this is the fact
that there are typically an infinite number of unstable periodic orbits that co-exist with
the chaotic motion [Berry, 1978]. By a periodic orbit, we mean an orbit that repeats
itself after some time. If the system were precisely on an unstable periodic orbit, it
would remain on that orbit forever. These orbits are unstable in the sense that the
smallest deviation from the periodic orbit (e.g. due to noise) or to imprecise initial
conditions grows exponentially rapidly in time, and the system orbit quickly moves
away from the periodic orbit. Thus, although these periodic orbits are present, they
are not typically observed. Rather, what one sees is a chaotic trajectory which bounces
around in an erratic, seemingly random fashion. Very rarely, the chaotic trajectory
may, by chance, closely approach a particular unstable periodic orbit, in which case
the chaotic trajectory would approximately follow the periodic cycle for a few periods,
but it would then rapidly move away because of the instability of the periodic orbit.
In chapter 2 we shall introduce the algorithms, capable of detecting the unstable
periodic orbits in a chaotic system, the orbits which are of extreme importance for
understanding the system under study.

The notion of chaos in nonlinear dynamical systems, i.e. extreme sensitivity to the
initial conditions, seems to be a cause of despair, because it effectively renders the long-
time prediction of these systems impossible. For instance, in a computer simulation a
small perturbation may be introduced by numerical round-off, while, in the real world,
systems are invariably perturbed by noise. Thus, if a system is chaotic, these small
perturbations quickly (indeed, exponentially) grow until they completely change the
behaviour of the system. Paradoxically, the cause of the despair is also the reason for
hope. Because if a system is so sensitive to small changes, could not small changes
be used to control it? This realization led Ott, Grebogi and Yorke [1990] to propose
an ingenious and versatile method (now called the OGY method) for the control of
chaos. We shall discuss this issue in chapter 3, where we will apply this method to
Hamiltonian systems. We will show for the first time that the successful control can be
applied to the chaotic motion of an electron in the presence of a magnetic field as an
application of the OGY method in atomic physics.

Control of chaos has recently generated a great deal of research activity in many
areas of science. Using model-independent approaches, control of chaos is usually im-
plemented about a fixed parameter. However, one usually needs to examine unstable
solutions over a range of parameters, with this range possibly large. If one attempts to
use the same control settings over a range of parameter values, control will in general
fail. Hence one needs to track the unstable states as a function of parameters, while
retaining control. We shall discuss this issue in chapter 4, where we introduce a new
method for tracking the unstable periodic orbits.
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Chapter 1

Chaos in Area-Preserving Systems

The classification of CHAOS, nothing less is here essayed.

Hermann Melville

(Moby Dick, chapter 32)

In this chapter we present the elements of chaos theory in Hamiltonian

systems which are needed for the rest of the discussion. Moreover we present

the models that are used throughout this work. Particular attention is paid

to the Diamagnetic Kepler Problem (DKP).

1.1 Survey of Hamiltonian Dynamics

Many aspects of the natural world can be described by differential equations or by

variational principles. The simplest differential equations and variational problems can

be solved explicitly in terms of standard functions. Even if explicit solutions are lacking,

one might feel that having written down the equations governing a system, one has in

some sense solved it. One can make further progress by the use of perturbation theory

[Goldstein, 1980]. Supposing the motion to be close to that of a known system, one

analyses the deviations up to a given order in the size of the deviations or the size of

the parameters of the system. In particular, this leads to lowest order to the theory

4



1.1. SURVEY OF HAMILTONIAN DYNAMICS 5

of the linear stability of the equilibria which is easy to develop and is very powerful.

Although perturbation theory often allows one to make reasonable predictions, it is

often misleading in that it gives little insight what really happens for moderate or large

perturbation sizes, and sometimes even fails for infinitesimal perturbations [Chirikov,

1960].

Hamiltonian mechanics combines the ideas of differential equations and variational

principles. As Hamilton realised, many of the systems in mechanics and optics can be

put into the special form :

dpi

dt
= −∂H(p,q, t)

∂qi

dqi

dt
=

∂H(p,q, t)

∂pi

i = 1, ..., n (1.1)

or an associated variational form

δ
∫

p · dq − Hdt = 0 (1.2)

where the p’s are the momenta, the q’s are the configuration coordinates and H is

the scalar Hamiltonian function. The state of the system is given by the canonical

coordinates (p,q) in phase space. H is conserved if it does not depend explicitly on

time, and in such case the system is then said to be autonomous. The search for other

conserved quantities led to a new approach for solving Hamiltonian systems [Tabor,

1989]. Instead of finding formulae for the coordinates as a function of time one searches

for integrals of the motion. If one can find n integrals Ii(p,q) which are in involution,

i.e.
∑

k

∂Ii

∂qk

∂Ij

∂pk

− ∂Ii

∂pk

∂Ij

∂qk

= 0 i 6= j (1.3)

and independent (meaning that the vectors ∇Ii are independent (in the sense defined

in linear algebra) “almost everywhere”), then associated variables φi can be derived

which evolve linearly in time
dφi

dt
=

∂H(I)

∂Ii
. (1.4)

Such a system is integrable in the sense of Liouville [MacKay and Meiss, 1987]. If the

sets {Ii = constant} are bounded, the Poincaré - Hopf theorem (sometimes called the
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“hairy ball theorem”) tells us that phase space can be mapped to an n dimensional

torus [Jackson, 1989]. Choosing irreducible cycles, γi, on the tori, one can define a

preferred set of integrals

Ji =
∫

γi

p · dq (1.5)

called action variables, for which the corresponding φi are angle variables (mod 1) on

the torus. The quantities

ωi(J) =
∂H(J)

∂Ji
(1.6)

are called the frequencies of the torus.

Another feature of Hamiltonian systems noticed by Liouville is the preservation of

phase space volume
∫

dpndqn. A more general result is that Poincaré ’s integral

∫

p · dq =
∫

∑

pidqi (1.7)

is conserved around any loop following the flow. This is the property that really dis-

tinguishes Hamiltonian differential equations from general ones [Tabor, 1989]. The

infinitesimal version of Poincaré integral invariant is the symplectic form:

τ{(δp, δq), (δp′, δq′)} = δp · δq′ − δp′ · δq (1.8)

which assigns an area to pairs of tangent vectors, and which is conserved along the flow

[Ott, 1993]. This conserved symplectic structure is fundamental to Hamiltonian sys-

tems. The concept of symplectic structure also allows one to generalize the definition of

Hamiltonian systems, and leads to covariance under general coordinate transformations

(not just canonical ones).

The simplicity of integrable systems might give the impression that Hamiltonian

mechanics is quite easy. However, it is not easy to integrate Hamiltonian systems. The

major problem with the notion of integrability is that most systems are not integrable.

This was first appreciated when Poincaré proved that the circular restricted three-body
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problem has no integral analytic in the mass ratio [Gutzwiller, 1990]. The perturba-

tion expansions which gave excellent predictions of the motion of the planets do not

converge. The basic reason is that among the invariant tori of integrable systems there

is a dense subset on which the frequencies ω are commensurate, i.e. m·ω = 0 for some

non-zero integer vector m; however, most systems have no commensurate tori, because

they can be destroyed by an arbitrarily small perturbation.

The key techniques used by Poincaré were geometrical analysis and the idea of

surface of section. If Σ is the codimension one surface (i.e. of dimension one less

than that of the phase space) transverse to a flow, then the sequence xj of successive

intersections of an orbit with Σ provides a lot of information about that orbit. The

flow induces a mapping of Σ to itself. For Hamiltonian systems, since H is conserved,

Σ decomposes into a one parameter family of codimension two surfaces parametrised

by the value of energy, a reduction of two dimensions. Furthermore, the return map is

symplectic, meaning that it preserves a symplectic form [Tabor, 1989]. So one might

as well establish general results for symplectic maps rather than Hamiltonian flows.

For integrable systems, nearby orbits separate linearly in time; however, dynamical

systems can have exponentially separating orbits. Let δz0 be a tangent vector at the

phase space point z0 and δz(t) be the evolved vector following the orbit of z(t). The

average rate of the exponentiation of δz(t) is the Lyapunov exponent [Ott, Sauer and

Yorke, 1994]:

λ(z, δz) = lim
t→∞

1

t
log

‖δz(t)‖
‖δz(0)‖ . (1.9)

If λ is nonzero, one always has limited precision of observation, the predictions that

one can make will be valid for a time only logarithmic in the precision. Examples of

complexity of behaviour of typical Hamiltonian systems will be provided later in this

chapter.

Despite this complexity, one can get a fair amount of information about the system
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by focusing on the simplest aspects of Hamiltonian dynamics: the behaviour of the

system near equilibria. An equilibrium of a set of ordinary differential equations dx/dt

= F(x) is a point x0 where F(x0) = 0. From Hamilton’s equations, the equilibria are

precisely the critical points of the Hamiltonian H, i.e., points x where the gradient

of H is zero. The first step in the general stability analysis is to study the stability

of the equilibrium under the linearised equations. It can be shown that as a result of

the symplectic structure, the eigenvalues always come in pairs ±σ [MacKay, 1986]. In

particular, for linear stability, all the eigenvalues must lie on the imaginary axis and

the lost of stability occurs through “collision of the eigenvalues”.

Periodic orbits are the next most simple orbits after equilibria. The idea that

everything returns eventually to its point of departure has a strong hold on humanity,

but the importance of periodic orbits for modern physics has a quite different origin

and was first recognized by Poincaré . He found that periodic orbits, i.e., the solu-

tions of the equations of motion that return to their initial conditions, are densely

distributed among all possible classical trajectories, and he suggested that the study

of periodic orbits would provide the clue to the overall behaviour of any mechanical

system [Gutzwiller, 1990]. Poincaré ’s suggestion seemed, at first, to be valuable only

as a general approach for a better understanding of some difficult problems in classical

mechanics. Since the advent of quantum mechanics, however, the periodic orbits have

turned out to be of special significance in the transition from classical to quantum

regime. This idea is the essence of the Gutzwiller’s trace fomula [Gutzwiller, 1990]

which relies on the knowledge of the classical periodic orbits in order to understand the

quantal spectrum.

Another class of orbits are quasiperiodic orbits. An orbit is quasiperiodic when

its frequencies do not commensurate. In this case the trajectopry fills up the torus.

For integrable systems all orbits lie on invariant tori determined by the constants of

motion. The KAM theorem (named after Kolmogorov, Arnol’d and Moser) states
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that those invariant tori with sufficiently incommensurate frequencies still persist for

sufficiently small perturbations of an integrable system [Arnol’d, 1963]. However when

the perturbation from integrability is large enough, each invariant torus is typically

destroyed. Chirikov [1960] discovered a practical method for estimating a perturbation

amplitude required for the destruction of an invariant surface, the overlap of resonances.

Roughly speaking, the reason an invariant torus is destroyed is that when a torus

with commensurate frequency is perturbed, it becomes a “chain of islands”, defined by

stable and unstable manifolds of resonant orbits. The width of this chain grows with

the perturbation amplitude. Incommensurate tori between two such island chains are

squeezed into a smaller space, and can no longer exist when the stable manifold from

one island crosses the unstable manifold from the other. Thus one can estimate the

amplitude for destruction of an invariant torus by perturbatively calculating the island

sizes, and their overlap threshold [Greene, 1979].

Typical Hamiltonian systems have only finitely many equilibria, but they may have

infinitely many periodic orbits. By considering return maps of the surface of section,

it suffices to ask for the existence of periodic orbits for symplectic maps. Therefore

in order to study the behaviour of a Hamiltonian dynamical system, it is important

to devise a method to identify the location of periodic orbits via its corresponding

symplectic mapping. This task will be done in chapter 2, while for now we will study

the area-preserving maps that will be used throughout the rest of the present work.

1.2 Area Preserving Maps

Area preserving maps provide the simplest and most accurate means to visualize and

quantify the behaviour of conservative systems with two degrees of freedom. When an

integrable map becomes non-integrable by a small perturbation, resonance can occur

and degenerate lines of fixed points in the integrable map are changed to finite chains
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of alternating hyperbolic and elliptic fixed points surrounded by nonlinear resonance

zones. As the strength of the perturbation is increased, the resonance zones grow, can

overlap and form a chaotic sea. Chaos appears first in the neighbourhood of hyperbolic

fixed points where an incredibly complex dynamics develops. For small variation of the

map parameters, resonance zones are separated from one another by KAM tori. In area

preserving maps on a plane, as in systems with two degrees of freedom, these KAM tori

serve to isolate one region of the phase space from another [Berry, 1978]. KAM tori are

destroyed by nonlinear resonances. Each KAM torus is labeled by a winding number

(see below). Resonance zones form island chains, and each island chain contains a

sequence of hyperbolic and elliptic fixed points which have a rational winding number.

Greene [1979] has shown that each KAM torus can be approximated by a unique

sequence of island chains whose winding numbers are determined by the continued

fraction representing the irrational winding number of the KAM torus. Those island

chains which approximate a given KAM torus play a dominant role in its destruction.

A KAM torus is destroyed suddenly, as the mapping parameter increases, and form a

cantorus [Meiss, 1992]. A cantorus can still partially block the flow of trajectories in

phase space. As the mapping parameter is increased further, the cantorus gradually

disappears and trajectories are free to diffuse more or less at random in the chaotic

sea [MacKay, Meiss and Percival, 1984]. These properties can be exemplified in the

standard map described below.

1.2.1 The Standard Map

As an example, we consider the standard map which results from several physical

experiments such as: the motion of an elastic ball bouncing vertically on a plate of

velocity v p = V sin(ωt), the relativistic motion of an electron in a microtron accelerator,

the Frenkel - Kontorva model of solid state physics which describes the spatial structure

of a linear chain of atoms deposited on a spatially periodic force field (a lattice), and
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many other situations involving the interplay between translational and some periodic

motion, as in magnetic bottles and toroidal magnetic systems ( e.g., a stellarator, used

in plasma fusion experiments). The common representation of the standard map is

[Jackson, 1989]






qn+1

pn+1





 =







qn + pn+1 (mod1)

pn − K
2π

sin(2πqn)





 (1.10)

Here we are interested particularly in the periodic orbits of the mapping given in equa-

tion (1.10). A periodic orbit is a set of finite points that transform among themselves

under the iteration of the mapping, and all of which are accessible from any one of the

points. We will say that the orbit is of length Q if the orbit closes after Q iterations.

When K = 0, the standard map is integrable. As K is increased, chaotic regions oc-

cupy increasingly large areas, and the original KAM tori of the integrable system are

successively destroyed. It is convenient to associate a winding number with the periodic

orbits and KAM surfaces of interest [Greene, 1979]. In the integrable limit, K = 0,

this winding number is r = 1/p. For rational p = P/Q with P and Q relative primes,

Q is the length of the orbit before it closes, and

P ≡
Q
∑

n=1

pn =
Q
∑

n=1

(qn − qn−1) = qQ − q0 (1.11)

where pn and qn are the coordinates of the point of the periodic orbit. Then, from

equation (1.10), P and Q, and thus r ≡ Q/P are well-defined and independent of K,

and can be used to identify a given periodic orbit. The behaviour of periodic orbits and

KAM surfaces are not continuous functions of the winding number, r. It is observed

that, in the neighbourhood of a given periodic orbit, KAM surfaces and other longer

periodic orbits are strongly perturbed. In perturbation theory, this effect appears to

be the problem of small denominators [Arnol’d, 1963], where the denominator is the

measure of the distance between a perturbing periodic orbit and the region of interest.

A good way to take account of this phenomena is to express winding numbers as
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continued fractions,

r = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

(1.12)

where since r ≥ 1, the an’s are positive integers. This will be denoted as r =

[a0, a1, a2, · · · , aN ]. Irrational numbers have unique representations as continued frac-

tions, with an infinite number of partial quotients. Thus, these numbers will be denoted

r∞. Successive truncations of the infinite continued fraction yield rational approxima-

tions that are called the convergents of r. These convergents yield, from among the

periodic orbits of the given length or shorter, the one that most nearly approaches the

surface of interest. Greene [1979] conjectured that, since the golden mean rg =
√

5−1
2

is

the most irrational number in the sense that it is most slowly approached by cutoffs of

its continued fraction expansion,

rg = [1, 1, 1, 1, · · ·] = 1 +
1

1 +
1

1 +
1

1 + · · ·

(1.13)

the torus with r = rg will be the last surviving torus as K is increased. Greene finds

that K(rg) = 0.971635 · · ·. This corresponds to the largest value of K for which there

are KAM curves running completely around the (q, p) cylinder. When K increases past

the critical value K ' 0.97 the last invariant tori encircling the cylinder are destroyed,

and a chaotic area connecting the two ends of the phase space exists. This can be seen

in figure(1.1), where the standard map is shown for four typical values of K.

1.2.2 The Crémona Map

Investigating the Poincaré surface of section for an arbitrary Hamiltonian requires the

numerical integration of the trajectories. This is a costly computational task, and if

one wants to display the fine structure of the Poincaré map, one may require several

thousand integration steps in order to approximate the continuous variation of the
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Figure 1.1: (a) The standard map. Top: K = 0.5; Bottom: K = 0.975.
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Figure 1.1: (b) The standard map. Top: K = 1.25, Bottom: K = 5.0.
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coordinates along the trajectory. In the early days of Hamiltonian dynamics, when high

speed computers were not readily available, people started to investigate an artificial

transformation from the (x, y) plane into itself, instead of the real trajectories that

belong to a given Hamiltonian. Hénon and co-workers [1969] were among the first to

try out this strategy to overcome the computational limits of the earlier calculations.

The choice of a map (x, y) → (x1, y1) was dictated by the requirement that the element

of the area remains invariant, or equivalently that the Jacobian

det
∂(x1, y1)

∂(x, y)
≡ det









∂x1
∂x

∂y1

∂x

∂x1
∂y

∂y1

∂y









= 1. (1.14)

Hence, we seek an area preserving mapping of the (x, y) plane onto itself, defined by

(

x1

y1

)

=







f(x, y)

g(x, y)





 . (1.15)

For numerical studies it is simplest to have polynomials for f and g. In that case

the mapping is called an entire Crémona transformation. Let us choose second degree

polynomials for f and g:







x1

y1





 =







ax + by + cx2 + dxy + ey2

a′x + b′y + c′x2 + d′xy + e′y2





 (1.16)

Then, the area preserving condition imposes that







x1

y1





 =







x cos α − (y − x2) sin α

x sin α + (y − x2) cos α





 (1.17)

where α is the only non-trivial parameter left. This map, also called the Hénon map, has

been investigated intensively during the past three decades in a slightly more general

version which was also proposed by Hénon [1976]. This general version has the form

[Gutzwiller, 1990]






x1

y1





 =







−εy + µ − x2

x





 (1.18)
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The Jacobian
∂(x1, y1)
∂(x, y)

= ε, so that this map does not preserve the area unless ε = 1;

if such is the case, however, the new map (1.18) is the same as (1.17) up to a change of

coordinates in the (x, y) plane. The rotation angle α in (1.17) is related to µ in (1.18)

through (1 + µ)1/2 = 2 sin2 α/2. The area-preserving Hénon map (AHM) is shown in

figure (1.2) for ε = 1.0 and µ = - 0.4224.

When ε < 1, the map is a good model for a dynamical system with dissipation.

When the map is iterated, the original area of any portion of phase space becomes

smaller by a factor ε at each step. The contraction, however, does not lead to a set of

points whose diameter decreases indefinitely, but rather to a fractal set with dimension

of 1.261. The consecutive points P0, P1, · · · eventually get ever closer to this set and

move around this fractal without ever converging to a limit. This set is known as

the Hénon attractor and is a special case of a strange attractor [Eckmann and Ruelle,

1985]. Figure(1.3) shows the typical form of the attractor for the dissipative Hénon

map (DHM) (ε = - 0.3, µ = 1.4).
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Figure 1.2: The entire Crémona map (equation(1.17)): µ = - 0.4224, ε = 1.0.
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Figure 1.3: The Dissipative Hénon Map: µ = 1.4, ε = - 0.3.
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1.3 The Poincaré Section of Hamiltonian Flows

In general there is no simple way to tell whether a system is integrable or not. In

systems with two degrees of freedom (which is the main theme of the present work),

we can verify integrability numerically by constructing a Poincaré surface of section

[Reichl, 1992]. To see how this works, let us consider a conservative system where the

Hamiltonian is an isolating integral of motion. We can write

H(p1, p2, q1, q2) = E (1.19)

where the energy, E, is constant and restricts the trajectories to lie on a 3-dimensional

surface in the 4-dimensional phase space. One uses equation (1.19) to write p2 =

p2(p1, q1, q2; E). If the system has a second isolating integral,

I2(p1, p2, q1, q2) = C2 (1.20)

where C2 is a constant, it also defines a 3-dimensional surface in the 4-dimensional

phase space. Once the initial conditions are given, E and C2 are fixed and the trajec-

tory is constrained to the intersection of the surfaces defined by equations (1.19) and

(1.20); that is, to a 2-dimensional surface in the 4-dimensional phase space. Combining

equations (1.19) and (1.20), we also write p1 = p1(q1, q2; E, C2). And finally, if we now

consider the surface, q1 = 0, the trajectory must lie on a one dimensional curve.

In general if we are given the Hamiltonian (1.19), we do not know if an additional

isolating integral, I2, exists. We can check this numerically by solving Hamilton’s

equations and then plotting say p2 and q2 each time q1 = 0 and p1 ≥ 0. If the system

is integrable, the trajectory will appear as a series of points (a mapping) which lie on

a one dimensional curve. If the system is nonintegrable, the trajectory will appear as

a scatter of points limited to a finite area whose boundary is determined by energy

conservation. In the following we will see the application of this method in analysing

the behaviour of the Hamiltonian system for a) the Hénon - Heiles potential and b)
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the Diamagnetic Kepler Problem (DKP). The integrations are performed by using a

symplectic integration algorithm with adaptive stepsize [Poulin, 1997; Channell and

Scovel, 1990; Casetti, 1995].

1.3.1 The Hénon - Heiles Potential

Poincaré sections were used extensively by Hénon and Heiles [1964] to determine if a

third integral existed for the motion of a star in a galaxy which had an axis of symmetry.

Such a system has three degrees of freedom and two known isolating integrals of motion,

the energy and one component of the angular momentum. It was long thought that such

systems do not have a third isolating integral because none had been found analytically.

However, the nonexistence of a third integral implies that the dispersion of velocities of

stellar objects in the direction of the galactic center is the same as that perpendicular

to the galactic plane. What was observed, however, was a 2:1 ratio in these dispersions

[Gutzwiller, 1990]. Hénon and Heiles constructed the following Hamiltonian (with no

known symmetries that can give rise to a third integral) to model the essential features

of the problem

HHH =
1

2
(p2

1 + p2
2) +

1

2
(q2

1 + q2
2 + 2q2

1q2 −
2

3
q3
2) = E (1.21)

and studied its behaviour numerically [Hénon , 1983]. Hamilton’s equations for this

system are

dp1

dt
= −q1 − 2q1q2 (1.22)

dp2

dt
= −q2 − q2

1 + q2
2 (1.23)

dqi

dt
= pi (1.24)

(for i=1,2). The anharmonic terms in the potential energy give rise to nonlinear terms in

the equations of motion. The potential term in equation (1.21) has a ternary symmetry,
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as is more clearly shown by introducing the polar coordinates q1 = r cos θ, q2 = r sin θ,

in which case the potential energy becomes

VHH =
1

2
r2 +

1

3
r3 sin(3θ). (1.25)

It can be shown that when VHH(q1, q2) = 1/6

(q2 +
1

2
)(q2 +

√
3q1 − 1)(q2 −

√
3q1 − 1) = 0. (1.26)

These three straight lines cross at (q1, q2) = (0, 1), (±
√

3
2

,−1
2
). Inside this triangle the

motion is bounded, provided that HHH < 1
6
. However, if HHH > 1

6
, or if the motion

starts outside of this triangle, the motion is generally unbounded. Figure (1.4) shows

Poincaré sections for the Hénon -Heiles potential for E = 1/12, 1/8, and 1/6. It is clear

from the figure that for E = 1/12 the system is nearly integrable, while for E = 1/8

a large part of the surface of section is clearly ergodic. For E = 1/6 almost all of the

domain shows ergodic behaviour with the exception of some tiny loops near the centers

of the earlier structures of nested tori. It is this ergodic domain that provides us with

a useful means of controlling the chaotic behaviour of this system. We will discuss this

issue later in chapter 3.

1.3.2 The Diamagnetic Kepler Problem (DKP)

The effect of a magnetic field on an atom has been studied for a long time and has

played a crucial role in the understanding of atomic physics. The magnetic fields avail-

able in the laboratory are small, however, and their action on the atom used to be well

explained by perturbation theory [Waterland, Delos and Du, 1987]. The evidence of

strong magnetic field was first found by the astronomers in white dwarfs three decades

ago, and extremely strong fields are assumed to exist in neutron stars. This discov-

ery led to laboratory experiments that somehow manage to imitate the extraordinary

conditions in these exceptional stars. The main idea is to prepare the atom in a very
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Figure 1.4: (a) Poincaré sections of the Hénon - Heiles potential. Top: E=1/12,
Bottom: E=1/8.
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Figure 1.4: (b) Poincaré section of the Hénon - Heiles potential: E=1/6.
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highly excited, but still bound state, so that the orbit of the electron encloses a large

area, and thus a large magnetic flux even in a relatively small field. Perturbation theory

is then no longer applicable; the dominant term in the Hamiltonian is no longer the

linear one (in the field strenght) giving rise to the ordinary Zeeman effect [Friedrich

and Wintgen, 1989]. By contrast, the quadratic term in the Hamiltonian is usually

of less importance, because it comes into play only when the atom or molecule does

not have a magnetic moment to start with, and it leads to a small negative magnetic

susceptibility, called diamagnetic rather than the much larger positive paramagnetic

one. The quadratic, or diamagnetic term, however, is eventually responsible for chaotic

classical motion, whereas the linear, or paramagnetic term can be effectively eliminated

by using a rotating frame of reference.

The hydrogen atom in a magnetic field is accurately described over a wide range

of field strengths B by the simple nonrelativistic single-particle Hamiltonian [Delos,

Knudson and Noid, 1983]

HDK =
p2

2me
− e2

r
+ ωLz +

1

2
meω

2(x2 + y2). (1.27)

The direction of the field is taken as the z-direction and me is the reduced mass of

electron and nucleus.The frequency ω is half the cyclotron frequency ωc

ω =
1

2
ωc =

1

2

eB

mec
(1.28)

At a field strength of

B = B0 =
m2

ee
3c

h̄3 ≈ 2.35 × 109 G = 2.35 × 105 T, (1.29)

the oscillator energy h̄ω equals the Rydberg energy < = mee
4/(2h̄2) ≈ 13.6 eV. In

terms of the dimensionless field strength parameter

γ0 =
B

B0
=

h̄ω

< , (1.30)

relativistic corrections to the simple model defined by (1.27) are negligible for fields

with γ0 < 104 [Doman, 1980]. On the other hand, the effects of the spin-orbit coupling
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can be neglected for fields with γ0n
3 > 10−4, where n is the principal quantum number

[Garstang, 1977]. Effects related to the two body (nucleus and electron) center of mass

motion in the presence of an external magnetic field have been investigated by several

authors [Herold, Ruder and Wunner, 1981; Vincke and Baye, 1988]. It is possible to

separate a generalized field strength dependent momentum, which replaces the center

of mass momentum of the field-free two-body system. For fields with γ0 > 100 the

internal dynamics is considerably influenced by the center of mass motion, but for a

vanishing transversal component of the conserved generalized momentum the effect

can be accounted for accurately by a constant energy shift which depends only on the

magnetic field strength and the azimuthal quantum number m [Herold, Ruder and

Wunner, 1981].

The classical dynamics of the hydrogen atom in a uniform magnetic field is described

by the Hamiltonian (1.27). In a frame of reference that rotates at the frequency ω about

the direction of the magnetic field, z, the Hamiltonian can be written in cylindrical

coordinates as [Delos, Knudson and Noid, 1984]

HDK =
1

2me

(p2
ρ + p2

z) −
e2

(ρ2 + z2)
1

2

+
L2

z

2meρ2
+ λρ2 (1.31)

where λ = e2B2/(8mec
2). The term −e2/(ρ2 + z2)1/2 is the Coulomb potential en-

ergy, L2
z/2meρ

2 is the centrifugal barrier, and λρ2 is the diamagnetic term, which is

proportional to the square of the magnetic field B. The number of parameters in the

above equation can be reduced from four (me, e, λ, Lz) to one (L̂) with the help of the

following scaling law [Delos et al., 1988]. Let us define

ρ̂ =
ρ

α
, p̂ρ =

pρ

β
ẑ =

z

α
, p̂z =

pz

β
t̂ =

t

γ
, (1.32)

where

α =

(

e2

8λ

) 1

3

, β = m
1

2
e e

2

3 (8λ)
1

6 , γ =
(

me

8λ

) 1

2

. (1.33)

(The dimensional analysis of this scaling law is presented in the Appendix.) This means

that except for a similarity transformation the classical trajectory can be completely
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described by the one-parameter scaled Hamiltonian [Delos, Knudson and Noid, 1984]

ĤDK =
me

β2
HDK =

1

2
(p̂2

ρ + p̂2
z) −

1

(ρ̂2 + ẑ2)
1

2

+
L̂2

2ρ̂2
+

1

8
ρ̂2 (1.34)

in which the scaled mass, electron charge and diamagnetic coupling constant λ are all

equal to unity, and the z component of angular momentum is L̂. Then the equations

of motion in the scaled variables have the form

dρ̂

dt̂
= p̂ρ,

dẑ

dt̂
= p̂z,

dp̂ρ

dt̂
= − ρ̂

(ρ̂2 + ẑ2)
3

2

− 1

4
ρ̂+

L̂2

ρ̂3 ,
dp̂z

dt̂
= − ẑ

(ρ̂2 + ẑ2)
3

2

. (1.35)

These equations of motion contain only one parameter,

L̂ =

(

8λ

m3
ee

8

) 1

6

Lz = γ
1

3

0

(

Lz

h̄

)

. (1.36)

Study of the Poincaré section of the scaled Hamiltonian shows that the system

exhibits various behaviours depending on the values of E and L. The scaled potential

energy

VDK(ρ̂, ẑ) = − 1

(ρ̂2 + ẑ2)
1

2

+
L̂2

2ρ̂2
+

1

8
ρ̂2 (1.37)

has a minimum at the point ρ0 which satisfies

1

4
ρ4

0 + ρ0 − L̂2 = 0 (1.38)

with z0 = 0; the value of VDK at that point is

VDK(ρ0, 0) = − 1

ρ0
+

L̂2

2ρ2
0

+
1

8
ρ2

0 ≡ εmin(L). (1.39)

For each L̂, this is the minimum possible value of the energy of the system. VDK also

has a saddle point at z = ∞ , ρs = (2L̂)1/2, with

VDK(ρs,∞) =
L̂

2
≡ εs(L). (1.40)

εs is the classical escape energy, above which the electron has enough energy to escape

from the nucleus (although there are some bound trajectories with ε > εs). It is

convenient to define a dimensionless scaled energy

f =
ε − εmin(L̂)

εs(L̂) − εmin(L̂)
(1.41)



1.3. THE POINCARÉ SECTION OF HAMILTONIAN FLOWS 27

where ε is the energy of the system (i.e., the value of the scaled Hamiltonian): f = 0

for ε = εmin and f = 1 for ε = εs.

For small L̂, which corresponds to weak magnetic fields (γ0 � 1), trajectories are

best described as Kepler ellipses with orbital parameters that slowly vary with time.

Delos, Knudson and Noid [1983b] showed that many of these trajectories, and their

associated quantum states, can be calculated using perturbation theory with the Kepler

Hamiltonian Ĥ0
K as the starting point, i.e.

ĤDK = Ĥ0
K + Ĥ1

D (1.42)

with

Ĥ0
K =

1

2
(p̂2

ρ + p̂2
z) −

1

(ρ̂2 + ẑ2)
1

2

+
L̂2

2ρ̂2
and Ĥ1

D =
1

8
ρ̂2. (1.43)

The range of ε and L̂ for which the trajectories have an apparent relationship to Kepler

ellipses, is called the elliptical regime. Figure (1.5) shows a classical trajectory of DKP

for values of ε and L̂ corresponding to the elliptical regime.

For large L̂, corresponding to extraordinarily strong magnetic fields (γ0 � 1) (such

as might exist on the surface of a neutron star), the diamagnetic force on the electron

exceeds the Coulomb force, so the electron circles along the magnetic field line, and

travels slowly back and forth in the ẑ direction. The atom, far from being spherical,

has then the shape of a long cylinder or tube. This range of ε and L̂ is refered to

as the helical regime. The helical regime may be said to extend to f > 1 if L̂ is

sufficiently large; i.e., even above the escape energy there are bound trajectories with

the same helical character. In quantum mechanics these would be quasibound states, or

resonances. Figure (1.6) shows a typical trajectory for values of ε and L̂ corresponding

to the helical regime.

Between the elliptical and helical regimes, for f not too small, there is an irregular

regime, in which the trajectories are chaotic. This regime extends down to L̂ = 0. It
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Figure 1.5: An elliptical trajectory: L̂ = 1.60, f = 0.1, corresponding to ε = 0.24376.
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Figure 1.6: A helical trajectory: L̂ = 5.035, f = 0.1, corresponding to ε = 2.22.
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is generally believed that this means that the quantum mechanical spectrum of energy

levels will also be irregular in at least part of this region. Irregular orbits are identified

by the fact that they show no orderly pattern on the Poincaré surface of section. Figure

(1.7) shows the behaviour of the system for different values of ε and L̂. The regions of

scattered points represent chaos.

In order to do a systematic study on trajectories in the chaotic region, we choose a

single value for L̂ and for the sake of simplicity we choose this value to be L̂ = 0. One

more point is worth mentionning, namely that the Hamiltonian (1.34) has a singularity

at r=0, which can be removed, e.g. by the introduction of semi-parabolic coordinates.

The new generalized coordinates are given by [Friedrich and Wintgen, 1989; Hansen,

1994]

µ2 = r̂+ ẑ, ν2 = r̂− ẑ, pµ =
dµ

dτ
, pν =

dν

dτ
, dt = 2r̂dτ = (ν2+µ2)dτ. (1.44)

The equations of motion generated by the Hamiltonian ĤDK (L̂ = 0) in (1.34) at a

fixed value of the scaled energy ε, are equivalent to the equations of motion generated

by the Hamiltonian

hDK =
1

2
p2

ν +
1

2
p2

µ − ε(ν2 + µ2) +
1

8
ν2µ2(ν2 + µ2) ≡ 2, (1.45)

at the fixed pseudo energy equals to 2. For negative energies ε < 0 the Hamiltonian

(1.45) represents 2 harmonic oscillators with frequency ω = (−2ε)1/2, coupled by the

term ν2µ2(ν2 + µ2) originating from the diamagnetic interaction. The quadratic po-

tential vanishes at the zero-field threshold ε = 0. For positive energies ε > 0 the

Hamiltonian corresponds to 2 inverted oscillators coupled by the diamagnetic interac-

tion. There is a one-to-one correspondence between the classical trajectories generated

by the Hamiltonian ĤDK (1.34) and hDK (1.45), but they are not related by a canonical

transformation. Because of the coordinate dependent rescaling of time, two periodic

orbits which have the same period in the cylindrical representation may have different

periods in the semi-parabolic representation.
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Figure 1.7: (a) Poincaré sections of the DKP: (ẑ = 0 and p̂z > 0) Top: f = 0.8, L̂
= 0.5 ; Bottom: f = 0.4, L̂ = 0.5.
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Figure 1.7: (b) Poincaré sections of the DKP: (ẑ = 0 and p̂z > 0) Top: f = 0.8, L̂
= 1.05; Bottom: f = 0.4, L̂ = 1.05.
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Figure 1.7: (c) Poincaré sections of the DKP: (ẑ = 0 and p̂z > 0) Top: f = 0.4, L̂
= 1.51; Bottom: f = 0.1, L̂ = 1.51.
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Figure 1.8: The parameter space of the DKP: the five main dynamical regions in
the E − γ0 parameter space.

The structure of the dynamics of the Hamiltonian (1.45) depends on the value of the

scaled energy alone. The E − γ0 parameter plane can be partitioned into five distinct

regions (figure (1.8)) somewhat arbitrarily defined by Tanner, Hansen and Main [1996]:

I. ε < −0.5: bounded almost integrable motion;

II. −0.5 < ε < −0.13: bounded motion with mixed chaotic and regular motion;

III. −0.13 < ε < 0.0: the last large stable island disappear; the dynamics is mostly

chaotic;

IV. 0.0 < ε < 0.328782 · · · : unbounded mostly chaotic motion; the symbolic dynamic

is not complete;
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V. 0.328782 · · · = εc < ε: unbounded chaotic motion with a complete symbolic

description.

In order to illustrate the structure of the classical phase space, one looks at the

Poincaré surface of section . At a fixed (scaled) energy the classical motion is confined

to the energy shell, which is a three-dinensional subspace of the four-dimensional phase

space spanned by (ν, µ, pν, pµ). The Poincaré surface of section is a two-dimensional

slice in the three dimensional energy surface. The set of all intersections of a trajectory

with this surface (in a certain direction) contains most of the information related to the

particular trajectory. Here we choose the surface of section by µ = 0. It can be seen

from equation (1.45) that the energy shell for µ = 0 maps into an area bounded by the

condition −2εν2 + p2
ν = 4, which defines an ellipse with respect to the coordinates ν

and pν (see figure (1.9)).

At ε = −0.8 the system is still very close to its integrable limit ε → −∞, which

corresponds to the infinitesimally perturbed hydrogen atom. It is important to note

that even an infinitesimal perturbation is strong enough to change the phase space

structure of the hydrogen atom completely. For a pure hydrogen atom the surface of

section would simply give concentric closed curves and each orbit would contribute a

fixed point.

As we increase the scaled energy ε, irregular motion appears first near the separatrix,

as is clearly visible in figure (1.9) for ε = -0.5. The separatrix is replaced by a stochastic

layer, which fills a finite area in the surface of section. As we further increase the

scaled energy, this layer increases in size whereas the large islands related to regular

motion become smaller and smaller. Some new island structures embedded in the

stochastic layer appear close to the large islands, but they disappear quickly as ε is

further increased. Finally, for ε = -0.1, no regular structure is visible on the surface of

section and the classical motion is dominated by global chaos. Some regular motion is
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Figure 1.9: (a) Poincaré sections of the “Pseudo-Hamiltonian” of the DKP:
Top: ε = - 0.8; Bottom: ε = - 0.5.
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Figure 1.9: (b) Poincaré section of the “Pseudo - Hamiltonian” of the DKP :
ε = - 0.1.
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present even for ε > -0.1, but the related elliptic islands are so small that they are not

visible on the scale of figure (1.9).

The question that we would like to answer is the following: Is it possible to turn

the chaotic behaviour of the electron into regular motion by varying slightly a system

parameter (e.g. the magnetic field intensity)? In other words is it possible to stabilize

the electron around one of the periodic orbits, embedded in the chaotic region, without

changing the system by a large perturbation? In order to answer this question, one

must first find the location of periodic orbits embedded in the chaotic sea. This task

will be done in chapter 2. Afterwards, one must devise an algorithm to stabilize the

electron around one of those periodic orbits; that is the content of chapter 3. Another

interesting question that may arise is since in every experiment the system parameters

may be allowed to vary, is it possible to maintain the stability of the electron orbit

while the system parameters are changing as a function of time? We will address this

issue of tracking in chapter 4.



Chapter 2

Detecting Unstable Periodic Orbits

What renders these periodic orbit solutions so precious to us is

that they are, so to speak, the only breach through which we may

attempt to penetrate an area hithetro deemed inaccessible.

Henri Poincaré

(Les Methodes Nouvelles de la Mécanique Céleste, 1892, Vol 1,

§36)

Unstable periodic orbits (UPO) play a fundamental role in the geometrical

and dynamical properties of chaotic systems. Their locations are of prime

importance in the control of chaos as well as in the calculation of invariant

measures. Through the cycle expansion theory, the UPOs provide an essen-

tial link between the classical and quantal world. We present two effective

methods which provide us with the position of unstable periodic orbits. We

discuss the advantages and disadvantages of each method.

2.1 Recurrence Method

Auerbach et al.[1987] proposed a recurrence algorithm for extracting periodic orbits

from a chaotic time series. In this method one assumes that N elements of the time

series {Xi}N
i=1 are available, with Xi being points in R2. If N is sufficiently large, the

39
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time series will visit the neighbourhood of an arbitrary period-n cycle point at some

time i, due to the ergodicity of chaotic trajectories. (The Poincaré recurrence theorem

which explains this feature of chaotic trajectories is discussed in [Jackson, 1989]). At

time i+1 the time series will be in the vicinity of another point of that cycle and so

on. After n iterations the time series will again visit the neighbourhood of the initial

period-n cycle point, under the assumption that n time steps previously the sequence

was sufficiently close to it. Obviously this process will not last forever and after few

cycles the trajectory will spread over the phase space. This idea is used to locate

the periodic orbits by scanning the time series for pairs of points separated by n time

steps that are within a small preassigned spatial distance r1 of one another. At this

stage all points in the time series which return after n steps are located and must now

be grouped into periodic cycles. Throughout the length of the run, the vicinity of a

particular periodic point may have been visited many times. In order to decide whether

two nearly periodic orbits in the time series correspond to distinct periodic orbits, their

positions relative to each other are verified. If all the corresponding pairs of points of

the two orbits are less than a preassigned distance r2 , then they are grouped into the

same periodic cycle. Otherwise, they represent distinct periodic cycles. The position

of a point belonging to a true unstable n-cycle is then estimated by the center of mass

of all points in the time series which were found to correspond to it. It is clear that the

resulting point may not belong to the original time series. The two externally assigned

parameters r1 and r2 , used in the process, are chosen by the following criteria: r1 is

chosen large enough to include several sequences corresponding to a particular periodic

orbit. The distance between cycles, r2 , is set small enough so as to distinguish between

distinct periodic orbits under the condition that r2 > r1 . The correct grouping should

not change with an increase in the length of the time series. The advantage of the

recurrence method is that it does not need the mathematical form of the map, which

is the case for the Poincaré surface of section of a Hamiltonian flow. As was shown in

chapter 1, all we know from a Poincaré section, is that all points on this plane come
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from the natural evolution of a dynamical system, but we do not have any function

that iteratively produces these points on the plane. In order to do a systematic study

we start testing this method on the dissipative Hénon map (DHM), then we will extend

its application to the Poincaré sections of Hamiltonian flows.

Figure (2.1) shows the location of a fixed point (period-1) for the Hénon map written

in the form
(

xn+1

yn+1

)

=
(

µ − x2
n − εyn

xn

)

(2.1)

with µ = 1.4 and ε = −0.3.

Here we use this mapping only to generate a sequence of data whereafter the mathe-

matical form of the map is no longer used. This map enables us to compare the results

from recurrence method with the exact analytical solution. It is clear from the above

equations that for the fixed point we must have x∗ = y∗ = −ε − 1
2 ± 1/2[(1 + ε)2 + 4µ]

which is x∗ = y∗ = 0.88389626 for the chosen constants. This should be compared

with x∗ = 0.883892 and y∗ = 0.884215 shown in figure (2.1). This shows the limitation

of the center of mass estimation, but also indicates that the method can give reliable

results.

We have also obtained the periodic orbits for the Hénon - Heiles potential and DKP

using the recurrence method. Figure(2.2) shows period-1 and period-3 cycles for the

Hénon - Heiles potential and figure (2.3) shows period-2 and period-3 cycles for DKP.

A disadvantage of the recurrence method is that it needs very long time series

(N very large). For DHM we used 2 × 105 points. In order to obtain the periodic

orbits for Hamiltonian flows we have used over 106 points on the Poincaré section to

reach the accuracy obtained in figures(2.2) and (2.3). Recalling that between every two

consecutive points on the Poincaré surface of section there is a segment of trajectory

in the phase space which must be calculated by an integration algorithm, one can see

that it is a very CPU intensive task to produce a section with as many points on it. An
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Figure 2.1: Fixed point of the dissipative Hénon map detected by the recur-
rence method: x∗ = 0.883892, y∗ = 0.884215, µ = 1.4 and ε = - 0.3 (horizontal axis:
x, vertical axis: y).
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Figure 2.2: Periodic cycles on the Poincaré section of the Hénon - Heiles
potential: Top: Period - 1 cycle (E = 0.125). q∗2 = −0.185468 and p∗

2 = −0.00018723.
Bottom: Period - 3 cycle (E = 0.14). q∗21

= 0.1255501, p∗21
= 0.2017429, q∗22

=
−0.1458445, p∗22

= 0.204073, q∗23
= 0.04480447, p∗

23
= 0.3252957.
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Figure 2.3: Periodic cycles on the Poincaré section of the DKP: Top: Period - 2
cycle(ε = - 0.3). ν∗

1 = −0.00334025, p∗
ν1

= 1.70168, ν∗
2 = 0.001787469, p∗

ν2
= 1.051106.

Bottom: Period - 3 cycle (ε = - 0.2). ν∗
1 = −1.42218, p∗ν1

= 1.18476, ν∗
2 = 1.415831,

p∗ν2
= 1.195062, ν∗

3 = 0.003226735, p∗
ν3

= 1.086226.
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important improvement over the “brute force” method just described, can be achieved

in the following way. We choose M points on the Poincaré section (M relatively large,

but much smaller than N) as initial conditions for M trajectories, and start integrating

each point until it produces the nth return on the Poincaré section (for period-n). If

the initial point is closer to the nth return point than r1(defined earlier), we accept the

initial point as belonging to a period-n cycle, otherwise we reject it and move to the

next. As before we group the accepted points to obtain all distinct period-n cycles. If

the M initial points are spread densely and uniformly, then ergodicity guarantees that

the result from the first algorithm would be the same as the result from the second

one. We call this method the “modified reccurence method (MRM)”. We can also take

advantage of the symmetries on the Poincaré surface of section of the Hamiltonian flows.

For example, for DKP one can see from figure (1.9) that the mapping is symmetric with

respect to both ν and pν axes. Therefore we only need to spread the initial conditions

over one quarter of the mapping, which means that we can select a smaller set of initial

conditions or provide a denser distribution.

Another improvement is that in order to reach a higher accuracy, instead of execut-

ing the above algorithm only once, we can repeat the same algorithm as many times

as it is desired. After the first run we collect the accepted points. Then we take any of

those points and choose a small box (of size δ on each side) with that particular point

at the center of the box. Now, within that box we select a new set of initial points

and we run the algorithm for the second time. The results of the second run are more

reliable than the first one, because in the former case the probability of closeness of

an initial condition to its nth return map (for period-n) is much higher than the latter

case, and consequently the center of mass of the points gives a better estimation of

the position of a periodic orbit. Our experiments show that usually after four or five

applications of the process, no further improvement in the accuracy is observed.

It is important to note that not all the points obtained in this way are unstable. For
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Figure 2.4: The Poincaré section of the DKP: A period - 7 stable cycle (ε =
−0.2, ν∗

1 = 1.538, p∗ν1
= −0.3656). For better visibility we mapped these points over

the chaotic sea surrounding them. The Lyapunov exponent curve (top) confirms the
stability of the trajectory.
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example figure(2.4) shows a period-7 orbit for DKP resulting from recurrence method.

The Lyapunov exponent for this trajectory is zero indicating a stable orbit. The seven

points indicated in figure (2.4), represent 104 iterates on the Poincaré section, indeed

very stable!

2.2 Stability Transform Algorithm

As mentionned in the previous section, the difficulty with the algorithms based on the

return map is that the time series must be very long. So et al.[1997], and Schmelcher

and Diakonos [1997a, 1997b, 1998] and Diakonos, Schmelcher and Biham [1998] have

recently developed two different methods to overcome this difficulty. The first method

reported a successful detection of an unstable period-1 for Hénon map using a time

series of only 1200 elements and with the relative error of 10−3 with respect to the

exact value. With the second algorithm it is possible to obtain the same point by using

a time series of barely 100 elements and a relative error of 10−17 with respect to the

exact value! We have successfully extended to area-preserving maps the method of

Schmelcher and Diakonos originally developed to treat dissipative dynamics. We call

the method the “stability transform algorithm (STA)”. The STA can be explained as

follows [Schmelcher and Diakonos, 1997a].

Let us consider an N -dimensional discrete chaotic dynamical system given by

U : xi+1 = F(xi). (2.2)

The goal is to construct from equation (2.2) other dynamical systems Sk with the

same number of fixed points, still at their original positions, but having become stable

through the transformation

Lk : U → Sk. (2.3)

The effect of the transformation Lk is therefore to change the stability properties but
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not the locations of the fixed points. Because of the stability of the fixed points in

the constructed system Sk, every trajectory of Sk converges after a finite number of

iterations to a fixed point x∗. Per construction x∗ is then also a fixed point of the original

system U . To fullfill the requirement of the one to one correspondence between the fixed

points of U and Sk, the transformation Lk should in general be linear. Consequently

Sk takes the following form

Sk : xi+1 = xi + Λk(F(xi) − xi) (2.4)

where Λk is an invertible constant N × N matrix. By suitable choices of Λk one can

stabilize the fixed points of the transformed system Sk. In general, different fixed points

are stabilized by different transformed systems Sk corresponding to different matrices

Λk. It turns out that if the absolute values of the elements of the matrices Λk = λCk

(0 < λ � 1) are sufficiently small, there exists a universal set of very restrictive matrices

Ck such that at least one matrix belonging to this set transforms a given unstable fixed

point of U to a stable fixed point to the corresponding Sk.

Schmelcher and Diakonos [1998] showed that these matrices are made of elements

cij ∈ {0,±1} such that each row or column contains only one element which is different

from zero. The number of such matrices is 2NN !. Thus, for a two-dimensional map

there are 8 matrices, namely
(±1 0

0 ±1

)

and
(

0 ±1
±1 0

)

. (2.5)

The method can easily be extended to find the unstable points of period-n cycles. All

one has to do is to replace F(xi) in equation (2.4) by its nth iterate F(n)(xi).

Figure (2.5) shows the application of the STA to the Hénon map. It clearly shows

that the successive iterates converge towards the periodic point. The result is in perfect

agreement with the exact value. Note that in this case only 100 iterates were used.

Figure (2.6) shows a period-2(stars) and a period-7 cycle (circles) for the same mapping.

The method is implemented in the following way.
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Figure 2.5: A fixed point for dissipative Hénon map obtained by STA. λ =
0.3, x∗ = y∗ = 0.883896. The initial point is at the bottom left corner of the graph and
after 100 iterations using STA the points converge towards the fixed point at the top
right corner of the graph (ε = −0.3, µ = 1.4).
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Figure 2.6: The Dissipative Hénon Map: Periodic orbits obtained by STA. A period
- 2 cycle (stars) and a period - 7 cycle(circles) (ε = −0.3, µ = 1.4).
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We choose a starting point x0, one of the matrices {Ck} and a value for λ. Using

equation (2.4) we obtain the successive values x1,x2, · · ·. This sequence either converges

to a point x∗ or it escapes to infinity. In the former case we accept the result as a fixed

point or a period-n point. We then take another matrix from the set {Ck} and repeat

the process. After testing all 8 matrices, we choose another starting point and repeat

the procedure. By choosing a uniformly distributed array of points as initial conditions,

one can make sure that all the periodic orbits are captured.

As the first case for area-preserving maps, we apply the STA to the standard map.

Figure (2.7) shows the points obtained for period-2 (K = 1.25). It is important to

mention that while the stability transform changes the stability properties of unstable

fixed points, it does not alter originally stable points. Therefore among the points

obtained by this method, some are stable and others are unstable.

As the second application we applied the STA to the Crémona map. Figure(2.8)

shows a period-5 cycle for the Crémona map (ε = 1 and µ = - 0.4224).

When we apply the STA to the Poincaré section of a Hamiltonian flow, we encounter

a serious limitation. In this case the only periodic orbits that have been detected so far

were period-1 (fixed points). For higher periodic orbits the method fails to detect the

orbits other than period-1, which is obviously the correct answer to any period-n otbit.

It remains an open question why the STA cannot detect the period-n cycles (n 6= 1)

on the Poincaré section of Hamiltonian flows. Nevertheless the method maintains its

efficiency for n = 1. In this case only after 250 iterates, the fixed points are detected

which is remarkable if one compares with the computational effort necessary in the case

of the recurrence method. Figures (2.9) and (2.10) show the fixed points obtained by

the STA for the Hénon - Heiles potential and the DKP respectively.

It is worth mentionning that we have collected a wealth of information on the
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Figure 2.7: A set of period-2 cycles of the standard map (K = 1.25) obtained
by STA: Circles represent the unstable orbit while stars show the stable orbits(λ =
0.3).
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Figure 2.8: A period - 5 cycle for the Crémona map obtained by STA. Only
100 iterates were used to detect one of the periodic points.
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Figure 2.9: Fixed points for the Hénon - Heiles potential: A set of period-1
cycles for E = 0.125. In order to detect these points 1000 initial conditions were used,
each of which was iterated 250 times. The same calculation was repeated for every Ck.
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Figure 2.10: Fixed points of the DKP obtained by STA: A set of period-1 cycles
for ε = - 0.3. In order to detect these points 1000 initial conditions were used, each of
which was iterated 250 times. The same calculation was repeated for every Ck.
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Map Parameter(s) Period x∗ y∗

DHM ε = −0.3, µ = 1.4 1 -1.58389 -1.58389
DHM ε = −0.3, µ = 1.4 2 -0.66612 1.36612
DHM ε = −0.3, µ = 1.4 7 -1.46535 1.65652
DHM ε = −0.3, µ = 1.4 11 -1.42604 1.64998

Standard K = 1.25 2 0.297534 0.595068
Standard K = 1.25 5 0.17033 0.67033
Standard K = 1.25 7 0.418255 0.836511
Standard K = 1.25 11 0.502424 0.954342

Crémona ε = 1, µ = −0.4224 5 -0.525669 0.0943363

Hénon -Heiles E = 0.125 1 -0.185468 -1.87239810−4

Hénon -Heiles E = 0.14 3 0.1255501 0.2017429

DKP ε = −0.3 2 -3.34025×10−3 1.70168
DKP ε = −0.2 3 -1.42218 1.18476
DKP ε = −0.1 1 -1.050112×10−4 1.41422

Table 2.1: Position of periodic cycles for different maps: Numerical values of the
position of a number of periodic orbits belonging to different maps. Only one member
of a periodic cycle represents its cycle in this table.

position of unstable fixed points as well as the control parameters (will be discussed

later) for different parameter values of the systems discussed earlier. In this chapter we

selected only a small subset of those points which are representative for the behaviour

of those systems. The numerical data corresponding to this subset are summarized in

table (2.1).

In summary, we have developed a reliable and robust method for the detection of

UPOs in area-preserving maps. For Hamiltonian flows obtained from Poincaré sections

a mixture of modified recurrence method (MRM) and STA is, at present, necessary to

detect orbits of period higher than one. As we will see shortly, the unstable periodic

orbits are essential for a successful control of the dynamics in the chaotic regime. How

this can be achieved is explained in the next chapter.



Chapter 3

Controlling Hamiltonian Systems

Chaos often breeds life, when order breeds habit.

Henry Brooks Adams

(The Education of Henry Adams)

In this chapter we will discuss the algorithm proposed by Ott, Grebogi and

Yorke [1990] whose aim is to stabilize the chaotic behaviour of a nonlinear

system around one of the selected periodic orbits embedded in the chaotic

region of its phase space. We report for the first time the successful control

of the chaotic behaviour of the Hénon - Heiles Hamiltonian as well as the

diamagnetic Kepler problem (DKP).

The hallmark of deterministic chaos, an extreme sensitivity to initial conditions,

suggests that chaotic systems might be difficult if not impossible to control, since any

perturbations used to control would grow exponentially in time. Indeed, this quite

reasonable view was widely held until only a few years ago. Surprisingly, the basis for

controlling chaos is provided by just this property, which allows carefully chosen, tiny

perturbations to be used for stabilizing virtually any of the unstable periodic orbits

57
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making up a strange attractor. Ergodicity [Eckmann and Ruelle, 1985] is another

property of chaotic systems that makes them particularly amenable to control, since

most points of interest are eventually visited in the evolution of the system.

Research on controlling chaotic systems has experienced a remarkable growth in a

short time span, with the first studies in the field appearing only ten years ago. In the

late 1980s, Hübler and co-workers [1988] carried out a series of studies on manipulating

chaotic systems to achieve a desired “goal dynamics” with forcing terms appropriately

incorporated into the corresponding governing equations. In 1990, Ott, Grebogi and

Yorke introduced a linear feedback method (called hereafter the OGY method) for sta-

bilizing unstable periodic orbits in chaotic systems, which did not require a knowledge

of the governing equations [Ott, Grebogi and Yorke, 1990; Auerbach et al., 1992; Ditto,

Spano and Lindher, 1995].

The OGY method is based on the idea of stabilization of a periodic orbit embedded

in a chaotic system. In this method we linearize the system in a neighbourhood of a

target orbit and apply a small perturbation to the system such that when a trajectory

enters the neighbourhood it can be made to converge to the target. The OGY method

has generated widespread interest, and various modifications and reductions of the

scheme soon followed [Shinbrot et al., 1993; Alsing, Gavrielides and Kovanis, 1994a,

1994b; Epureanu and Dowell, 1998; Yagasaki and Uozumi, 1998a, 1998b] as well as

alternative approaches [Pyragas, 1992; Rollins, Parmanada and Sherard, 1993; Kittel,

Pyragas and Richter, 1994; Bielawski, Derozier and Glorieux, 1994; Jackson, 1997;

Feudel and Grebogi, 1997; Fouladi and Valdivia, 1997; Löcher, Johnson and Hunt,

1997; Mascolo and Grassi, 1997; Schuster and Stemmler, 1997; Chau, 1998; Ushio and

Yamamoto, 1998; Osipov, Kozlov and Shalfeev, 1998; Yang, 1998; Góra and Boyarsky,

1998; Just et al., 1998; Pisarchik, Kuntsevich and Corbalán, 1998; Sinha and Gupte,

1998; Bolotin et al., 1999]. Soon after OGY method was published, strikingly successful

applications of the method in the experimental systems began to appear. Ditto, Rauseo
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and Spano [1990] reported the first example of experimental chaos control in which the

unstable period-1 and period-2 orbits of a chaotically oscillating magnetoelastic ribbon

were stabilized. Other demonstrations of experimental chaos quickly followed, including

the stabilization of unstable periodic orbits in a driven diode circuit [Hunt, 1991], a

multimode laser with an intracavity crystal [Roy et al., 1992], a thermal convection

loop [Singer, Wang and Bau, 1991] and the Belousov-Zhabotinsky reaction [Petrov et

al., 1993, 1994] (a collection of articles about the control of chaos and its applications

can be found in Chaos, 7(4), 1997).

We report for the first time the successful control of two Hamiltonian systems: the

Hénon - Heiles potential and the diamagnetic Kepler problem (DKP). We have also

extended the controlability of area-preserving maps to include the Crémona map. In

the following, we first review the OGY method. Our goal is to stabilize a chaotic orbit

around some desired periodic orbit (which we obtained in the previous chapter) for two-

dimensional Hamiltonian maps. These maps may arise from a surface of section of a

two-degree-of-freedom time-independent Hamiltonian system or from an experimental

time series originating from a conservative process. It is important to note that due to

the existence of complex conjugate eigenvalues along an unstable orbit, characteristic

of area-preserving maps, the original OGY method, which is expressed in terms of real

eigenvalues and eigenvectors along the periodic orbit, fails to apply. We follow and

implement the algorithm proposed by Lai, Ding and Grebogi [1993] which is a modified

version of the OGY method suitable for area-preserving mappings.

3.1 The Control Method

We consider the following discrete time dynamical system

Xn+1 = F(Xn, p), (3.1)
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where Xi ∈ R2, p∈ R is a control parameter, and F is a smooth vector valued function

of both variables. Since we do not want to change the dynamics substantially, we restrict

our parameter perturbation to be small. In other words we require |p−p0| < δp, where

p0 is some nominal parameter value and δp is a small number defining the range of

parameter variation. Our objective is to tune the parameter p in such a way that a

typical trajectory in the chaotic region is stabilized around some desirable unstable

periodic orbit after an initial chaotic transient. The procedure is as follows.

First we choose the periodic orbit that yields the best system performance (this was

done in the previous chapter). Next, we define a small region of size εc around each of

the periodic orbit points whose size is proportional to δp. We then start the trajectory

with some initial condition in the chaotic region. Due to the ergodicity, there is a finite

probability that the particle enters the small region around one of the periodic-orbit

points. Once the particle is inside the small region, p will be judicously changed to

keep the trajectory around the periodic orbit.

In contrast to dissipative systems, the initial transient, for a typical Hamiltonian

system, can be very long [Grebogi, Ott and Yorke, 1983] due to the presence of KAM

islands that act as barriers for the “transport” of a chaotic trajectory from one region of

phase space to another. This problem has been successfully addressed recently by Bolt

and Meiss [1995] and by Schroer and Ott [1997]. The solution is now called targeting

and can be used at will to accelerate the transport of the trajectory to the desired

“target”.

Specifically, assume that the unstable orbit of period m to be controlled is

X01(p0) −→ X02(p0) −→ · · ·X0m(p0) −→ X0(m+1)(p0) = X01(p0). (3.2)

The linearized dynamics in the neighborhood of the period-m orbit is

Xn+1 − X0(n+1)(pn) = M · [Xn − X0n(pn)], (3.3)



3.1. THE CONTROL METHOD 61

where M is the two-dimensional Jacobian matrix whose elements (ij) are the partial

derivatives of the ith component of F with respect to the jth component of X, i.e.,

∂Fi/∂Xj evaluated at the unperturbed periodic-orbit point X0n(p0). The adjustment

of the parameter, pn = p0 + (∆p)n, with | (∆p)n |≤ δp will result in the following shift

of the periodic-orbit points according to

X0n(pn) − X0n(p0) ' gn(∆p)n, (3.4)

where

gn =
∂X0n(p)

∂p

∣

∣

∣

∣

∣

p0

. (3.5)

In equation (3.3), we will not express the Jacobian matrix M in terms of its eigenvalues

and eigenvectors because there may exist complex-conjugate eigenvalues on the unit

circle for some of the periodic points. Instead we explore the stable and unstable

directions associated with these points. The stable and unstable directions do not

necessarily coincide with the eigenvectors at a given periodic point if m 6= 1 [Lai,

Grebogi, Yorke and Kan, 1993]. In the case of complex-conjugate eigenvalues, those

eigenvectors are not even defined in the real plane.

The existence of both stable and unstable directions around each orbit point can

be seen as follows. Let us choose a small circle of radius ε at some orbit point X0n. In

a Cartesian coordinate system with the origin at X0n, the circle can be expressed as

dx2 +dy2 = ε2. The image of the circle under F−1 centered at X0(n−1) can be expressed

by A(dx′)2 + B(dx′)(dy′) + C(dy′)2 = 1, which is typically an ellipse. Here A, B and

C are functions of the entries of the inverse Jacobian matrix at X0n. This deformation

from a circle to an ellipse means that the distance along the major axis of the ellipse

at X0(n−1) contracts as a result of the map. Similarly, the image of a circle at X0(n−1)

under F is typically an ellipse at X0n. This means that the distance along the inverse

image of the major axis of the ellipse at X0n expands under F. Thus the major axis

of the ellipse at X0(n−1) and the inverse image of the major axis of the ellipse at X0n
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approximate the stable and unstable directions at X0(n−1).

Let es(n) and eu(n) be the stable and unstable directions at X0n, and let fs(n) and fu(n)

be two vectors that satisfy fu(n) ·eu(n) = fs(n) ·es(n) = 1 and fu(n) ·es(n) = fs(n) ·eu(n) = 0.

To control the orbit, we require that the next iteration of a trajectory point after

falling into one of the small neighbourhoods around X0n lies on the stable direction at

X0(n+1)(p0), i.e.

[Xn+1 − X0(n+1)(p0)] · fu(n+1) = 0. (3.6)

This defines the control strategy. Substituting equations (3.3) and (3.4) into equation

(3.6), we obtain the following expression for the parameter perturbations [Lai, Ding

and Grebogi, 1993]:

(∆p)n =
{M · [Xn − X0n(p0)]} · fu(n+1)

[(M · gn) − gn+1] · fu(n+1)

, (3.7)

where M is evaluated at X0n(p0). The quantities in equation (3.7) are all numerically

accessible, so this method is suitable to control the system without a knowledge of the

governing equations.

3.2 Calculating the Jacobian Matrix and the Man-

ifolds

Once we have selected the desired periodic orbit, the next task before us is to obtain the

Jacobian matrix for each periodic point. Since we assume no knowledge of the governing

equations of the system, this task must be done numerically. In order to calculate

the four elements of the Jacobian matrix, we use equation (3.3) for an unperturbed

trajectory (i.e. pn = p0). However, this equation gives us two equations with four

unknowns. To complement this information, we choose a small neighbourhood around

each periodic point. In this region, the system is assumed to behave linearly. The

following steps are then performed:
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1. take one of the periodic points

2. choose a small linear neighborhood around that point

3. select M neighbouring points as initial conditions within that neighbourhood

4. iterate each of the M trajectories to get the next return map

5. write equation (3.3) for each of the M points

6. solve all the 2M equations simultaneously [Press et al., 1992].

[If the M points are chosen uniformly around the periodic point, the solution to the

above equations will give the optimised values for the elements of the Jacobian

matrix. Note that due to the limitations of the simultaneous equations solver

algorithm, choosing a larger number of neighboring points does not necessarily

increase the accuracy of the results. By choosing 1500< M < 2000 points within

a box of the order 10−4 around the periodic point we obtained the best results

for the elements of the Jacobian matrix.]

7. repeat the procedure for the next periodic point.

Table (3.1) compares the exact value of the determinant of the Jacobian matrix

with the one obtained numerically for different maps. The numbers are characteristic

of the accuracy of the procedure.

Map Jacobian (exact value) Absolute numerical error (max.)

DHM ε = - 0.3 ±6.5 × 10−4

Standard 1 ±5.5 × 10−4

Cremona 1 ±5.0 × 10−4

Hénon - Heiles 1 ±0.001
DKP 1 ±0.003

Table 3.1: The Jacobian: comparison between exact values and numerical results
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Once we know the Jacobian matrices, the stable (es) and unstable (eu) directions at

each point must be obtained and the vector fu(n+1) calculated for its use in equation(3.7).

This second task is performed by the following algorithm. This algorithm can be applied

to cases where the period of the orbit is arbitrarily large.

To find a stable direction at a point X [Lai et al, 1993], we first iterate this point

forward N times under the map F : F1(X),F2(X), · · · ,FN(X). Now imagine that we

put a circle of arbitrarily small radius ε at the point FN (X). If we iterate this circle

backward once, the circle will become an ellipse at the point FN−1(X). We continue

iterating this ellipse backwards, keeping the ellipse’s major axis of order ε by a simple

normalization procedure. By iterating the ellipse all the way back to the point X, the

ellipse becomes very thin, with its major axis pointing along the stable direction at

point X provided that N is large enough. In practice, instead of using a small circle,

we take a unit vector at the point FN (X), since the Jacobian matrices of the inverse

map F−1 rotates the vector in the tangent space of F towards the stable direction.

Thus we iterate a unit vector backward to the point X by multiplying the Jacobian

matrices of the inverse map at each point on the already existing orbit.

An important practical point in the calculation is that we never actually calcu-

late the Jacobian matrix of the inverse map along the trajectory. The reason is that,

the trajectory is very sensitive and will usually diverge from the original trajectory

FN (X),FN−1(X) · · ·F1(X) after only a few backward iterations. Instead we store

the inverse Jacobian matrix (J−1(Xi) ≡ J−1

i
, {Xi}i=1,···,m) at every point of the orbit

Fi(X)(i = 1, · · · , N) when we iterate forward the point X beforehand. We normalize

the vector after each multiplication to the unit length. For sufficiently large N , the unit

vector we get at X is a good approximation of the stable direction at X. The procedure

can be illustrated schematically as follows (s is a unit vector):
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s0(Xi) −→ ŝ−1 = J−1

i
s0 −→ s−1 =

ŝ−1

|̂s−1|
−→ ŝ−2 = J−1

i−1
s−1 −→ s−2 =

ŝ−2

|̂s−2|

−→ · · · · · · −→ ŝ−N = J−1

i−N
s−N+1 −→ s−N =

ŝ−N

|̂s−N|
∼ es(Xi)

Similarly, to find the unstable direction at point X, we first iterate X backward under

the inverse map N times to get a backward orbit F−j(X)(j = N, · · · , 1). We then

choose a unit vector at point F−N (X) and iterate this unit vector forward to the point

X along the already existing orbit by multiplying by the Jacobian matrix of the map N

times since the Jacobian matrix of the forward map (J(Xi) ≡ Ji, {Xi}i=1,···,m) rotates

a vector towards the unstable direction normalizing to unit length at each step. The

final vector at point X is a good approximation of the unstable direction at that point

if N is sufficiently large. Again, to avoid divergence from the original trajectory, we do

not actually iterate the inverse map. What we do in this case is to choose X to be the

end point of a forward orbit, all the points before X are the inverse images of X, and

we store the Jacobian matrices of the forward map at those points. [An illustration of

the procedure is shown in figure (3.1) for a period-2 orbit of the dissipative Hénon map

(µ = 1.4 and ε = −0.3).] The procedure can be illustrated schematically as follows (u

is a unit vector):

u0(Xi) −→ û1 = Jiu0 −→ u1 =
û1

|û1|
−→ û2 = Ji+1u1 −→ u2 =

û2

|û2|

−→ · · · · · · −→ ûN = Ji+N−1uN−1 −→ uN =
ûN

|ûN|
∼ eu(Xi)

Once we have obtained the Jacobian matrix and the unstable direction at the position

of each periodic point, we are able to apply control using small parameter perturbations

calculated from equation (3.7). We wait until the trajectory gets close enough to one of

the periodic points and at that moment we change the parameter by (∆p)n. Therefore

for the next iteration the trajectory will land on the stable direction of the successive

periodic point. As long as we repeat this procedure, we can maintain the system under
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Figure 3.1: Stable and unstable directions for the dissipative Hénon map: The
direction of vectors es, eu, fs and fu for a period-2 orbit of the dissipative Hénon map
(µ = 1.4 and ε = −0.3).
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control. In other words we can bring the system to order by applying small parameter

perturbations at each step.

3.3 Numerical results

We have successfully controlled a large number of unstable periodic orbits for the dissi-

pative Hénon map, the standard map, the Crémona map, the Hénon - Heiles potential

and the DKP using the procedure just described. As mentionned in the previous chap-

ter we present only a small set of controlled periodic orbits which are representative of

the behaviour of these systems under our control algorithm. It is again to emphasize

that no prior knowledge of the analytic form of the map is assumed nor used. In the two

cases of Hamiltonian flow, only the existence of a mapping on the Poincaré section is

assumed. (For convenience, we rewrite the expression for each mapping in this section.)

3.3.1 The Iterative Mappings

We have successfully controlled period-1,2,7 and 11 cycles for the dissipative Hénon

map






xn+1

yn+1





 =







−εyn + µ − x2
n

xn





 . (3.8)

Figure(3.2) shows the set of periodic orbits as well as the controlled trajectories.

As the first application of OGY method on area-preserving maps, we consider the

standard map






qn+1

pn+1





 =







qn + pn+1 (mod1)

pn − K
2π

sin(2πqn)





 . (3.9)

The results that we obtain confirm the earlier results by Lai, Ding and Grebogi [1993].

We successfully controlled chaos around period-2,5,7 and 11 cycles. Figure(3.3) shows



68 CHAPTER 3. CONTROLLING HAMILTONIAN SYSTEMS

Figure 3.2: (a) The Dissipative Hénon Map: Top: The set of periodic orbits
of Hénon map selected for the control algorithm. Filled circle: Period-1, Diamonds:
Period-2, x: Period-7, Circles: Period-11. Bottom: Period-1 controlled trajectory (as
can be seen from equation (3.8) the vertical axis represents both x and y axes).
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Figure 3.2: (b) Controlled Trajectories for the Dissipative Hénon Map: Top:
Period-2; Bottom: Period-7 (as can be seen from equation (3.8) the vertical axis rep-
resents both x and y axes).
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Figure 3.2: (c) Controlled Trajectory for the Dissipative Hénon Map: Period-11
(as can be seen from equation (3.8) the vertical axis represents both x and y axes).
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the control for the standard map.

An important feature of controlling chaos is that one can make a system work as

a multimode system only at the expense of small perturbations. For instance, one can

choose the system to be controlled around the period-n orbit and sometime later decide

to stabilize the system around another period-m orbit (m 6= n) and so on. Figure(3.4)

shows the response of the standard map to this multimode control scheme.

We also report the control of the Crémona map around a period - 5 orbit (ε = 1

and µ = −0.4224 in(3.8)). Figure (3.5) shows the location of the periodic points on the

map as well as the controlled trajectory.

3.3.2 The Hénon -Heiles Potential

We report for the first time the successful control of the Hénon - Heiles Hamiltonian us-

ing OGY method. We stabilize the system around period-1 and period-3 cycles. Figures

(3.6) and (3.7) show the controlled trajectories for period-1 and period-3 respectively.

3.3.3 The Diamagnetic Kepler Problem

We report for the first time the successful control of the DKP. Although the Poincaré

section of DKP is of rich complexity and the system is very sensitive even to small

perturbations, the results show a robust control. Although a small variation of the

system parameter does not affect the global behavior of DKP drastically, it may change

the local behavior of the phase space completely. In order to demonstrate this fact,

in figure(3.8) we show a small region of the Poincaré section for three different but

close values of the scaled energy ε. By varying ε, the pairs of stable and unstable

periodic orbits appear and disappear. This might seem to be a serious obstacle to
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Figure 3.3: (a) The Standard Map: Top: A set of periodic orbits of the standard map
selected for the control algorithm. +: period-2; •: period-5; x: period-7; ?: period-11
(horizontal axis: q, vertical axis: p). Bottom: period-2 controlled trajectory (vertical
axis: p).
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Figure 3.3: (b) Controlled Trajectories for the Standard Map: Top: period-5;
Bottom: period-7 (horizontal axis: q, vertical axis: p).
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Figure 3.3: (c) Controlled Trajectory for the Standard Map: Period-11 (hori-
zontal axis: q, vertical axis: p).
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Figure 3.4: Stabilization of the standard map around different periodic orbits:
A trajectory is stabilized around period-7, period-2, period-11 and period-7 cycles. At
each step the trajectory is stabilized for 5000 iterates. The transient time intervals
(number of iterations) from one periodic orbit to another are: 10041, 4495, 3626 re-
spectively.
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Figure 3.5: The Crémona map: A period - 5 orbit(top) and the controlled trajec-
tory(bottom). Since the x(or y) coordinate of two pairs of points are identical, only
three lines can be seen on the graph.
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Figure 3.6: (a) The Hénon - Heiles Hamiltonian: Top: An unstable fixed point.
Bottom: The controlled trajectory around the fixed point.
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Figure 3.6: (b) The Hénon - Heiles Hamiltonian: The same period-1 controlled
trajectory (3- dimensional: q1, q2, p1).
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Figure 3.7: (a) The Hénon - Heiles Hamiltonian: Top: An unstable period-3 cycle.
Bottom: The controlled trajectory around the period-3 cycle (vertical axis: q2).
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Figure 3.7: (b) The Hénon - Heiles Hamiltonian: The same period-3 controlled
trajectory (3- dimensional: q1, q2, p1).
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control, because by changing the parameter value during control one might lose the

target periodic orbits. Therefore one must choose those sets of periodic orbits which

are more robust to parameter variation than the one shown in figure(3.8).

The data corresponding to the controlled trajectories presented in this chapter are

summarized in table (3.2).

Figures(3.9), (3.10) and (3.11) show successful controls around period-1, period-2

and period-3 orbits respectively.

As mentionned previously, the system parameter may vary during the control process.

Then the following question may arise: Is it possible to maintain control while the sys-

tem parameter varies? In other words is it possible to update the position of periodic

orbits as well as the related parameters, when the system parameter is changed? This

important issue is addressed in the next chapter.



82 CHAPTER 3. CONTROLLING HAMILTONIAN SYSTEMS

Figure 3.8: (a) Poincaré section of the DKP for two different values of the
scaled energy: ε1 = -0.31985 (top), ε2 = -0.318478 (bottom). Even a small variation
of the system parameter results in a dramatic change in the local geometry as well as
the stability of the system.
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Figure 3.8: (b) Poincaré section of the DKP for ε3 = -0.317.
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Figure 3.9: (a) The DKP: Top: An unstable fixed point (ε = −0.1). Bottom: The
controlled trajectory around the fixed point.
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Figure 3.9: (b) The DKP: The same period-1 controlled trajectory (3- dimensional:
µ, ν, pµ).
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Figure 3.10: (a) The DKP: Top: An unstable period-2 orbit (ε = −0.3). Bottom:
The controlled trajectory around the period-2 orbit.
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Figure 3.10: (b) The DKP: The same period-2 controlled trajectory (3- dimensional:
µ, ν, pµ).
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Figure 3.11: (a) The DKP: Top: An unstable period-3 orbit (ε = −0.2). Bottom:
The controlled trajectory around the period-3 orbit.
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Figure 3.11: (b) The DKP: The same period-3 controlled trajectory (3- dimensional:
µ, ν, pµ)).
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System UPO Parameters Control Parameters
Map Parameter Period δ1 δ2 Nic r εc δpg δp

DHM µ = 1.4 1 10−17 0.0006 1681 0.01 0.05 0.005 −−∗

DHM µ = 1.4 2 10−14 0.0005 1681 0.01 0.05 0.005 −−∗

DHM µ = 1.4 7 10−10 0.00065 1681 0.01 0.05 0.002 −−∗

DHM µ = 1.4 11 10−9 0.00061 1681 0.01 0.05 0.001 −−∗

Crémona µ = −0.4224 5 10−11 0.0005 1681 0.01 0.05 0.001 −−∗

Std K = 1.25 2 10−17 0.00041 1681 0.001 0.005 0.001 −−∗

Std K = 1.25 2 10−14 0.00023 1681 0.001 0.005 0.001 −−∗

Std K = 1.25 2 10−14 0.00055 1681 0.001 0.005 0.001 −−∗

Std K = 1.25 2 10−11 0.00054 1681 0.001 0.005 0.001 −−∗

Std K = 12 2 10−9 0.0021 1681 0.001 0.005 0.001 −−∗

H-H E = 0.125 1 10−4 0.001 1000 0.001 0.001 0.001 −−∗

H-H E = 0.14 3 10−4 0.0006 1000 0.001 0.001 0.001 −−∗

DKP ε = −0.3 2 10−5 0.001 1000 0.0005 0.001 0.001 −−∗

DKP ε = −0.2 3 8 × 10−5 0.002 1000 0.0002 0.001 0.0001 0.07
DKP ε = −0.1 1 10−9 0.003 1000 0.0005 0.001 0.001 0.04

Table 3.2: Data corresponding to the controlled trajectories for different
maps.
∗ In these cases the size of perturbation required for control is so small that there is no need to fix

an upper limit for δp.

1. δ1 : error in the position of periodic points

2. δ2 : maximum error in the value of the Jacobian calculated at the periodic points

3. Nic : number of initial conditions used

4. r : size of neighbourhood where the Nic points are chosen

5. εc : size of neighbourhood where control mechanism is switched on

6. δpg : change in p to calculate gn

7. δp : maximum absolute value allowed for parameter variation

8. H-H : the Hénon -Heiles Hamiltonian

9. Std : the standard map



Chapter 4

Tracking Hamiltonian Systems

A violent order is disorder; and

A great disorder is an order.

These two things are one.

Wallace Stevens

(Connaisseur of Chaos)

In this chapter we will develop a tracking algorithm which enables us to

update the position of unstable periodic orbits belonging to a chaotic system

while one of its parameters is changing, therefore maintaining control in the

presence of parameter variation. We will present the tracking of a number

of periodic orbits for the dissipative Hénon map, the standard map, and the

diamagnetic Kepler problem (DKP).

A general question that appears constantly in both theory and experiment is, what hap-

pens to the solutions of a nonlinear system under study when a parameter is changed?

This is known in the mathematical literature as continuation, and there is a wealth of

information on how to construct the solutions as functions of parameters when one has

a mathematical model in hand [Rheinboldt, 1986]. In nonlinear dynamical systems,

bifurcation occurs as a result of the onset of instability as one or more parameters are

changed. In typical dynamics experiments, only attractors are observed as parame-

91



92 CHAPTER 4. TRACKING HAMILTONIAN SYSTEMS

ters are changed. In effect, only stable objects can be seen in the absence of outside

intervention and unstable objects are shortly seen as transients. However, one of the

underlying principles of the theory of nonlinear dynamical systems is that the dynam-

ics observed over a large range of parameters is governed by the unstable states of the

system. Examples of phenomena such as instability, chaos, crises, multiple attractors

with fractal basin boundaries, and turbulence are the results of the rôle of one or more

unstable states [Grebogi, Ott and Yorke, 1983; Brandstater and Swinney, 1987; Kreis-

berg, McCormick and Swinney, 1991; Schwartz, 1988a, 1988b]. Therefore one of the

goals in trying to merge modelling and experimental efforts in nonlinear dynamics is

to locate the governing unstable states both numerically and experimentally, and to

investigate the properties of these states as parameters are changed.

In this chapter we will use the principles of continuation to motivate the location

of unstable periodic orbits in physical experiments as a function of a parameter. The

procedure of continuing an unstable state in a physical experiment is known as tracking.

The initial paper which presented the original method applicable to experiments was

done by Carroll, Schwartz, Triandaf and Pecora [1992], Triandaf and Schwartz [1993]

and Schwartz, Carr and Triandaf [1997]. A sample of papers that have appeared since

making use of tracking methods in experiments are: [Carroll et al., 1992] in electronic

circuits , [Gills, 1992; Bielawski et al., 1994] in nonlinear optics, [Dressler et al., 1995; In,

Ditto and Spano, 1995] in mechanical systems, and [Petrov et al., 1994] in chemistry.

Other researchers have shown that tracking can be achieved in theoretical models:

[Schwartz and Tsang, 1994], [Christini and Collins, 1995, 1996], [Rulkov, Tsimring and

Abarbanel, 1994], [Volaseca, Kulminski and Corbalan, 1996], [Martin et al., 1996].

We investigate the possibility of extending the application proposed by Schwartz and

Triandaf to area-preserving mappings. We report the successful tracking of a modified

version of this method on the standard map and the DKP.



4.1. THEORETICAL FOUNDATIONS 93

4.1 Theoretical Foundations

The goal of tracking is to maintain control of the system as the system parameter is

modified. This may be due to a change in the desired control point or due to the drift

in the system over time. We consider the following dynamical system:

xn+1 = F(xn, P ), (4.1)

where xn ∈ RN , P ∈ R. The fixed points of the map satisfy

xf = F(xf , Pf). (4.2)

When bifurcation experiments are done in dynamics, curves of attractors are mapped

as a function of an experimentally accessible parameter. Only stable states may be

mapped out by this approach and one obtains the bifurcation diagram. Therefore to

continue a branch of unstable orbits in an experiment, outside intervention is required

to maintain (stabilize) an unstable state at a given parameter value. Therefore one

must investigate the existence of the curve of unstable states: Let G be mapping from

(RN ×R) to RN such that

G(x, P ) = 0. (4.3)

In the fixed point case, G(x, P ) = x−F(x, P ). Assuming DxG(x, P ) to be continuous

in an open set D ⊂ RN containing xf and nonsingular, the implicit function theorem

implies the existence of open sets S1 ⊂ RN , S2 ⊂ R such that for every P ∈ S2,

G(x, P ) = 0. Furthermore, there exists a unique function,

x = W(P ), (4.4)

such that W is a continuous mapping from S2 to RN . Using the assumption of non-

singularity, differentiation of equation (4.3) and (4.4) yields the following:

W′(Pf) = −[DxG(xf , Pf)]
−1DPG(xf , Pf). (4.5)
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Figure 4.1: Curve of fixed points x = W(P ).

Equation (4.5) is quite general, and reveals a constructive method of creating a curve

of fixed points. Substituting (4.4) into (4.3) and differentiating with respect to the

parameter, we have as an initial value problem

dx
dP

= −[DxG(x, P )]−1DPG(x, P ),

x(Pf ) = xf .

(4.6)

Under the above hypotheses, equation (4.6) possesses a unique solution passing through

the initial point. Therefore to perform tracking, one can initially make a prediction

from some known fixed point (x0, P0), to a new point(x2, P0 + h) given by

x2 = x0 − h[DxG(x0, P0)]
−1DPG(x0, P0). (4.7)

This is shown schematically in figure (4.1) with P1 = P0 + h. By making such an

approximation, an error from the graph (W(P ), P ) is made and is a function of the

step size h. If we had a model for G at our disposal, we could make a correction by
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solving

G(x, P0 + h) = 0 (4.8)

iteratively. Equations (4.7) and (4.1) are the basis of the prediction-correction algorithm

proposed by Carroll, Schwartz, Triandaf and Pecora [1992]. In this method a linear

predictor is used to make the prediction. Using a higher order predictor will of course

yield a predicted point closer to the true curve. We have modified this method by

replacing the linear predictor with a rational function extrapolating algorithm [Press et

al., 1992]. Upon a suitable choice of the parameters in this algorithm, we will show that

the prediction remains close to the true curve over a long range of system parameter

shift and this without the need of making any corrections. We discuss this algorithm

in some details.

4.2 Rational Function Extrapolation

It is known that through any two points there is a unique line, through any three points

a unique quadratic, and so on. The interpolating polynomial of degree N − 1 through

the N points y1 = f(x1), y2 = f(x2),· · ·, yN = f(xN) is given explicitly by Lagrange’s

classical formula,

P (x) =
(x − x2)(x − x3) · · · (x − xN

(x1 − x2)(x1 − x3) · · · (x1 − xN)
y1 +

(x − x1)(x − x3) · · · (x − xN

(x2 − x1)(x2 − x3) · · · (x2 − xN )
y2

+ · · ·+ (x − x1)(x − x2) · · · (x − xN−1

(xN − x1)(xN − x2) · · · (xN − xN−1)
yN

.

(4.9)

Although the Lagrange’s formula can be implemented straightforwardly, it is better to

use the much more efficient Neville’s algorithm. Let P1 be the value at x of the unique

polynomial of degree zero passing through the point (x1, y1); so P1 = y1. In the same

way we define P2, P3, · · · , PN . Now, let P12 be the value at x of the unique polynomial of

degree one passing through both (x1, y1) and (x2, y2). Likewise P23, P34, · · · , P(N−1)N .

Similarly, for higher order polynomials, up to P123···N , which is the value of the unique
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x1 : y1 = P1

P12

x2 : y2 = P2 P123

P23 P1234

x3 : y3 = P3 P234

P34

x4: y4 = P4

Table 4.1: Neville’s algorithm (N = 4)

polynomial through all N points, i.e. the desired answer. This construction results in

a tableau with ancestors on the left leading to a single descendant at the extreme right.

Table (4.1) shows the tableau for N = 4.

A further improvement can be made by replacing the polynomial with a rational

function. We denote by Ri(i+1)···(i+m) a rational function passing through the m + 1

points (xi, yi) · · · (xi+m, yi+m). More explicitly

Ri(i+1)···(i+m) =
Pµ(x)

Qν(x)
=

p0 + p1x + · · ·+ pµxµ

q0 + q1x + · · · + qνxν
. (4.10)

Rational functions are sometimes superior to polynomials, because of their ability to

model functions with poles. Stoer and Bulirsch [1980] found an algorithm of the Neville

type which performs rational function extrapolation on tabulated data. A tableau

like that of table(4.1) is constructed column by column, leading to a result and an

error estimate. The Bulirsch-Stoer algorithm produces the so-called diagonal rational

function, with the degrees of the numerator and denominator equal (if m is even) or

with the degree of denominator larger by one (if m is odd). the algorithm is summarized

by a the following recurrence relation:

Ri(i+1)···(i+m) = R(i+1)···(i+m) +
R(i+1)···(i+m) − Ri···(i+m−1)

(

x − xi
x − xi+m

)(

1 − R(i+1)···(i+m) − Ri···(i+m−1)

R(i+1)···(i+m) − R(i+1)···(i+m−1)

)

− 1
.

(4.11)

This recurrence generates the rational functions through m + 1 points from the ones
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through m and m − 1 points. It is started with Ri = yi and with

R ≡ [Ri(i+1)···(i+m) with m = −1] = 0. (4.12)

An improvement on the recurrence (4.11) is to keep track of the small differences

between “parents” and “daughters”, namely to define ( for m = 1,2,· · ·, N -1 ),

Cm,i ≡ Pi···(i+m) − Pi···(i+m−1)

Dm,i ≡ Pi···(i+m) − P(i+1)···(i+m)

(4.13)

These terms, which satisfy the relation

Cm+1,i − Dm+1,i = Cm,i+1 − Dm,i (4.14)

have the following recurrences
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Cm,i+1(Cm,i+1 − Dm,i)
(

x − xi
x − xi+m+1
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x − xi
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(
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Dm,i − Cm,i+1

























. (4.15)

At each level m, the C’s and D’s are the corrections that make the extrapolation one

order higher. The final answer P1···N is equal to the sum of any yi plus a set of C’s

and/or D’s that form a path through the family tree to the rightmost daughter.

In order to use this algorithm, one must provide a set of M initial pairs (xi, yi) and

also a value for x at which the function must be calculated. The algorithm returns a

value for y as well as an estimated error δy.

Since we are interested in studying the variation of the location of a periodic orbit

as a function of the system parameter, we must provide, as the input to the above

algorithm, one of the coordinates of an unstable point belonging to a periodic orbit for n

values of the system parameter which are chosen from a small interval on the parameter

axis, i.e. {(x1, p1), (x2, p2), · · · , (xn, pn)}. Then, for sufficiently small increment of the
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parameter value, δp � 1, the above algorithm gives the predicted value, for xn+1, the

coordinate of that unstable point (at pn+1 = pn + δp). Next, we drop the first pair from

the set of initial points ( seeds ) and add the new pair to it, and repeat the process to

obtain new pair (xn+2, pn+2) and so on. It turns out that if the number of seeds n, the

initial distribution of the parameter value (p1, · · · , pn) and the small increment δp are

chosen properly, one can accurately extrapolate the value of x a long distance on the p

axis away. We call this procedure “adiabatic tracking (AT)”, since for δp � 1, we

are advancing slowly on the parameter axis. We also note that after n applications of

the extrapolation, all the original seeds have been replaced by extrapolated values. In

the next section, we show the application of this method to a number of mappings.

4.3 Numerical Results

We present the numerical results obtained from the application of the AT to the dissipa-

tive Hénon map (DHM), the standard map (SM) and the diamagnetic Kepler problem

(DKP).

For the Hénon map, we extended the tracking to the same range of the parameter

values as was used by Carroll, Triandaf, Schwartz and Pecora [1992]. It is important to

remark that in their work one has to correct the result obtained from a linear prediction

at each step, while in our method one gets the accurate predicted value with no need

to implement any correction over a reasonably long range on the parameter axis. As

mentionned earlier, it is very important to select the right value for δp, the number of

seeds and the initial distribution of the parameter values. Our experiments show that

if one chooses an even number of seeds, the algorithm fails to perform adequately (i.e.

to predict properly).This may be due to the fact that the solution to diagonal rational

functions are ill-conditioned, but we have not investigated this matter further.
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In our case, five seeds gave the best performance in all cases. Figure (4.2) shows

the successful tracking of an unstable period-2 point over a long range of variation of

the parameter µ of the DHM (ε = −0.3). We choose the following five seeds for µ:

1.29, 1.30, 1.31, 1.32, 1.33 and set δµ = 0.001. The results are in complete agreement

with the values obtained by the stability transform algorithm (STA)(introduced in the

previous chapter). It is important to note that even for µ = 1.53 the trajectory explodes

towards the attractor at infinity only after 15 iterations, indicating a high instability of

the system for this value of µ. Figure (4.3) shows the tracking of a period-1 orbit of the

map. By choosing each of the extrapolated points and iterating that point several times

we observed that the for a number of times the iterates overlap one onother, a sign which

identifies the point as a period-1 orbit. This test guarantees the effectiveness of the

AT. The combination of the control algorithm introduced in the previous chapter with

the present tracking algorithm creates an interesting and useful application: controlling

the system during the system parameter variations. Figure (4.4) shows the control of

a period-1 orbit, while the parameter µ changed from 1.4 to 1.54.

As the second example we applied the AT to the standard map. Figure (4.5) shows

the continuation for a period-2 point, as well as the plot of the location of the same point

using STA. For the five seeds we set µ as 1.00, 1.01, 1.02, 1.03, 1.04, and δµ = 10−3.

The graph confirms the complete agreement between the two methods. We also applied

the tracking algorithm backward. By choosing the initial value for µ as: 3.35, 3.25,

3.15, 3.05 and 2.95, we found the same agreement between the two algorithms.

The last example is the application of adiabatic tracking to the DKP. For the DKP, a

successful tracking is remarkably important, because for a value of the system parameter

ε > 0, it is very difficult to detect the unstable periodic orbits numerically. The problem

can be seen if one looks at the typical form of the potential for ε < 0 as well as for

ε > 0 (figure (4.6)). For e < 0 the potential is locally bounded and the trajectory

always explores a small region of the phase space (figure (4.7)) which results in many
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Figure 4.2: Adiabatic tracking and the Hénon map: period-2. Tracking an
unstable period-2 point for 1.29≤ µ ≤2.1. The results from “adiabatic tracking” (solid
line) and the one from stability transform algorithm (x) are in complete agreement over
a long range of parameter variation.
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Figure 4.3: Adiabatic tracking and the Hénon map: periods 1. Tracking both
fixed points (period-1) of Hénon map as a function of µ. Both curves are sketched on
the same graph. For µ = 1.29, the upper curve starts at x∗

1.29 = 0.838486 and the lower
curve starts at x∗

1.29 = −1.53849.
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Figure 4.4: Control and tracking in the Hénon map: Controlling a period-1 orbit
for 1.31≤ µ ≤2.33. We choose 3 seeds: µ = 1.29, 1.30 and 1.31 and we increased µ at
each step by 0.001. For each increment the trajectory is controlled for 100 iterations.
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Figure 4.5: Tracking and the standard map: period-2. Tracking an unstable
period-2 point for 1.0≤ K ≤3.0 (only one point shown). Number of seeds = 5 for K =
1.0, 1.01, 1.02, 1.03, 1.04 and δµ = 0.001. Solid line: Adiabatic tracking, x: STA. For
K = 1.0, x∗

1 = 0.288622 and y∗
1 = 0.577246.
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intersections with the Poincaré section allowing us to determine the location of fixed

points. By contrast for ε > 0, the four branches of the potential well open up to infinity

(figure (4.6b)), resulting in almost unbounded motion of the trajectory (figure (4.8)).

Therefore when the trajectory falls into one of those branches, it spends a long time

inside that branch, being reflected many times from the branch walls. Hence, it may

take a very long time for the trajectory to come back to the central region and to hit

the Poincaré section for the first time. After passing through the Poincaré section, the

trajectory may fall into another branch and spend another long time in that branch

before it comes back to the central region and hits the Poincaré section for the second

time. It can be seen that as far as the calculation time is concerned, it is an extremely

CPU intensive task to record only a few points on the Poincaré section. Therefore it

would be very efficient and time saving if one finds the periodic orbits for ε < 0 and

then simply follow them using AT to predict their locations for ε > 0. However, sudden

disappearance of a periodic orbit is a natural barrier which sets a limit to AT. Figure

(4.9) shows the tracking of a period-1 orbit for the DKP. We started from five seeds

for ε: - 0.3, - 0.29, - 0.28, -0.27, -0.26 and set δµ = 0.001. The results from the STA

confirms the accuracy of the adiabatic tracking for ε < 0. For 0 < ε < εc = 0.328782 · · ·,

where the symbolic dynamic is not complete [Tanner, Hansen and Main, 1996], it is

“almost impossible” to detect unstable orbits by existing algorithms (for ε > εc, there

exists a complete symbolic description for unbounded chaotic motion). But even before

reaching that point, the fixed point disappears at ε ' −0.075. Figure (4.10) shows that

the point obtained by AT up to that limit is indeed a period-1 orbit for ε = −0.075.
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Figure 4.6: (a)The DKP potential for negative values of ε: Top: ε = −0.5;
Bottom: ε = −0.1 (axes: µ, ν, V ).
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Figure 4.6: (b)The DKP potential for positive values of ε: Top: ε = 0.1; Bottom:
ε = 0.5 (axes: µ, ν, V ).
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Figure 4.7: A bounded trajectory for the DKP: A typical trajectory for ε < 0(ε
= - 0.3).
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Figure 4.8: An unbounded trajectory for the DKP: A typical trajectory for
ε > 0(ε = 0.1). Top: number of points on the Poincaré section = 13, calculation time
τ � 1sec.(with a Pentium II, 400MHz processor) ; Bottom: The same trajectory.
Number of points obtained on the Poincaré section: 14, calculation time τ = 7333
secs.! . The curve only shows the first few seconds of the evolution of the trajectory.
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Figure 4.9: Adiabatic tracking and the DKP: Tracking an unstable period-1 point
for - 0.3≤ ε ≤- 0.075. Solid line: Adiabatic tracking. +: STA.
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Figure 4.10: A period-1 orbit of the DKP obtained by AT: The initial condition
of this trajectory is obtained by adiabatic tracking. ε = - 0.075, ν∗ = −1.46942 and
p∗ν = −0.000133596(shown from two different angles).



Conclusion

CHAOS is the score on which the reality is written.

Henry Miller

(Black Spring)

The objective of this thesis was to study the probability of control and tracking in

Hamiltonian systems. In particular, we were interested in stabilizing chaotic trajectories

in an atomic system such as the Diamagnetic Kepler Problem.

In chapter 1 we have discussed the theory of Hamiltonian dynamics and have

presented the models used throughout this thesis. We have shown that, since the

diamagnetic Kepler problem can exhibit chaos over a range of system parameters, it

may be possible to transform the chaotic behaviour of an electron into regular motion.

In chapter 2 we have introduced algorithms for detecting periodic orbits in chaotic

systems. We have presented the recurrence algorithm as well as a recently developed

algorithm proposed by Schmelcher and Diakonos. In particular, we have discussed the

advantages and disadvantages of each method when applied to Hamiltonian systems.

We have obtained a number of unstable periodic orbits for different systems for the

further task of stabilizing chaotic trajectories around one of its unstable orbits.

In chapter 3 we have introduced the OGY control algorithm and have reported

for the first time the successful control of the chaotic behaviour of the Hénon -Heiles

111
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Hamiltonian. We have also shown for the first time that the successful control can be

applied to the chaotic motion of an electron in the presence of a magnetic field ( the

classical version of the DKP) and hencewith demonstrated the versatility of the OGY

method and its possible application in atomic physics.

In chapter 4 we have developed a tracking algorithm which enables us to update

the position of unstable periodic orbits belonging to a chaotic system while one of

its parameters is changing, therefore maintaining control in the presence of parameter

variation. The tracking of a number of periodic orbits for the dissipative Hénon map,

the standard map and the DKP has been presented.

The presence of chaos may be a great advantage for control in a variety of situations.

In a nonchaotic system, small controls typically can only change the system dynamics

slightly. Short of applying large controls or greatly modifying the system, we are stuck

with whatever system performance already exists. In a chaotic system, on the other

hand, we are free to choose between a rich variety of dynamical behaviours. Thus

it may be advantageous to design chaos into systems, allowing such variety without

requiring large controls or the design of separate systems for each desired behaviour.

The general problem of controlling chaotic systems is very rich, and may help solve

technologically important problems in widely diverse fields of study. The wealth of

results already achieved encourage us to look forward to a fruitful future for the control

of chaotic systems.

If there be nothing new, but that which is

Hath been before, how are our brains beguiled,

Which, laboring for invention, bear amiss

The second burden of a former child!

(Shakespeare, Sonnet 59)



Appendix

As discussed in Chapter 1 the Hamiltonian of the DKP can be written as

HDK =
1

2me
(p2

ρ + p2
z) −

e2

(ρ2 + z2)
1

2

+
L2

z

2meρ2
+ λρ2 (1)

where

λ =
e2B2

8mec2
=

1

8

m3
ee

8

h̄6 γ2
0 (2)

We wish to perform a dimensional analysis in order to reduce the number of parameters

(presently four of them (me, e, λ, Lz)) into non-dimensional groups. Let us introduce

the dimensionless variables:

ρ̂ =
ρ

α
, p̂ρ =

pρ

β
ẑ =

z

α
, p̂z =

pz

β
t̂ =

t

γ
, (3)

Obviously, α, β and γ have the dimensions of length, momentum and time, respectively:

[α] = L, [β] = MLT−1, [γ] = T. (4)

In order to find the parameters α, β and γ one can proceed as follows:

• Calculation of α:

We pose that α should be expressible as products of the available parameters raised

to certain powers to be determined, i.e.

α ∝ ma
ee

bλcLd
z. (5)
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Therefore,

[α] = Ma[ML3T−2]
b

2 [MT−2]c[ML2T−1]d. (6)

Equating the exponents of each unit on both sides, we obtain:

a +
b

2
+ c + d = 0

3

2
b + 2d = 1 (7)

−b − 2c − d = 0

The simplest solution is obtained by

d = 0 −→ b =
2

3
−→ c = −1

3
−→ a = 0 (8)

Therefore,

α ∝ e
2

3

λ
1

3

(9)

which is the same as the parameter introduced in equation (1.33) up to a constant

factor.

• Calculation of β:

Similarly for β, we write

β ∝ ma
ee

bλcLd
z. (10)

It follows that,

[β] = Ma[ML3T−2]
b

2 [MT−2]c[ML2T−1]d (11)

Equating the exponents of each unit on both sides, we obtain:

a +
b

2
+ c + d = 1

3

2
b + 2d = 1 (12)

−b − 2c − d = −1

Again one has

d = 0 −→ b =
2

3
−→ c =

1

6
−→ a =

1

2
(13)
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Therefore,

β ∝ m
1

2
e e

2

3 λ
1

6 (14)

in accord with equation (1.33).

• Calculation of γ:

Finally, for γ, we set again

γ ∝ ma
ee

bλcLd
z (15)

leading to

[γ] = Ma[ML3T−2]
b

2 [MT−2]c[ML2T−1]d (16)

Equating the exponents of each unit on both sides, we obtain:

a +
b

2
+ c + d = 0

3

2
b + 2d = 0 (17)

−b − 2c − d = 1

The simplest solution is obtained by

d = 0 −→ b = 0 −→ c = −1

2
−→ a =

1

2
(18)

such that

γ ∝ e
1

2

λ
1

2

(19)

as in equation (1.33).

Consider the Hamiltonian

ĤDK =
me

β2
HDK =

1

2
(p̂2

ρ + p̂2
z) −

mee
2

αβ2

1

(ρ̂2 + ẑ2)
1

2

+
1

2

1

α2β2

L2
z

ρ̂2
+ λ

meα
2

β2
ρ̂2. (20)

One can rewrite it as

ĤDK =
1

2
(p̂2

ρ + p̂2
z) −

1

(ρ̂2 + ẑ2)
1

2

+
L̂2

2ρ̂2
+

1

8
ρ̂2. (21)
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with

L̂ =

(

8λ

m3
ee

8

) 1

6

Lz = γ
1

3

0

(

Lz

h̄

)

. (22)

We have thereby reduced our original 4 parameter Hamiltonian to a 1 parameter Hamil-

tonian. Up to a multiplicative factor, one can also obtain a non-dimensional parameter

out of (me, e, λ, Lz), namely, L̂ ∝ ma
ee

bλcLd
z

a +
b

2
+ c + d = 0

3

2
b + 2d = 0 (23)

−b − 2c − d = 0

which yields

[L̂] = Ma[ML3T−2]
b

2 [MT−2]c[ML2T−1]d (24)

A non-trivial solution may be obtained by choosing d = 1:

d = 1 −→ b = −4

3
−→ c = −b + d

2
=

1

6
−→ a = −(

b

2
+ c + d) = −1

2
. (25)

Therefore,

L̂ ∝ m
− 1

2
e e−

4

3 λ
1

6 Lz ∝
(

λ

m3
ee

8

)

Lz, (26)

as expected.
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[75] V. Petrov, V. Gáspár, J. Masere, and K. Showalter, Controlling chaos

in the Belousov-Zhabotinsky reaction, Nature (London), 361 (1993), pp. 240–3.



124 BIBLIOGRAPHY

[76] A. N. Pisarchik, B. F. Kuntsevich, and R. Corbalán, Stabilizing unstable

orbits by slow modulation of a control parameter in a dissipative dynamic system,

Physical Review E, 57 (1998), pp. 4046–53.
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