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Résumé

L’inégalité est une caractéristique notoire des systèmes sociaux. Dans cette thèse, nous nous
attarderons à la distribution et à la structure de la répartition de leurs ressources et activités.
Dans ce contexte, leurs extrêmes iniquités tendent à suivre une propriété universelle, l’indé-
pendance d’échelle, qui se manifeste par l’absence d’échelle caractéristique. En physique, les
organisations indépendantes d’échelle sont bien connues en théorie des transitions de phase
dans laquelle on les observe à des points critiques précis. Ceci suggère que des mécanismes
bien définis sont potentiellement responsables de l’indépendance d’échelle des systèmes so-
ciaux. Cette analogie est donc au coeur de cette thèse, dont le but est d’aborder ce problème
de nature multidisciplinaire avec les outils de la physique statistique.

En premier lieu, nous montrons qu’un système dont la distribution de ressource croît vers
l’indépendance d’échelle se trouve assujetti à deux contraintes temporelles particulières. La
première est l’attachement préférentiel, impliquant que les riches s’enrichissent. La seconde
est une forme générale de comportement d’échelle à délai entre la croissance de la population
et celle de la ressource. Ces contraintes dictent un comportement si précis qu’une description
instantanée d’une distribution est suffisante pour reconstruire son évolution temporelle et
prédire ses états futurs. Nous validons notre approche au moyen de diverses sphères d’activités
humaines dont les activités des utilisateurs d’une page web, des relations sexuelles dans une
agence d’escorte, ainsi que la productivité d’artistes et de scientifiques.

En second lieu, nous élargissons notre théorie pour considérer la structure résultante de ces
activités. Nous appliquons ainsi nos travaux à la théorie des réseaux complexes pour décrire
la structure des connexions propre aux systèmes sociaux. Nous proposons qu’une importante
classe de systèmes complexes peut être modélisée par une construction hiérarchique de niveaux
d’organisation suivant notre théorie d’attachement préférentiel. Nous montrons comment les
réseaux complexes peuvent être interprétés comme une projection de ce modèle de laquelle
émerge naturellement non seulement leur indépendance d’échelle, mais aussi leur modularité,
leur structure hiérarchique, leurs caractéristiques fractales et leur navigabilité. Nos résultats
suggèrent que les réseaux sociaux peuvent être relativement simples, et que leur complexité
apparente est largement une réflexion de la structure hiérarchique complexe de notre monde.
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Abstract

Social systems are notoriously unfair. In this thesis, we focus on the distribution and structure
of shared resources and activities. Through this lens, their extreme inequalities tend to
roughly follow a universal pattern known as scale independence which manifests itself through
the absence of a characteristic scale. In physical systems, scale-independent organizations are
known to occur at critical points in phase transition theory. The position of this critical
behaviour being very specific, it is reasonable to expect that the distribution of a social
resource might also imply specific mechanisms. This analogy is the basis of this work, whose
goal is to apply tools of statistical physics to varied social activities.

As a first step, we show that a system whose resource distribution is growing towards scale
independence is subject to two constraints. The first is the well-known preferential attachment
principle, a mathematical principle roughly stating that the rich get richer. The second is a
new general form of delayed temporal scaling between the population size and the amount
of available resource. These constraints pave a precise evolution path, such that even an
instantaneous snapshot of a distribution is enough to reconstruct its temporal evolution and
predict its future states. We validate our approach on diverse spheres of human activities
ranging from scientific and artistic productivity, to sexual relations and online traffic.

We then broaden our framework to not only focus on resource distribution, but to also consider
the resulting structure. We thus apply our framework to the theory of complex networks which
describes the connectivity structure of social, technological or biological systems. In so doing,
we propose that an important class of complex systems can be modelled as a construction
of potentially infinitely many levels of organization all following the same universal growth
principle known as preferential attachment. We show how real complex networks can be
interpreted as a projection of our model, from which naturally emerge not only their scale
independence, but also their clustering or modularity, their hierarchy, their fractality and
their navigability. Our results suggest that social networks can be quite simple, and that
the apparent complexity of their structure is largely a reflection of the complex hierarchical
nature of our world.
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I have no idea where this will
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feeling it will be a place both
wonderful and strange.
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Avant-propos

Un peu tout comme la science de la complexité elle-même, le travail effectué pendant mes
études graduées transcende les carcans de la physique plus traditionnelle: théorie des réseaux
complexes, distribution de ressources dans des systèmes sociaux et propagation de maladies.
Cette thèse n’en couvrira malheureusement qu’une partie, mais le choix a été fait afin de
raconter une histoire cohérente et complète. Cela étant dit, les chapitres peuvent pour la
plupart être lus de façon indépendante, ce qui implique que certains concepts de base sont
répétés et revisités abondamment. De même, les annexes offrent soient des discussions sup-
plémentaires ou des détails sur les méthodes utilisées, elles sont donc présentées par souci
d’exhaustivité, mais ne devraient nullement être nécessaires à la lecture de la thèse princi-
pale. Notez également que, après ce court avant-propos, le texte est entièrement en anglais à
l’exception de résumés introduisant chaque chapitre.

La thèse couvrira les travaux effectués sur les processus de croissance de systèmes indépen-
dants d’échelle ainsi que leurs liens avec les distributions de ressources sociales et avec la
théorie des réseaux complexes. Le premier chapitre aborde l’indépendance d’échelle de façon
très générale. Nous présentons également certaines notions théoriques qui s’y rattachent,
illustrées à l’aide de quelques exemples empiriques.

Le second chapitre est une courte revue de la littérature sur l’attachement préférentiel: un
processus de croissance décrivant l’évolution d’un système vers l’indépendance d’échelle en
termes d’un jeu de balles et d’urnes. Ce processus découle des éléments théoriques présentés
dans le chapitre précédent, et est au coeur de cette thèse. Notons au passage que la section
2.2.1 est une version légèrement modifiée d’une section d’une de nos publications [57].

Le troisième chapitre aborde l’évolution d’une distribution vers un état indépendant d’échelle.
Nous démontrons que cette évolution implique certaines contraintes temporelles. À l’exception
des annexes, ce chapitre est une version préliminaire d’une future publication [60]. Le qua-
trième chapitre complète cette portion sur la complexité temporelle de l’attachement préféren-
tiel en présentant comment notre théorie inclut divers modèles classiques. Nous discutons
également du danger d’étudier les détails microscopiques de systèmes complexes en se basant
sur leurs propriétés macroscopiques. Les résultats des Sec. 3.6 et 4.3 ont été préalablement
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présentés en conférence [55].

Les deux derniers chapitres concernent la complexité structurelle de l’attachement préférentiel.
Le cinquième chapitre montre comment les travaux précédents peuvent être généralisés pour
décrire certaines propriétés non triviales de la structure des réseaux sociaux et technologiques.
Les sections 5.1 et 5.2 sont tirés d’une lettre, et de son matériel supplémentaire, publiée en
2011 [56] dans le cadre de mes travaux de maîtrise. Dans le sixième et dernier chapitre, nous
généralisons encore d’avantage nos travaux pour illustrer l’importance du concept de hiérar-
chie. En considérant maintenant un attachement préférentiel hiérarchique, nous réduisons
significativement la complexité apparente des propriétés structurelles des réseaux complexes.
L’essentiel de ce chapitre est une version préliminaire d’une future publication [61].

Finalement, la liste suivante contient l’ensemble des publications auxquelles j’ai participé
pendant mes études graduées. Elles sont présentées en ordre chronologique inverse. Toutes
les publications insérées dans cette thèse sont marquées d’un astérisque. Dans tous les cas,
j’ai agit en tant que premier auteur. C’est-à-dire que j’ai été responsable de la conception
du projet, de la modélisation mathématique, de la programmation, de la production de ré-
sultats et de la rédaction du texte avec l’aide de mes co-auteurs. La seule exception étant la
programmation du modèle d’attachement préférentiel hiérarchique effectuée par Edward Lau-
rence. Les autres auteurs sont ordonnés selon l’importance de leur contribution, à l’exception
de notre directeur de recherche qui est présenté comme dernier auteur dans tous les cas.
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Foreword

As complexity science itself, the work done during my years in graduate school attempts to
transcend the usual boundaries of physics: complex network theory, distribution of resources
in social systems and disease propagation among others. This thesis will unfortunately only
cover parts of it, but the choice was made in order to tell a more complete and coherent
story. The chapters can mostly be read independently, which also implies that most basic
concepts will be repeated and revisited abundantly. The appendices might offer additional
discussions or details on our methods — and are thus presented for the sake of completeness
— but should not be necessary to the reading of our main thesis.

More precisely, the thesis will cover our work on stochastic growth processes of scale indepen-
dent systems as well as their link with the distributions of social resources and the theory of
complex networks. The first chapter tackles scale independence in a very general way. It also
covers related theoretical notions, illustrated with empirical examples.

The second chapter is a short literature review on preferential attachment: a growth process
describing the evolution of a system towards scale independence, in terms of a balls in urns
game. This process follows logically from the theoretical elements presented in the preceding
chapter, and is at the very heart of this thesis. Note that section 2.2.1 is a slightly modified
version of a section previously published by our group [57].

The third chapter deals with the evolution of a distribution towards scale independence.
We show how this evolution implies certain strict constraints. With the exception of the
appendices, this chapter consists of a preliminary version of a future publication [60]. The
fourth chapter complements this portion on the temporal complexity of preferential attachment
by presenting how our framework includes diverse classical models. We also discuss the danger
of using macroscopic properties of complex systems to infer some microscopic details. Results
of Sec. 3.6 and 4.3 were previously presented in conference [55].

The last two chapters concern the structural complexity of preferential attachment. The fifth
chapter illustrates how to generalize our previous efforts to now describe non-trivial properties
of social and technological networks. Sections 5.1 and 5.2 are a reproduction of a letter, and of

xxv



its supplementary material, published in 2011 [56] as part of my master’s thesis. In the sixth
and final chapter, we generalize our work further to highlight the importance of hierarchy. By
now considering a hierarchical preferential attachment, we significantly reduce the apparent
complexity of the structural properties observed in complex networks. The essential of this
chapter is a preliminary version of a future publication [61].

Finally, the following list contains all scientific publications produced during my postgraduate
studies. It is presented in inverse chronological order. All publications included in this thesis
are marked with an asterisk. In all cases, I acted as first author and was responsible of
the project conception, mathematical modelling, programming, results production and of the
redaction of the manuscript with help from my co-authors. The only exception being the
programming of the hierarchical preferential attachment model by Edward Laurence. The
other authors are always listed according to the importance of their contributions, with the
exception of our research advisor who acted as senior author in all cases.
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Introduction

This thesis tackles subjects that could easily be tagged with plenty of currently popular
buzzwords: complexity, emergent behaviours, universal properties or self-organized criticality,
to name a few. In fact, I will definitely not shy away from using such phrases; but I also feel
that they should come with a word of warning.

The science of complexity can be aptly described as the science of emergent behaviours; which
are in return often described through the motto that the whole is more than the sum of its
parts. Studying the distribution of resources and activities in social systems certainly fits the
bill. Describing such dynamics from the bottom up — perhaps based on our knowledge of
individual behaviour, on psychological principles or on our limited knowledge of neuropsy-
chology — would be a challenge of Herculean proportion. Yet, that is more a problem of
perspective than a limit of the reductionist approach.

There is no arguing that complexity science does highlight many of the conceptual and theo-
retical limits of reductionism. For instance in network theory, where the properties of a system
stem not from its elements but from the structure of their interconnections. Or in epidemic
dynamics, where evolution of pathogens and human behaviours co-evolve and adapt. Or in
any coupling of fundamentally different systems such as the interactions of economics with our
technological and biological environment. Those are fields and problems where holism has led
to important advances. Yet, there remains a danger in dismissing out-of-hand a philosophy
which has lead science to so many successes. Once again, the challenge is mostly in selecting
the right perspective.

In fact, this thesis follows a long line of effort in using statistical physics to describe social
systems independently of the social nature of the interactions in very much the same way it
allows the development of thermodynamics without describing interactions at the molecular
level. While this is a fitting analogy, we rarely see thermodynamics ranked alongside network
theory, chaos, artificial intelligence or any other flagship of complexity science. Yet, even
to the most brilliant observer, phase transitions and the second law of thermodynamics are
surprising emergent behaviours. While these properties are far from intuitive consequences
of how gases mix and colliding particles exchange energy, they can still be described under
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a more appropriate perspective: following the distribution of energy to gather macroscopic
properties without the corresponding microscopic description. In many ways, this is exactly
the approach that we apply to social systems.

Statistical physics of social systems

Statistical physics deals with ensembles of populations. That is, its goal is to reach a statistical
description of how a population evolves in a given problem. The population itself is usually
defined through a set of statistical properties, while the problem under study is defined
through constraints on the statistical solutions. Once both are given, statistical physics aims
to describe the ensemble of all possible scenarios for a given population.

To draw upon physical examples, populations often refer to a set of particles whose statistical
properties describe how they should be counted and how they can be organized. Are they
distinguishable or indistinguishable? Are they classical or quantum in nature? How many
states can they occupy and under what intrinsic constraints? For instance, a quantum de-
scription of an electron population in a solid would consider an indistinguishable population
occupying a discrete set of states under the Pauli exclusion principle (it is impossible for two
electrons to occupy the exact same state). We then know that the ensemble will be described
through Fermi-Dirac statistics. In the context of a statistical physics of social systems, our
population will almost always be defined as follows. Individuals (particles) share discrete
amounts of activity or resources (discrete energy states) and individuals with equal shares are
indistinguishable.

While these properties inform our choice of statistical methods, the exact solution of the
ensemble depends on the constraints imposed by the physical problem. To name only the
quintessential case: the canonical ensemble represents systems in contact with a heat bath,
thus fixing the average energy. The exact solution for the distribution of energy in the
population can then be obtained by maximizing entropy while respecting both normalization
and the fixed average energy (zero-th and first moments). Following previous work, our
statistical ensemble of social systems is also defined through a maximization of entropy, under
finite size constraints, and considering our particular population definition.

The first chapter builds the ensemble on which we will work. The goal here is to develop a
conceptual understanding of why scale-independent systems, social or otherwise, deserve to
be studied. We also illustrate how statistical physics appears to be a good tool for the task
and we discuss some of the mathematical subtleties involved without lingering too much in
details.
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Interplay of growth and organization

At this point, it is interesting to note that this “statistical physics of scale-independent sys-
tems” follows the development of classical statistical physics almost in reverse. Applications of
heat transfer came first, without any understanding of thermodynamics as we know it. Only
much later did we develop the statistical physics framework and we had to wait even further
before observation of its predicted universality 1. For scale-independent systems, empirical
observations of its universal steady state came first. We now have theories to explain the
existence of that steady state, but still without an understanding of the underlying physical
processes.

To this end, the second chapter presents previous work on the so-called preferential attachment
principle: a simple growth process that gives rise to scale independence. This growth process
is attractive within our framework for multiple reasons. First, it is incredibly simple. It relies
on the same assumption as the definition of our population, namely that only individuals with
different shares can be distinguished from one another. Second, it is analytically tractable
through standard tools of statistical physics; and we will here rely heavily on the rate equation
(or master equation) approach. Third, it can be shown to not only be a sufficient cause for
scale independence, but that under our basic assumptions, scale independence necessarily
implies a preferential attachment process.

This last point is presented in the third chapter, which describes how a power-law organization
can constrain a system’s growth. This chapter and the following are in fact devoted to our
main contribution: the interplay between the organizational scale independence of a system
and the temporal properties of its growth.

A new point of view for complex networks

The last two chapters investigate the structure of the previously considered activities. Con-
sider one of the systems that we will often revisit: sexual encounters between clients and
escorts. We can simply focus on the distribution of sexual activity and its growth, or we
can actually delve into the system and study the structure. Who had sexual relations with
whom? How can we use our previous framework to start describing what this sexual contact
network, or any other social networks, might actually look like?

We tackle this question in a very loose but hopefully insightful manner. Simply put, we
attempt to answer the following question: why use networks? Why is so much emphasis
given to the actual links between nodes? Network scientists sometimes have a strange modus

1. Universality will here always refer to properties that appear independent of the system’s nature or
microscopic details.
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operandi. First, collapse a system to a network, basically projecting all structures, correla-
tions, and social hierarchy as a set of lines between nodes; then try to infer structure from
this set of lines. Here we show how multiple emergent properties of real networks, which are
essentially why complex networks are called complex, can be understood as artefacts of the
hierarchical nature of our world. To illustrate this, we generalize our previous framework to
show how embedded levels of activities (say, a researcher involved in universities, research
groups, and individual papers) give rise to complex structural properties. This suggests that
obtaining a crude description of a system’s hierarchy is perhaps a better way to describe its
underlying network than directly looking at the links between its elements.

While these chapters are in a lot of ways a proof of concept, they certainly widen the appli-
cability and implications of the work presented in the first four chapters.

Final word before we begin

This thesis is far from a definitive description of the statistical physics of scale-independent
social systems. Even if or why these systems might be scale-independent at all is arguable.
Our contributions are in no way dependent on if or why a given system is scale-independent,
but only on the fact that a power-law distribution is a good enough approximation of their
organization at some level. Unfortunately, how good is “good enough” remains to be deter-
mined; we are mostly gaining insights on how highly heterogeneous organizations influence
diverse temporal and structural properties. The extent to which these insights can be applied
outside of the context where they were derived is at times surprising and always of great use.
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Chapter 1

On scale independence

Résumé

Cette thèse est entièrement dédiée à l’étude des systèmes qui s’auto-organisent de façon cri-
tique ou indépendante d’échelle. Dans ce contexte, la criticalité et l’indépendance d’échelle
font toutes deux référence à l’absence d’échelle caractéristique. Ce chapitre définit donc les
concepts reliés à cette propriété et les illustre avec des systèmes particuliers. Par exemple,
nous illustrons comment l’indépendance d’échelle est liée aux transitions de phases à l’aide
d’une courte introduction à la théorie de la percolation.

Nous présentons également les outils statistiques qui seront utilisés par la suite: estima-
tion du maximum de vraisemblance et distance statistique entre distributions de probabilité.
Ceux-ci sont tirés des travaux de Clauset, Shalizi et Newman [28]. Nous abordons aussi cer-
tains éléments théoriques qui serviront de tremplin à nos travaux, dont la théorie de Baek,
Bernhardsson et Minnhagen sur l’universalité de l’indépendance d’échelle [8]. En somme, les
objectifs de ce chapitre sont de définir ce qu’est l’indépendance d’échelle, de développer une
intuition qualitative de ce qu’elle implique, d’être en mesure de la quantifier, et d’expliquer
pourquoi cette propriété est intéressante et si répandue.
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Summary

This entire thesis is dedicated to systems that self-organize into a scale-independent, scale-free
or critical organization. Here, these three concepts all refer to essentially the same idea: the
lack of characteristic scale. In this chapter, we define these terms and illustrate them by
drawing upon empirical examples. For instance, we qualitatively illustrate the connection
between scale independence and phase transitions through a basic introduction of percolation
theory.

We also follow the work of Clauset, Shalizi and Newman [28] to develop the statistical tools
required for the rest of our work: maximum-likelihood estimation and statistical distance be-
tween distributions. Moreover, we present elements of theory which will serve as the founda-
tion of our work, such as the theory of Baek, Bernhardsson and Minnhagen on the universality
of scale independence [8]. The objectives of this chapter are thus to define scale independence,
to develop a qualitative intuition of its implications, to quantify it and to explain why it is so
ubiquitous and worthy of interest.

1.1 Scale independence, power laws, and criticality

1.1.1 Scale-independent organization

Strictly speaking, scale independence refers to the property of a real function f(x) (for x ∈ R)
to repeat itself at any scale. This means that when there is scale independence, a dilatation
or contraction of the scale of interest, for instance going from x ∈ [1, 10] to [100, 1000], only
implies a rescaling of the observed function f . A function can thus be defined as scale-
independent if it obeys the property

f(λx) = λγf(x) . (1.1)

This behaviour is interesting for multiple reasons. First and foremost, because it is ubiquitous
amongst natural self-organized systems [78]. Second, its mathematical description is in itself
also interesting for its simplicity. In fact, a single class of differentiable functions features
scale independence, power laws, i.e., functions of the form

f(x) ∝ axγ . (1.2)

When considering the distribution {pk} of some random variable k, as will be done throughout
the thesis, a pure power-law distribution is essentially solely defined by its parameter γ. We
will typically refer to γ as the scale exponent of the power law since it sets the form of the
rescaling under which Eq. (1.1) is respected. The other parameter, a, is then simply set
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as a normalization factor to assure that the distribution summed over all k equals one. For
instance, in the case of a discrete quantity k, we would write

pk = k−γ∑
k>0 k

−γ (1.3)

where the minus sign in the exponent is introduced to explicitly show that the distribution
must be decreasing for the sum to converge. In fact, the interest for the scale exponent γ lies
in how it clearly discriminates which moments of the distribution will converge and which
will diverge to infinity. For instance, in the case of a continuous random variable x with
probability density p(x) = ax−γ , we would set the normalization factor through

1 =
∫ ∞

1
ax−γdx = a

1− γ
[
x1−γ

]∞
1
. (1.4)

The right hand side of the last expression is finite if and only if γ > 1, which ensures that
x1−γ vanishes. The normalization condition is then satisfied by setting

a = γ − 1 ⇒ p(x)dx = ax−γdx. (1.5)

Note that we use x = 1 as the lower bound for our variable as this will be the case in the
discrete distributions that will be hereafter studied. However, we could have just as easily
used any arbitrary bound xmin > 0 to avoid the divergence at x = 0. In a similar fashion, the
expected mean value 〈x〉 would be obtained from

〈x〉 =
∫ ∞

1
xp(x)dx = a

∫ ∞
1

x1−γdx = γ − 1
γ − 2 for γ > 1 (1.6)

which this time is finite if γ > 2. The same logic applies to all other moments,

〈xm〉 =
∫ ∞

1
xmp(x)dx = a

∫ ∞
1

xm−γdx = γ − 1
γ −m− 1 for γ > m+ 1 . (1.7)

This means that the m-th moment of a power-law distribution always exists if and only if
its scale exponent is greater than m + 1. This result holds also for discrete distributions.
This is straightforwardly shown as the divergence of the integral (or sum) always occurs
at x → ∞ (or k → ∞). Since power laws are slowly varying functions, one can always
evaluate a discrete sum exactly for all values k < k∗, with an appropriate bound k∗ � 1, then
approximate the remaining portion as an integral on the interval [k∗,∞[. As the previous
logic is independent of xmin, the result on the convergence of the m-th moment must hold
also for discrete distributions.

1.1.2 Scale-free organization of scale-independent systems

Beyond the elegance of rescaling, we mentioned in the introduction that scale independence
also refers to the lack of a characteristic scale. Hence, these systems are often referred to as
scale-free. To place this in perspective, we can juxtapose scale-independent distributions with
more common distributions [96]. Consider, for instance, the two following questions.
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Figure 1.1 – Power-law and normal distributions. Visual comparisons of a power-law distribution
of scale exponent γ = 2 with a normal distribution: (left) linear scales, (right) logarithmic scales. The
log-log plot is often used to represent power laws visually as y = xγ becomes log(y) = γlog(x): a
simple straight line whose slope is given by the scale exponent.

– What is the probability that a randomly selected adult is twice as tall as the average
adult? Most likely zero. In fact, the probability for anyone to measure ten times the
average adult height is exactly zero.

– What is the probability that a randomly selected adult is twice as wealthy as the average
adult? Hard to say, but definitely non-zero. In fact, there is a sizeable number of people
whose fortune will be at least ten, or even a thousand times larger than the average.

The second question concerns the type of behaviour that Benoît Mandelbrot called wild or
extreme randomness [72] 1. The distribution of adult human height is well-behaved, with
a finite mean, variance, and higher moments. In fact, while there is significant variance
between sex or ethnic groups, height distribution on a given population roughly follows a
normal distribution. On the other hand, wealth distribution roughly follows a power law,
which in this context is sometimes called a Pareto distribution. In this particular case, the
organization of wealth has a scale exponent greater than 1 but less than 2, meaning that in
the limit of an infinite population it would have an infinite mean. In other words, following a
given dollar used in a given transaction, that dollar would, on average, end up in the wallet
of an infinitely wealthy person! Thus, this person is at least ten times richer than the average
person. Figure 1.1 visually compares an example of a power-law distribution with the more
familiar normal distribution.

The Pareto law, the power-law-like distribution of wealth, is the cause of the well-known
80-20 principle, or Pareto principle, which is where the law takes its name [85]. Pareto, an
Italian economist, originally made the observation that around 80% of Italian land in 1906
was owned by around 20% of the population. Similarly, he noted, 20% of pea pods in his
garden contained 80% of peas. This led him to formulate his principle for the division of

1. More precisely, Mandelbrot defined “wild randomness” as events with diverging second moments but
finite mean, and “extreme randomness” for distribution where all moments are diverging.
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a resource in a population. In fact, the extreme nature of his observations stems from the
underlying power-law distribution, where the 80-20 division is merely a consequence of their
particular scale exponent. A generalized version of this principle could state something like a
microscopic fraction of the population shares a macroscopic fraction of the resource. In that
case, resource implies that we are summing over k (i.e., the first moment

∑
kpk), but the

same principle applies just as well to higher moments. In fact, the higher the moment, the
greater the inequality.

What does this mean for other power-law distributed quantities? Earthquakes are a good
example of this phenomenon in the natural world [96]. Without delving into the debate
over its exact form and interpretation, we can safely state that the tail of the distribution
of magnitude per earthquakes roughly follows a power law with a scale exponent around 5/3
[53]. Using our previous results for γ < 2, this implies that the average earthquake has an
infinite magnitude! Finite available energy notwithstanding, this does not mean that a finite
sequence of earthquakes would have an infinite magnitude, but simply that in a potentially
infinite sequence, the sum of magnitudes would grow faster than the number of earthquakes.
We can play with this subtlety using simple statistics 2 and try to tame the wild randomness
of earthquakes.

Using our previous results, we can say that the (continuous) distribution of earthquake mag-
nitude follows P (x) = 2x−5/3/3 using xmin = 1 as even those are usually not recorded by
seismologists. We can thus write its cumulative distribution function C(x) as

C(x) =
∫ x

1
P (x′)dx′ = 2

3

∫ x

1
(x′)−5/3dx′ = 1− x−2/3 . (1.8)

In a discrete distribution, a finite but very large sequence of N events, can be expected to
feature roughly N

∑k+∆
k′=k−∆ pk′ events falling within an interval 2∆ around event k. In the

continuous case, with an interval ∆ = x, we would expect NC(2x) events of magnitude less
than 2x. Similarly, we would be very surprised to see magnitudes above whatever xc marks
NC(xc) = N − 1, expecting on average only one event above that value. With that logic,
solving for xc

C(xc) = 1− x−2/3
c = 1− 1

N
→ xc = N3/2 , (1.9)

yields an idea of the strongest expected earthquake. We can now roughly estimate the average
magnitude in a finite sequence of N earthquakes:

〈x〉N =
∫ xc

1
x′P (x′)dx′ =

∫ xc

1

2
3(x′)−2/3dx′ ' 2x1/3

c = 2
√
N (1.10)

which tells us that, as we sample the distribution, the mean is expected to go to infinity as fast
as a square root! The most peculiar result we can obtain from this analysis is the expected
fraction of the total energy unleashed that was contained in the single largest earthquake:〈

xc∑
i xi

〉
≈ xc
N〈x〉N

= N3/2

2N
√
N

= 1
2 . (1.11)

2. . . . and assuming that earthquakes are independent and identically distributed.
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This is just an order of magnitude as additional care must be taken when averaging. Indeed,
xc is not independent of the sum in the denominator. Yet, the main point is clear: no matter
how large our “infinite” sequence is, the largest earthquake therein holds a finite fraction of
all the energy!

This small exercise was only meant to emphasize the intricacies of power-law analysis. The
mode of the magnitude distribution (i.e., the most probable event) is at the lowest considered
magnitude and we can therefore expect a huge concentration of earthquakes at that point.
Yet, we can also expect a single event several orders of magnitude bigger (in this case ∼ N3/2)
containing as much energy as the sum of all the smaller earthquakes.

This is why the power-law organization is scale-free. All possible scales must be considered;
there is no characteristic scale. More conceptually, this also implies that the power-law
distribution is a very critical organization in-between a highly homogeneous state — most
events around xmin — and a highly heterogeneous state — one event containing most of the
energy.

1.1.3 Criticality in phase transitions and percolation

The interpretation of scale independence as an organization in-between states is nothing new.
It is actually at the very core of phase transition theory. This theory is a formal study of the
transformation of a system from one state to another. In our everyday life, we have some
experience of phase transitions, e.g when ice melts (solid → liquid) or when steam condenses
on a window (gas → liquid). Unfortunately, these experiences do not necessarily help in
determining what occurs at the exact point of the transition.

In this section, we will study this question in a very conceptual way. The goal here is to
provide insights into why a scale-free organization is in-between states. To illustrate our
point, we will focus on a two-state system which is either disorganized (fluid) or organized
(solid), and model its transition using basic percolation theory.

Percolation theory is a stochastic process of diffusion in a disordered media [26]. Unlike actual
diffusion and Brownian motion, the randomness does not reside in the moving particles/fluid,
but in the medium that holds them. Percolation can thus be used as a toy model for anything
propagating with trivial rules within a non-trivial structure, even forest fires [38] and epidemics
[77, 73, 7, 63, 58]. As we will see, the problem is extremely simple to state, but usually not
exactly solvable.

To quickly define percolation, it is perhaps useful to fall back on its most familiar expression:
the brewing of coffee [39]. Imagine space as a three dimensional grid or mesh, where every site
is either occupied by a particle of coffee or potentially by a drop of water. Since in this case
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the diffusing fluid is the water and not the coffee, we will call occupied a site that holds water.
Each site is occupied 3 independently with a given probability u, such that any occupied site
can be isolated or form groups (clusters) with its nearest-occupied-neighbours.

If u� 1, most clusters will be small and isolated, whereas if u ∼ 1 most sites will form a giant
spanning cluster extending from one end of the grid to the other. For an infinite medium,
the size of this spanning cluster will be measured by the fraction of all sites which are part of
this giant cluster. This fraction will thus be our order parameter. If non-zero, we are in an
ordered phase where a path exist across the medium and we get coffee! The spanning cluster
marks the way water can diffuse through the coffee and reach the other end (our cup). If
zero, no path exists and we find ourselves in a disordered phase where all clusters are finite
and isolated. In that case, all we obtain is a wet coffee sludge. In fact, a very precise critical
value uc marks the phase transition. If u ≥ uc, a spanning cluster exists and we end up in
the ordered state.

During the production of this thesis, we investigated several variations on this basic perco-
lation process: solving the process on arbitrary finite structure [5], infinite general structure
[4] or by modifying the percolative process itself [63, 6]. While the structure and process
may change, the interest is always in the behaviour at the percolation threshold. As a simple
example, we will here study the case of percolation in one dimension which can be solved
analytically [39].

In one dimension, it is easy to see how the probability for one site to be occupied is u, two
successive sites u2, and k successive sites uk. To get a cluster of size k, we need k successive
occupied sites with two empty sites at the extremities, which occurs with probability

nk(u) = (1− u)2uk . (1.12)

As described above, percolation leads to the ordered phase if we get a spanning, infinite,
cluster. We thus need the probability to find a cluster with k →∞ to be non-zero. However,
for any u < 1, the term uk in Eq. (1.12) falls to zero for a sufficiently large k. Contrariwise,
it is trivial to see how we get a single infinite cluster spanning all sites if u = 1. Hence, the
percolation threshold and phase transition occurs at uc = 1.

The behaviour of the system as it approaches this transition is particularly interesting. We
rewrite Eq. (1.12) as

nk(u) = (1− u)2uk = (1− u)2exp
[
ln
(
uk
)]

= (1− u)2exp [k/kξ] (1.13)

where kξ is the characteristic cluster size: kξ = −1/ ln(u). When approaching the critical
point uc = 1, we use the Taylor series of the logarithm to find

lim
u→uc

kξ = lim
u→1

−1
ln(u) = lim

u→1

−1
ln [uc − (uc − u)] = 1

uc − u
= (uc − u)−1 . (1.14)

3. This formulation based on site is called site percolation. Another variant, called bond percolation, occupies
the links between different sites.
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While the exponent −1 is particular to the one dimensional problem, such a divergent be-
haviour is universal to phase transition at critical points. The characteristic size diverges at
the critical point (the system becomes scale-free!) as kξ = |uc − u|−1/σ where σ is called a
critical exponent.

In one dimension, the spanning cluster is the sole cluster found in the ordered state. In
two dimensions, the percolation threshold is found at occupation probability lower than one,
such that the spanning cluster coexists with infinitely many finite clusters. This mix of small
events and a single infinite event is akin to the behaviour of power-law distributed earthquake
magnitudes. This raises an interesting question. If this behaviour is found in percolation only
around a very precise critical value, what does this imply for the physics of earthquakes?

The paradox between the fine-tuned criticality found at a phase transition and the ubiquity
of scale independence in nature is the source of ongoing debates. The next section is in
fact devoted to this problem. We first present the prevalence of scale-free organizations in
empirical data as well as statistical methods for their analysis. We then present an interesting
hypothesis trying to explain the apparent universality of this organization across systems
of diverse nature. Chapter 4 will return on the question of earthquakes and percolation
when discussing the so-called self-organized criticality of systems that converge to criticality
regardless of parameters and initial conditions.

1.2 Scale independence in complex systems

We now present the first series of data sets that will be used throughout the thesis: distribution
of artistic and scientific productivity, distributions of sexual relations, of online activities and
of word frequencies as well as the structures of the Internet and citation networks. Following
the rigorous work of Clauset, Shalizi and Newman [28], we present a basic method to estimate
scale exponents of these scale-independent systems.

1.2.1 Power-law distributions in empirical data

Power-law distributions in empirical data are often referred to as Zipf’s law in honour of
the linguist who gathered an impressive amount of data from social and man-made systems
that all roughly followed power-law distributions [104]. While not one of the first to study
these empirical distributions, he certainly brought a lot of attention to this particular class of
systems and even attempted to explain their apparent universality. His explanation essentially
hinges on an equilibrium condition between the effort necessary in organizing a system and
and the opposite effort of analysing that organization. For instance, word frequencies in prose
follow a power-law distribution because it is an equilibrium from the least effort of the writer
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— use a single word for everything, a delta distribution at one end of the frequency spectrum
— and the least effort of the reader — every word has a precise and unique meaning such
that most words can be used only once. This is the so-called principle of least effort [104].

A discussion on the possible origins of these distributions will be covered in the next section.
Here we will first reproduce the analysis first done by Zipf in a much more rigorous math-
ematical framework and using some of our own data sets. As mentioned earlier, the scale
exponent γ of a power-law distribution corresponds to its slope on a log-log scale. Simple vi-
sual inspection or least-squares linear regression on the logarithm of the distribution are often
used to fit the scale exponent. These methods are mostly inconsistent, due to the large scale
fluctuations that occur in the tail, but are still useful to get rough estimates (e.g. whether γ
is greater or lesser than two).

In this thesis, our method of choice to fit parameters is the method of maximum-likelihood
estimation (MLE). The likelihood of a given set of parameters is given by the likelihood of the
observed data given a chosen model or distribution and assuming that the set of parameters
is correct. The “most likely” set of parameters is then the one for which the observed data is
the most likely. The estimation problem then becomes a problem of maximizing likelihood,
or equivalently its logarithm (usually simpler) noted L.

For instance, with a sequence of observations X = {Xi}, the likelihood that X came from
the normalized discrete probability distribution P (x) would be the product of the likelihood
of every observation:

∏
i P (Xi). The log-likelihood would then simply be

L (P (x)) = ln
[∏
i

P (Xi)
]

=
∑
i

ln [P (Xi)] . (1.15)

In our case, since the power-law behaviour might only be present in the tail, we define the
observed data as the subset of all n observations ki ≥ kmin where kmin is an appropriate
bound for the power-law tail. Thus, the log-likelihood of data ki depends on both γ and kmin

following

L(γ, kmin) = ln
[
n∏
i=1

k−γi∑
j>kmin j

−γ

]
(1.16)

where the sum is simply the normalizing factor of the tail. This sum can be referred to as a
generalized zeta function ζ(γ, kmin). The MLE of γ and kmin, usually noted γ̂ and k̂min, are
thus obtained by maximizing

L(γ, kmin) = −n ln [ζ(γ, kmin)]− γ
n∑
i=1

ln ki . (1.17)

Maximizing for γ using a given kmin is straightforward: we scan potential γ values, typically
in steps of 10−2 or 10−3. Choosing the right kmin is another story. If too low, we risk including
the non-power-law behaviour (if any) of the data. If too high, we lose too many observations
and the estimate of γ will also suffer. To select the correct kmin, we simply run a range
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of potential values, usually from 1 to a maximal value of 10 or 100 based on some visual
inspection (to avoid useless computation). For each value, we maximize the likelihood for γ.
We now have somewhere between 10 or 100 candidates for (γ̂, k̂min). We choose the one that
makes the fitted power-law tail as similar to the original observed distribution as possible. On
a finite size sample 4, we follow Clauset et al. and use the Kolmogorov-Smirnov distance (or
KS statistic) defined as the maximum distance between the cumulative distribution function
of the data (S(k)) and of the fitted model (F (k)):

DKS = maxki≥kmin |S(k)− F (k)| . (1.18)

The pair (γ̂, k̂min) minimizing DKS, among all MLE candidates, is then finally chosen.

Figure 1.2 presents results of this method on data sets which will be studied in the next sections
and chapters. We note the population in each data sets as N , the distributed resource as K
and the number of individuals with share ki = k as Nk. These results were organized roughly
by goodness-of-fit. Even visually it is evident that the fits obtained for the sexual and citation
networks are good only for the noisy end of the tail, whereas the fits obtained on the first
three data sets are good for a significant portion of the distribution, and fail in the noise.
Looking at the arXiv data, we see that the two choices could have been deemed acceptable:
fit either the beginning of the distribution with a power-law or fit the noisy end.

The fact that noise usually occupies a significant portion of our distributions, again due to
the large scale fluctuations that occur in the tail, is a typical problem in fitting power laws.
Several methods could be considered to quantify the goodness-of-fit or the likelihood of the
power-law hypothesis, typically in terms of a statistical distance similar to the KS statistic
discussed above. However, we will usually refrain from doing so. First, because we will not be
doing a lot of actual fits or inference of scale parameters. Second, because fitting a power-law
distribution to a growing system imply that we assume that the system has reached a large
enough size to be close to its asymptotic steady-state. However, we currently have no idea on
how we can describe the growth of these systems or the convergence of their distribution to an
actual power law. Maybe we should actually fit power-law distributions with an exponential
cut-off, or any other way to account for finite size effects. With that in mind, even the
distribution for the citation network in High Energy Physics (HEP) could be considered “on
its way” to scale independence, but currently far from equilibrium.

For the moment, these data sets simply provide a good illustration that heavy-tailed distribu-
tions appear ubiquitously across a myriad of different human and man-made systems. Before
finally delving into the modelling of these systems, we present an interesting theory to explain
the origins of this organization using a statistical physics argument. Moreover, this theory
will provide some insights to guide our modelling efforts.

4. By contrast, in Chap. 3 we will need to compare fitted distributions with “infinite” solutions of analytical
models. Another statistical distance will then be necessary.
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Figure 1.2 – Fitting power-law distributions to empirical data. Six empirical systems which
may or may not follow a scale-independent distributions are fitted to a power law with the method
presented in the text. (top left) Distribution of occurrences per unique word in Herman Melville’s
Moby Dick: unique words N = 16, 695, total words K = 614, 680, k̂min = 7, γ̂ = 1.94. (top right)
Distribution of roles per actor in the Internet Movie Database: actors N = 1, 707, 525, total roles
K = 6, 288, 201, k̂min = 2, γ̂ = 1.95. (middle left) Distribution of clicks per user on the Digg news
aggregator website: users N = 139, 409, total clicks K = 3, 018, 197, k̂min = 3, γ̂ = 1.44. (middle right)
Distribution of papers per author on the arXiv preprint archive: authors N = 386, 267, total papers
K = 1, 206, 570, k̂min = 28, γ̂ = 3.58. (bottom left) Distribution of sexual relations per individual
in a Brazilian escort community: individuals N = 16, 730, total activities K = 101, 264, k̂min = 28,
γ̂ = 2.65. (bottom right) Distribution of citations per paper in a subset of the High Energy Physics
preprint archive: papers N = 23, 180, total citations K = 355, 221, k̂min = 54, γ̂ = 2.69.
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1.2.2 Origins of scale independence in self-organized systems

The systems presented in Fig. 1.2 have not much in common, besides their heavy-tailed
distributions of course. Some concern words, others papers, others humans involved in sexual,
online or professional activities. However, we aim for a universal description of their similar
distributions, without any system-specific assumptions. Hence, the only common feature that
we can consider is related to the fundamental statistical definition that we considered earlier
for the populations under study: different elements are distinguishable only by their share
of the resource. Going back to the word occurrences example: we do not distinguish words
by their intrinsic definition and their usage is context free, we only differentiate them by
their share of the total word count. The universal way of looking at these discrete power-law
distributions is thus as a distribution of a resource (balls) within a population (bins). We now
present a theory based on this simple observation: the Random Group Formation (RGF) of
Baek, Bernhardsson and Minnhagen [8], an argument explaining the origins of an ubiquitous
power-law distribution of balls per bin.

Random Group Formation

We have K balls to be distributed in N bins. The distribution {Nk} of balls per bin is as
yet unknown, but we know there are K “slots” for the balls to fill and the probability of
throwing a ball in any slot is a priori equal to Prand = 1/K. This is the Bayesian assumption
of RGF. Moreover, we also know that the most likely {Nk} will be a maximization of entropy
H ({Nk}) = −

∑
(Nk/N) ln (Nk/N). This is the statistical physics assumption of RGF.

To solve for the probability distribution Nk/N , we need to consider two constraints:
∑
Nk =

N (population of bins) and
∑
kNk = K (total resource), as well as two optimizations cor-

responding to our two assumptions. Our condition on entropy is already written as a max-
imization problem, but how can our Bayesian assumption be taken into account? We can
quickly illustrate how the problem is in essence equivalent to a minimization of information
cost.

All K slots are equivalent, but we are able to distinguish bins of different size. Thus, we
consider the information needed to track a ball knowing the size k of the bin in which it is
contained. Bins of equal size are undistinguishable, so the ball can occupy any of the kNk

slots belonging to bins of size k. The information cost of tracking one ball is then given
by ln (kNk) (in nats: a logarithmic unit of information in natural base). The information
cost corresponding to the distribution {Nk} is thus I ({Nk}) =

∑
Nk ln (kNk) /N , which we

seek to minimize. This approach by information cost minimization is due to the theoretical
lexicography 5 background of the authors. We can also offer a physical point of view on their

5. Theoretical lexicography is the study of relationships within the vocabulary of a language.
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Figure 1.3 – Diagram of mutual information based on joint and constrained entropies. If
{ni} is the probability of finding a given ball in a given slot and {nk} is the slots per bin distribution,
then the mutual information I (nk, ni) is the overlap of their respective marginal entropies. Conse-
quently, it is the reduction in the conditional or constrained entropyH (ni|nk) caused by our knowledge
of the bin size distribution {nk}. This constrained entropy is illustrated as a crescent moon. This
figure was adapted from the Wikimedia Commons file “Image:Entropy-mutual-information-relative-
entropy-relation-diagram.svg”.

argument based on information theory [29].

Consider the distribution of balls per bin, {nk}, and the probability distribution of finding a
given ball in a given slot i, {ni}. Let us assume that the entropy of the distribution of slots
per bin {nk} is fixed by the first optimization. We then seek to maximize the constrained
entropy H (ni|nk) for the probability of finding a given ball in a given slot ({ni}) given {nk}
and considering the distinguishability of bins of different size. Hence, the entire theory rests
on a problem of constrained entropy maximization: we maximize both the entropy of the
distribution of bin size {nk} and of ball localization {ni} given {nk}.

The conditional entropy is also expressed as H (ni|nk) = −I (nk, ni) +H (ni) where I (nk, ni)
is a mutual information term and where the entropy H (ni) of {ni} regardless of {nk} is known
through our Bayesian assumption that slots are equiprobable. Thus, maximizing H (ni|nk)
is equivalent to minimizing the mutual information term I (nk, ni). More conceptually, the
information term to be minimized is equivalent to the reduction in uncertainty on the occupied
slot i due to our knowledge of the size k of its bin. These equivalences are illustrated in Fig. 1.3.

We can show that the mutual information is equivalent to the information cost discussed in
the previous analysis. We use the distributions P (nk) = Nk/N (by definition), a uniform
P (ni) (by assumption) and P (nk, ni) = (Nk/N)(kNk)−1 = (kN)−1 which means that we first
select a bin size (first term) and then a slot within the bins of that size (second term). The
definition of mutual information (see [29] §2.4) is

I (nk, ni) =
∑
k

∑
i|k
P (nk, ni) ln

[
P (nk, ni)
P (nk)P (ni)

]
(1.19)

and it can be simplified by using the definition of joint probability distribution (often written
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Px,y(x, y) = Px|y(x|y)Py(y) in probability theory)

I (nk, ni) =
∑
k

∑
i|k
P (nk, ni) ln

[
P (ni|nk)
P (ni)

]
. (1.20)

Given a size k, P (ni|nk) is simply kNk/K, such that P (ni|nk)/P (ni) = kNk. The last
expression thus reduces to

I (nk, ni) =
∑
k

∑
i|k

1
kN

ln (kNk) =
∑
k

Nk

N
ln (kNk) = I ({Nk}) . (1.21)

We now have a double optimization problem, for entropy and mutual information (or in-
formation cost), constrained by the number of balls and bins. Instead of straightforwardly
solving the problem, Baek et al. use some mathematical sleight of hand. Once again, we
assume that we know the entropy H({Nk}), when in fact we will be able to fix it a posteriori
by adding a third constraints from the system. This allows us to remove one of the function
to be optimized. The remaining optimization problem can then be written as the following
Lagrange function

F ({Nk}) = I ({Nk}) + λ1

∣∣∣∣N −∑
k

Nk

∣∣∣∣+ λ2

∣∣∣∣K −∑
k

kNk

∣∣∣∣+ λ3

∣∣∣∣H +
∑
k

Nk

N
ln Nk

N

∣∣∣∣ . (1.22)

The solution to Eq. (1.22), obtained by solving ∂F ({Nk}) /∂Nk = 0 for Nk, is given by

Nk

N
= Aexp (−bk) k−γ (1.23)

with A = exp [−1− λ1/(1− λ3)], b = λ2/(1 − λ3) and γ = (1 − λ3)−1 where the multipliers
λi must be fixed with the three constraints. On the one hand, we have accomplished our
goal. The very general assumptions made on the balls in bins system do lead to power-
law behaviour for the distribution of balls per bin. The exponential cut-off, i.e., the factor
exp (−bk), is simply related to the finite size of the system, i.e.,

∑
kNk = K. On the other

hand, we still have a floating constraint relating to the entropy H of the system.

This problem can be solved using the logic we first applied to the size of the largest earthquake
in Sec. 1.1.2. First consider the following dependency of H on the scale exponent γ,

H = A
∑

exp (−bk) k−γ [bk + γ ln k]− lnA
∂H

∂γ
= −A

∑
exp (−bk) k−γ ln k [bk + γ ln k − 1] < 0 , (1.24)

meaning that a larger scale exponent (making the distribution less broad) implies a loss of
entropy. In other words, a smaller entropy corresponds to a smaller value of kmax. This is
a well defined value for any data set, but how does it close our theoretical solution? We
simply swap the constraint on entropy by a constraint on the related value kmax. To this
end, remember that the largest expected value when sampling a power-law tail is defined
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by the point kc above which only a single data point is expected. Using once again the
cumulative distribution function C(k), this point is given by C(kc) = 1/N , with an expected
size 〈kmax〉 =

∑∞
k=kc kNk/N for the actual kmax obtained from the data. Our constraints can

then be fixed from any data set through: K (number of balls), N (number of bins), and kmax

(largest number of balls in a single bin).

More precisely, to obtain a final solution, the parameters of Eq. (1.23) are solved self-
consistently with the three following conditions:

K∑
k=1

A
e−bk

kγ
= 1 (1.25)

K∑
k=1

Ak
e−bk

kγ
= K/N (1.26)

 K∑
k=kc

Ak
e−bk

kγ

 K∑
k=kc

A
e−bk

kγ

−1

= 〈kmax〉 . (1.27)

This set of equations is solved straightforwardly. We assume a scale exponent γ and solve
for b with the ratio of the first two equations, then normalize the distribution to fix A. We
repeat this procedure until we converge to the value of γ leading to a distribution respecting
the last equation. 6

Figure 1.4 revisits the data sets studied in Fig. 1.2, but now fitted by solving the RGF
equations. While it is up for discussion whether these distributions are more faithful to the
empirical data than the purely power-law fit, it should be clear that RGF at least captures
some of the finite size effects present in the data sets. Unfortunately, RGF still relies on the
assumption that we are at least close to equilibrium as it is based on an entropy optimiza-
tion framework. A comparison between the statistical approach of Clauset et al. and the
theoretical approach of Baek et al. is given in Table 1.1. The methods differ mostly when
the statistical approach fits the power-law behaviour to what RGF considers as part of the
finite-size cut-off, as evident in the arXiv, sexual and HEP data.

Finally, even if the Random Group Formation theory might tell us why systems tend to
organize in a scale-independent manner, it does not tell us how they reach that organization.
Obviously, these data sets are all of finite size and the systems they describe are growing and
evolving such that both the average K/N and 〈kmax〉 are changing in time. Can we look at the
distribution at a given point in time and predict what it might look like in the future? How
do individual bins tend to grow? Can we guess how likely it is for a rare word to reappear
if a lost second epilogue to Moby Dick is discovered? To answer these questions, we must
already turn away from optimization problems as they imply a certain equilibrium, and turn
to a description in terms of stochastic growth processes.

6. A Newton-Raphson method can be applied to make the solution converge while maintaining consistency
with Eqs. (1.25) and (1.26).
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Figure 1.4 – Applying Random Group Formation to empirical data. Data sets used in Fig. 1.2
are now analysed with the Random Group Formation theory. The fits now take finite size into account
and are parametrized as follows. (top left) Melville’s Moby Dick: kmax = 14, 176, scale exponent
γ = 1.80 and exponential cut-off bK = 21.95. (top right) Internet Movie Database: kmax = 6, 059,
scale exponent γ = 2.11 and exponential cut-off bK = 1, 329.10. (middle left) Digg: kmax = 10, 526,
scale exponent γ = 1.61 and exponential cut-off bK = 1052.28. (middle right) arXiv: kmax = 214, scale
exponent γ = 1.72 and exponential cut-off bK = 38, 938.76. (bottom left) sexual data: kmax = 615,
scale exponent γ = 1.66 and exponential cut-off bK = 665.89. (bottom right) High Energy Physics:
kmax = 2, 414, scale exponent γ = 1.52 and exponential cut-off bK = 643.02.
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Table 1.1 – Summary of database sizes, quantities and estimated parameters.

System Population N Resource K γ̂ γRGF

Melville 16, 695 unique words 614, 680 written words 1.94 1.80
IMDb 1, 707, 525 actors 6, 288, 201 roles 1.95 2.11
Digg 139, 409 users 3, 018, 197 clicks 1.44 1.61
arXiv 386, 267 authors 6, 288, 201 roles 3.58 1.72
sexual 16, 730 individuals 101, 264 activities 2.65 1.66
HEP 23, 180 papers 355, 221 citations 2.69 1.52

1.2.3 Link with growth processes

We now wish to start modelling the growth of scale-independent systems. From this point
onward, we will only put balls in bins as in the analogy considered in the previous section.
We first simply seek a model whose assumptions agree with RGF and whose steady state is
similar to Eq. (1.23).

In one of their previous publications [79], the authors behind the RGF theory proposed an
answer. While Minnhagen et al. originally tackled the problem of population distribution in
different towns, we reword their contribution as a scheme to distribute K balls amongst N
bins. We initially start with any distribution of balls per bin. We then simply pick two balls
at every time step and move one of them to the other’s bin. Therefore, a bin of size k can
either win or lose a ball at every time step, both with probability 1

2k/K.

Using methods similar to those we will introduce in the next chapter, we can show that the
steady-state solution of this simple scheme is indeed given by Eq. (1.23). Moreover, the model
not only produces a power-law distribution with exponential cut-off, but also follows the same
hypotheses as RGF. Firstly, bins are only distinguishable by their size, meaning that two bins
of the same size have the same probabilities of winning or losing a ball. Secondly, the process
maximizes entropy and is ergodic [79] (visiting all possible states), such that it respects both
the statistical physics and Bayesian assumptions of RGF.

To invent such a simple process to generate power-law distributions, Minnhagen et al. took
inspiration from one of the first model of scale-independent systems which was proposed by
Gibrat. While originally a description of the growth of an economical firm [47], we can also
reword Gibrat’s model in terms of balls and bins. Simply put, we follow the number of balls k
in a single bin and add or remove balls proportionally to their current number k. We should
highlight at this point that this rule of proportionality is the key ingredient shared by both
models and will be an important mechanism for the rest of this thesis.

However, there are several problems with Gibrat’s model which is why we will refrain from
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focusing too much on it. Firstly, we are modelling an independent bin, whereas in reality if a
ball goes into a given bin, it is not going in any other. This means that that the probability
of a given word to be the next one used in a text is not only dependent on its own intrinsic
usage, but also on the usage of all other possible words. Secondly, and this applies also to
the model of Minnagen et al., the empirical data considered thus far concern quantities that
are never decreasing — total occurrences in a text, total sexual activities, etc. — whereas
we here allow balls to be removed from the bin. Thirdly, and more importantly, both model
concerns static systems where both the number of balls K and the number of bins N are
fixed in time. We want to consider growth processes that can describe systems as they evolve
towards their asymptotic state.

In short, our model must consider interdependent elements, and our model must be a growth
process and not only a scheme of distributing balls in bins. Models of the sort make perfect
sense for the systems hitherto considered. All quantities are discrete just like counting balls,
monotonously increasing as we never erase words or remove balls and growing as words are
created and new individuals join the systems. The next chapter covers a family of processes
which respects these criteria.
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Chapter 2

On preferential attachment

Résumé

Nous lançons maintenant des balles dans des urnes. Ce chapitre couvre une famille de proces-
sus stochastiques de croissance ayant beaucoup en commun avec le modèle de Gibrat présenté
à la fin du précédent chapitre. En fait, ils utilisent tous la même idée centrale: l’attachement
préférentiel. Ces processus seront étudiés en détails dans le reste de la thèse. Nous discutons
ici de leur invention, de manière indépendante, par Yule [102] et Simon [92]. Pour le premier,
il s’agit d’un modèle d’évolution pour expliquer la distribution d’espèces observées par genre
biologique. Plus un genre contient d’espèces, plus il risque d’y avoir des mutations menant à
de nouvelles espèces du même genre. Pour le second, il s’agit d’un modèle jouet où des balles
sont lancées dans des urnes préférentiellement au nombre de balles qu’elles contiennent. Tous
deux utilisent donc la même logique sous-jacente de proportionnalité: les riches s’enrichissent.

Nous présenterons également certaines re-découvertes de l’attachement préférentiel dont celle
de Barabási et Albert dans le cadre de la science des réseaux [12]. Au fil du chapitre, nous
introduisons et étudions l’approche par équation maîtresse qui sera au cœur de toutes nos
analyses. Nous terminons avec des études détaillées de l’attachement préférentiel — sur une
propriété intéressante de notre solution explicite [57], sur l’effet de la loi de proportionalité
[67, 65] et sur l’influence du taux d’introduction d’urnes [103] — qui permettent d’illustrer la
flexibilité des équations maîtresses. Les résultats obtenus dans ces études pavent la voie vers
une de nos contributions principales présentée au chapitre suivant.
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Summary

We now throw balls in bins. This chapter covers a family of stochastic growth processes which
share some properties of the Gibrat model discussed at the end of the previous chapter. In
fact, they all share the same basic principle: preferential attachment. These processes will be
studied in great details for the remainder of the thesis. Here, we first cover their independent
invention by Yule [102] and Simon [92]. For the former, the process is a model of evolution
explaining the observed distribution of species in biological genera. The more species there
are in a genus, the more likely it is that mutations will lead to a new species of the same
genus. For the latter, the process is a toy model where balls are thrown in urns preferentially
to the number of balls they already contain. Both draw upon the same underlying logic of
proportionality: the rich get richer.

We also present certain rediscovery of preferential attachment including the Barabási and
Albert variant of the process introduced in network science [12]. In presenting these models,
we introduce and study the master (or rate 1) equation approach which lies at the heart of all
our analyses. We then end with detailed study of preferential attachment — on an interesting
property of our explicit solution [57], on the effect of the proportionality rule [67, 65] and on
the influence of the urn introduction rate [103] — which allow us to illustrate the flexibility
of the master equations. The results obtained in these studies pave the way towards one of
our main contributions presented in the following chapter.

2.1 The history of preferential attachment

2.1.1 Yule’s process

One of the first 2 classic cases of observation of scale independence in empirical data is due
to Willis and Yule in 1922 when they analysed the size distribution (in number of species)
of biological genera [100, 99]. Their study, somewhat surprisingly, highlighted the particular
shape of that distribution: a power law (see Fig. 2.1 for one of the first published figures
presenting power-law distributed empirical data as a straight line on logarithmic scales).

In a subsequent publication [102], Yule proposed a mathematical model of evolution to explain
the observed distribution. In biological terms, the model is defined as follows. Two types of
mutations are possible: specific mutations, which produce a new species of the same genus
and generic mutations, which produce a new species in a new genus. These mutations occur
respectively within each species at a rate s and within each genus at a rate g. Yule then

1. In this thesis, we can mostly use both rate equation and master equation interchangeably.
2. After a first observation by Estroup in 1916 [44].
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Figure 2.1 – Number of species per genus of flowering plants circa 1922. The straight line
represents a perfect power law as the data are presented under logarithmic scales. Reproduced with
permission [99].

described the mean total number of genera at time t, N(t) = exp(gt), and the age distribution
of these genera,

na = g exp(−ga) , (2.1)

as well as the average size (number of species) for a genus of age a,

k(a) = exp(sa) . (2.2)

to show how the size distribution nk asymptotically falls as nk(t → ∞) ∝ k−(1+g/s). To
simplify his analysis, we can invert Eq. (2.2) to obtain

a(k) = 1
s

ln k ; da = 1
s

dk

k
. (2.3)

From this relation, we can translate the age distribution (i.e., Eq. (2.1)) to a size distribution
following nk = |J |gexp(−ga(k)), where |J | is the Jacobian from the substitution of age to
average size given by Eq. (2.2). We thus find

nk = g

s
k−(1+ g

s
) (2.4)

which does indeed follow nk ∝ k−γ with a scale exponent γ = 1 + g/s. Finally, analysing the
data presented in Fig. 2.1 yields γ ' 1.5 such that s ' 2g.

2.1.2 Simon’s model

It is two decades later that Zipf published his results on the power-law distributions observed
in various spheres of human activities: distributions of word occurrences in prose, of train
cargoes between cities, of city populations, of time interval between consecutive repetitions
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of notes in Mozart’s Bassoon Concerto in B-flat Major, of sales of diverse goods among
others [104]. The ubiquity of this distribution captured the interest of Simon, then mostly an
economist and political scientist, who was not entirely convinced by Zipf’s interpretation (his
principle of least effort).

Simon then developed a stochastic process similar in principle to Yule’s model of evolution,
although much more general in nature, and clearer in its assumptions and mechanisms [92].
The hope being to explain the omnipresence of scale independence regardless of the systems’
intrinsic nature and mechanisms. In fact, Simon does not postulate or assume anything
about the system under study, with the sole exception of one mechanism: the rich get richer.
Mathematically, we can state that the chances (or the rate) of growth for an element of the
system are directly proportional to its “size.” Here, size can refer to an actual size (like the
number of species in a genus in Yule’s process) or to a share of a given resource or to the
number of past occurrences of a given event. Notice that this rule was implicitly included in
Yule’s process in the exponential growth assumed for each genus.

In short, Simon’s process is a simple urn model in which balls are thrown in urns via a
preferential scheme: urns with x balls are x/y times mores likely to get the new ball than
urns with y balls. These balls can represent a new word written in a text, money being
invested, or the publication of new scientific papers. The urns would then represent unique
words, financial firms, or scientists. In all cases, the probability that a ball falls in an urn
already containing k balls is simply given by k normalized by the total number of balls
previously thrown (i.e., the content of all other urns). To allow the population (the number
of urns) to grow, at each throw, the ball has a fixed probability p of falling in a new urn.

Simon analysed his model with rate equations. Hereafter, this is the sole approach we will use
to follow the time evolution of any stochastic process. The idea is to follow the evolution of
the average state of the system, allowing for whatever relevant heterogeneity. In this case, we
want to follow the average absolute number Nk(t) of urns containing k balls after t throws.
We thus write

Nk(t+ 1) = Nk(t) +
[
(1− p)(k − 1)Nk−1(t)− kNk(t)

t
+ pδk,1

]
. (2.5)

Let us take a second to explain how these equations are constructed. It is essentially a finite
difference equation (as time is discrete). Hence, Nk(t + 1) is equal to its previous state plus
the average variation due to the event during that time step. In this case, the event can be a
birth or a growth. Birth events occur with probability p and affect only the urns with k = 1
(hence the Kronecker delta δk,1 = 1 if k = 1 and 0 otherwise) and have a weight of one (a
single urn is born). Growth events occur with complementary probability 1 − p and affect
urns with k balls negatively if one of them is chosen (probability kNk(t)/t) or positively if
an urn with k − 1 balls is chosen (probability (k − 1)Nk−1(t)/t). For consistency, we set the
boundary condition N0(t) = 0 for all t.
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When t becomes very large, such that the time step is much smaller than t itself, we can
switch to a continuous time process to simplify the upcoming analysis 3:

Nk(t+ dt) = Nk(t) + dt

[
(1− p)(k − 1)Nk−1(t)− kNk(t)

t
+ pδk,1

]
. (2.6)

We then transform Eq. (2.6) in an equation for the proportion nk(t) of urns containing k
balls at time t. To do so, we use the fact that {Nk(t)} is simply {nk(t)} multiplied by the
average number N(t) of urns at time t, i.e. pt. We thus write

p(t+ dt)nk(t+ dt) = ptnk(t) + dt

{
p (1− p) [(k − 1)nk−1(t)− knk(t)] + pδk,1

}
(2.7)

from which we obtain an ordinary differential equation (ODE) of the form

lim
dt→0

(t+ dt)nk(t+ dt)− tnk(t)
dt

= d

dt
[tnk(t)] = (1−p) [(k − 1)nk−1(t)− knk(t)]+δk,1 . (2.8)

The steady-state ensemble {n∗k} (defined by d
dtnk(t) = 0 ∀ k) can straightforwardly be written

through
d

dt
[tnk(t)] = nk(t) + t

d

dt
nk(t) = (1− p) [(k − 1)nk−1(t)− knk(t)] + δk,1 (2.9)

which yields
n∗k = (1− p)

[
(k − 1)n∗k−1 − kn∗k

]
+ δk,1 (2.10)

or
n∗k =

(1− p) (k − 1)n∗k−1 + δk,1

1 + k (1− p) . (2.11)

By induction, we get

n∗k =
∏k−1
m=1m (1− p)∏k

m=1 [1 +m (1− p)]
∀ k > 1 (2.12)

such that
n∗k
n∗k−1

= (k − 1) (1− p)
1 + k (1− p) . (2.13)

We can then show that this last relation decreases as a power law for k � 1,

lim
k→∞

n∗k
n∗k−1

=
(

k

k − 1

)−γ
, (2.14)

with
γ = lim

k→∞

{
log

((k − 1)(1− p)
1 + k(1− p)

)/
log

(
k − 1
k

)}
= 2− p

1− p . (2.15)

Simon’s model thus produces systems featuring a scale-independent distribution of some quan-
tity (balls) per element (urns) with a scaling exponent ∈ [2,∞). It is a simple matter to
simulate Simon’s model (Monte Carlo experiment) for instance to reproduce the distribution
of word occurrences in a text, see Fig. 2.2. This both confirms the efficiency of the model
itself, and of our rate equation analysis 4.

3. The effect of the continuous time approximation will be studied in Sec. 2.2.1.
4. This analysis could also be called a mean-field analysis, as the rate equation determines the time evolution

of the average event only.
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Figure 2.2 – Word occurrences in James Joyce’s Ulysses with Simon’s model. The Monte
Carlo results are obtained from a single realization of Simon’s model, with the parameter p fixed
empirically: p ' 0.112, equal to the ratio of the number of unique words (30 030) to the total word
count (267 350). The analytic curve is obtained by integrating Eq. (2.6).

2.1.3 Solution of Simon’s model with Yule’s method

While the rate equation approach is useful mainly to get a temporal description, the analysis
used to describe Yule’s process is almost undeniably simpler. It is therefore interesting to
reproduce this analysis with Simon’s model and, in doing so, highlight the link between the
two.

If we are interested, for example, in a given urn containing k of the t balls, we can write the
probability that the next ball falls into the same urn as

P [k → k + 1] = (1− p)k
t

(2.16)

which is equivalent to
P [k → k + 1] dt = (1− p)k

t
dt (2.17)

with dt = 1. By introducing an arbitrary time t̃ = ln t (which is a continuous variable in the
limit t→∞) we can write

P [k → k + 1] dt = (1− p)kdt̃ . (2.18)

Similarly, we can write the probability that the next ball falls in a new urn, that is the
probability of a birth event in the population: N → N + 1,

P [N → N + 1] dt = pdt = ptdt̃ . (2.19)

We are now essentially back at the starting point of analysis of Yule’s process (with urns ↔
genera and species ↔ balls). The only difference between the two processes being that the
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“generic mutation rate” of Simon’s model is directly proportional to the number of “species”,
g̃ ≡ g + s, as we lost a degree of freedom. We now have g ↔ p and s ↔ (1 − p), such that
g̃ = g + s = 1. With the new continuous time, Eq. (2.19) implies N(t) = exp(t̃) such that
the age distribution of urns can be written as

na = p exp(−g̃t̃) = p exp(−t̃) , (2.20)

and the average number of balls in an urn of age a,

k(a) = exp
[
(1− p)t̃

]
. (2.21)

These two expressions are equivalent to Eqs. (2.1) and (2.2). Repeating the last steps of
our previous analysis, we once again find that the scale exponent produced by Simon’s model
must be

γ = 1 + 1
1− p = 2− p

1− p . (2.22)

Inversely, we could use the rate equation approach to analyse more completely Yule’s process
[78]. It then becomes clear that the two processes are in fact two versions of the same
basic model, one with discrete (Simon) and one with continuous (Yule) time. The fact that
Simon’s model has one less degree of freedom manifests itself in the range of reproducible
scale exponent, going from 1 to infinity in Yule’s process and only starting at 2 in Simon’s
case. The physical intuition behind this difference being that in Simon’s model the average
number of balls per urn must always be t/pt = 1/p whereas it can diverge in Yule’s process.
As we saw in the first chapter, scale-independent organizations with diverging mean imply a
scale exponent γ ≤ 2. This distinction will become more manifest in the next chapter.

2.1.4 Network growth through preferential attachment

Probably because of its simplicity, and the ubiquity of scale independence, Yule’s process has
been re-invented multiple times and variations of it are now found in almost any imaginable
science. For instance, Champernowne’s model was developed to explain Pareto’s law for the
capital of financial firms and is similar in spirit to Yule’s original process [24]. The first study
of this type by a physicist is probably the work of de Solla Price who proposed to explain
scale independence in bibliometric (essentially citations network) by a process which he coined
cumulative advantage [32]. This process can be summarized as follows: popularity is popular.
That is to say, the more an article has been cited in the past, the more likely it is to be cited
in the future.

We must then wait roughly thirty years before the process was once again re-invented, in the
context of what is now called network science, by Barabási and Albert who then coined the
term preferential attachment (PA) [12]. Their study looked at the degree distribution, i.e., the
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distribution of links per node, which featured a power-law tail in a fraction of the World-Wide
Web, in a portion of the American power grid and in a collaboration network between actors.
They thus proposed the following stochastic model of network growth based on preferential
attachment. At each time step dt, a new node is added to the system and connected to m
existing nodes, randomly selected but proportionally to their current degree. We can use our
previous formalism to write down rate (or master) equation to follow the number of nodes
Nk(t) with degree k at time t. Following the logic previously applied to Simon’s model, we
write

Nk(t+ dt) = Nk(t) + dt

{
m

(k − 1)Nk−1(t)− kNk(t)
2mt + δk,m

}
. (2.23)

Note that the normalization factor is now 2mt, which is the total number of degree (half-link)
at time t, since every time step introduces 2m resources (degree) to complete m links. Also,
we neglected the probability to select the same node more than once within one time step as
these terms all vanish at least as fast as 1/t [36]. We can simplify Eq. (2.23),

Nk(t+ dt) = Nk(t) + dt

{1
2

(k − 1)Nk−1(t)− kNk(t)
t

+ δk,m

}
, (2.24)

to fall back on Simon’s model with p = 1/2. From our previous analysis, we already know that
the scale exponent of the asymptotic steady-state distribution should be γ = (2− p)/(1− p),
such that the degree distribution of the Barabási-Albert’s model (BA) follows Nk(t) ∝ k−3.

The sole parameter of the BA model is the initial degree m of new nodes which only fixes
a minimal bound for the distribution without the scale exponent of its tail. To widen the
applicability of the model, we could take inspiration from Simon and rather than creating a
new node at each time step, allow the model to create links between two existing nodes. We
will fix m = 1, and introduce a new node only with probability p, while with complementary
probability 1− p we will create the link between two old nodes. The distribution should now
follow

Nk(t+ dt) = Nk(t) + dt

{
(2− p) (k − 1)Nk−1(t)− kNk(t)

2t + pδk,1

}
, (2.25)

which is the model that we use to reproduce the degree distribution of the World-Wide Web in
Fig. 2.3. Our last equation slightly differs from Eq. (2.5), the term (2−p) is used because with
probability p we give only one half-link to an existing node (to connect to the new one) and
with probability 1−p we give them two half-links such that the average is p+2(1−p) = 2−p.

2.2 Detailed study of classical preferential attachment

The mathematics will now get a little more involved as we study preferential attachment
processes in greater detail. However, the techniques will remain somewhat similar since, as
seen with the two previous models, the rate (or master) equation approach is perfectly suited
for preferential attachment processes.

30



10−6
10−5
10−4
10−3
10−2
10−1
100

100 101 102 103
pr

op
or

tio
n 

of
 p

ag
es

ingoing links

WWW

empirical
analytical
numerical

Figure 2.3 – Degree distribution on web pages of the Notre-Dame University domain.
Reproduction of the degree distribution found in a subset of the Word-Wide Web through a general-
ization of the Barabási-Albert model. The numerical results are a single Monte Carlo realization of
the process and the analytical results is obtained by integrating Eq. (2.25).

Let us now present the most general model that we will hereafter use. A preferential attach-
ment process will distribute K(t) =

∑
k kNk(t) balls (or units of a resource) amongst N(t)

urns (or individuals). We can follow the average absolute number Nk(t) of urns with k balls
at time t using a finite difference equation of the form

Nk(t+ 1) = Nk(t) + [1− p(t)] G(k − 1)Nk−1(t)−G(k)Nk(t)∑
j G(j)Nj(t)

+ p(t)δk,1 (2.26)

where p(t) is a time dependent birth function (probability p(t) of a birth at the t-th time
step) and G(k) is a general growth function (G(k) = k being the classical linear preferential
attachment).

The next few sections concern, in order: the time solution of the classical preferential attach-
ment process [57], the steady-state solution with different attachment kernels (G(k)) [67, 65]
and the approximated solution with a time-dependent birth rate [103]. In the interest of
also providing a wide overview of the methods involved, each of these three sections will also
introduce different methods of solution. More importantly, the first section leads to a result
hinting at the importance of time-dependent birth rate in preferential attachment; the second
section demonstrates how linear preferential attachment is actually a critical process sepa-
rating a condensate state (supra-linear attachment) and an homogeneous state (sub-linear
attachment); and the third section presents how values of γ < 2 can be obtained with time-
dependent birth rate. These results pave the way to one of our main contribution, which will
be presented in the following chapter.
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2.2.1 Time evolution of constant linear preferential attachment

The time evolution of a preferential attachment process is usually obtained simply by iterating
the discrete time rate equations. However, it can be useful to have an explicit solution in
continuous time, either to speed up the calculations or simply to compare the difference
between the two processes. We will solve Simon’s model explicitly under the approximation
of continuous time. We thus assume G(k) = k and p(t) = p. Note that the results presented
are already published [57], and that our analysis uses some methods first introduced by Morin
[74].

2.2.1.1 Discrete versus continuous time processes

The transition to continuous time simply implies that p now refers to a birth rate, as opposed
to a birth probability within a discrete time step. The corresponding rate 1 − p thereby
corresponds to the growth rate of existing elements. This means that in a given time inter-
val [t, t + dt], this new stochastic process could create an infinite number of elements with
probability limdt→0 (pdt)1/dt, whereas the discrete version could only create one element with
probability p. While it is highly improbable that continuous time PA results in a system sev-
eral orders of magnitude larger than pt, as the average will be exactly pt, there is no maximal
size per se.

This sort of continuous time dynamics is better described using simple ODEs. To this end,
we once again follow Nk, the number of bins with k balls. Using the method of Sec. 2.1.2, we
directly write the following ODE

d

dt
Nk(t) = ρ δkm +Rk−1(t)Nk−1(t)−Rk(t)Nk(t) (2.27)

where ρ is the birth rate, m is the size of new bins (e.g. to include the Barabási-Albert model)
and Ri(t) is the attachment rate on entities of size i, which we define using a growth rate κ,
an initial total size m0 and a normalization rate λ:

Ri(t) = κi

m0 + λt
. (2.28)

It proves useful to rewrite (2.27) in dimensionless form as

d

dτ
Nk(τ) = ρ δkm +Rk−1(τ)Nk−1(τ)−Rk(τ)Nk(τ) (2.29)

with dimensionless time τ = κt, parameters ρ = ρ/κ, λ = λ/κ, and attachment rate Rk(τ) =
k/(m0 + λτ) respectively.

Let
Hk(t) = exp

[∫
Rk(τ)dτ

]
=
(
m0 + λτ

)k/λ
, (2.30)
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so that Eq. (2.29) can be written as

d

dτ

[
Nk(τ)Hk(τ)

]
= ρHk(τ)δkm +Rk−1(τ)Hk(τ)Nk−1(τ) . (2.31)

The solution of this transformed equation can be written as the following integral form

Nk(τ) = ρ
(m0 + λτ)
k + λ

δkm + (1− δkm)
Hk(τ)

∫
Rk−1(τ)Hk(τ)Nk−1(τ)dτ + Ck , (2.32)

where {Ck} are constants of integration determined by the initial conditions. Solving for the
first few values of k (m, m+ 1, m+ 2, . . . ) reveals the following pattern for the solutions

Nm+k(τ) = ρ
(m)k

(m+ λ)k+1

(
m0 + λτ

)
+

k∑
i=0

(m)k
(m)i

Cm+i
(k − i)!

(
m0 + λτ

)−(m+i)/λ
(2.33)

where (γ)j ≡ (γ)(γ + 1) . . . (γ + j − 1) is the Pochhammer symbol. The last step towards a
complete solution is to determine an explicit form of the constants of integrations {Cm+k} in
terms of the initial conditions {Nm+k(0)}. This is easily accomplished by writing (2.33) in a
matrix form for the vector of initial conditions N(0)

N(0) = A(0) + L(0)C (2.34)

in terms of the vector C of integration constants and a lower triangular matrix L, followed by
the observation that the inverse of a (lower/upper) triangular matrix is also a (lower/upper)
triangular matrix whose elements can be constructed by forward substitution. Given that the
elements of L(0) are

Lm+k,m+i(0) =
(
m+ k − 1
m+ i− 1

)
1

mm+i
0

(2.35)

we find that the elements of the inverse matrix, denoted M , are simply

Mm+k,m+i = (−1)k−i
(
m+ k − 1
m+ i− 1

)
mm+i

0 . (2.36)

Inserting this solution in (2.33), we get

N(τ) = [A(τ)−L(τ)MA(0)] + L(τ)MN(0) , (2.37)

which nicely isolates the principal dynamics (the first 2 terms) from the initial conditions.
Specifically, by imposing the usual initial conditions, Nm+k(0) = δk0, it is straightforward,
albeit somewhat lengthy, to obtain a closed-form expression for the complete dynamical ele-
ments as

Nm+k(τ) = (m)k
1

Γ(k + 1)X(τ)m(1−X(τ))k

+ ρm0(m)k

[
1

(m+ λ)k+1
X(τ) − 1

(m+ λ)
1

Γ(k + 1)X(τ)mFk(X(τ))
]

(2.38)
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Figure 2.4 – Discrete versus continuous preferential attachment. Comparison of distributions
obtained with p = 0.8 and p = 0.2 in discrete and continuous dynamics at time t = 100. This
illustrates how the peloton dynamics is a direct consequence of the maximal system size present only
in the discrete version of the process.

with X(τ) = m0/(m0 + λτ) and where Fk(X) = 2F1(−k,m + λ;m + λ + 1;X) represents a
hypergeometric series of degree k:

2F1 (a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n! (2.39)

which is terminated when the Pochhammer symbol (a)n with a = −k reaches 0. One verifies
that, by setting τ = 0 in the obtained solution, one obtains Nm+k(0) = δk0 as it should.

Figure 2.4 presents a comparison of PA time evolution in discrete and continuous time. The
two solutions differ for small p as the transition probabilities for elements with large k are
then significant, such that the continuous approximation fails. Corrections can be applied by
considering higher order terms in the expansion 5 of the discrete master equation. However,
it can be shown that the continuous and discrete time versions of PA converge toward the
same asymptotic behaviour.

2.2.1.2 Peloton dynamics

One particularly interesting feature of the results presented in Fig. 2.4 is the dynamics of the
bins in the tail of the distributions. These bins grouped in clearly identifiable bulges only in
the discrete version and when p < 0.5 such that the leading bins remain distinct from the

5. Kramers-Moyal expansion: essentially equivalent to a Taylor series and allows to consider derivatives of
higher order (i.e., a sum over ∂mN/∂km).
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Figure 2.5 – Rescaling of preferential attachment peloton. (left) The height of the peloton
follows a power-law decay (here for p = 0.25), such that its surface is conserved on a logarithmic
scale as it evolves. The decay exponent of the peloton is the same as the scaling exponent of the
distribution it creates. (c) Rescaled distribution {nγsSn(t)} as a function of rescaled community size
n/t1−p highlights the scaling of the peloton dynamics.

new bins. The dynamics of a system’s leader is well-documented in the context of growing
networks [66, 50] or word frequencies [16], but can be applied to any problem where one is
interested in the statistics of the extremes (i.e., the growth of the biggest business firm, of the
most popular website, etc.). What we observe here is that averaging over multiple realizations
of the same experiment will result in the creation of a peloton where one is significantly more
likely to find entities than predicted by the asymptotic distribution (i.e., the leaders).

As seen on Fig. 2.4, the clear distinction between the statistical distribution of leaders versus
the rest of the system is a consequence of the maximal size of the system and of the limited
growth resources available. As mentioned earlier, the continuous time version of PA has no
finite limitation to the number of growth events at every time step. Comparing the results
of the discrete and continuous versions of our stochastic process on Fig. 2.4 illustrates how
limiting growth resources results in the condensation of the leaders in a peloton. This draws
a strong parallel between discrete preferential attachment and some sandpile models known
to result in scale-free avalanche size distributions through self-organized criticality 6. In some
cases, such as the Oslo model (see [26] §3.9), the biggest avalanches are limited by the size of
the considered sandpile and are thus condensed in bulges identical to our pelotons.

Also striking is the fact that this peloton conserves its shape on a log-log scale (see Fig. 2.5(left)).
To highlight this feature, Fig. 2.5(right) rescales the distributions to account for the scaling
in size (γs) and the peloton growth through time (t1−p). This rescaling method was borrowed
from [26] §3.9.8 and is based on the behaviour of kmax(t).

Using the general form of PA given above in terms of a growth rate 1− p, we can follow the

6. Note that we will return, in a different context, on self-organized criticality in Chap. 4.
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average position of kmax(t) by writing

kmax(t+ 1) =
(

1 + 1− p
t

)
kmax(t) , (2.40)

which directly fixes the derivative in the limit of large t,

d

dt
kmax(t) = 1− p

t
kmax(t) . (2.41)

The general solution to Eq. (2.41) is

kmax(t) = At1−p . (2.42)

Fixing the initial condition kmax(1) = 1, one obtains the following mean position at time t:

kmax(t) = t1−p . (2.43)

This result fixes the rescaling used in Fig. 2.5(left) and also confirms that the largest bin is
solely responsible for the observed peloton. Hence, different leaders might emerge in every sin-
gle preferential growth realization, but the peloton dynamics can only manifest itself through
averaging. This average can be taken over multiple systems or, if the dynamics include death
events, over many characteristic time scales of a single system across the births and deaths
of many different leaders. Consequently, empirical observations of this phenomenon are rare,
because on the one hand we have only one Internet, one arXiv, and basically a unique copy
of most complex systems, and on the other hand, we rarely have access to extensive data
through long time scales. We can however find a solution if we go back to one of our first
examples: the scale-free distribution of words by their number of occurrences in written text.
Remember that in this context, the p parameter corresponds to the probability that each new
written word has never been used before. We can therefore consider different samples of text
of equal length written by the same author as different realizations of the same experiment.

With this in mind, we have picked different authors according to personal preferences and size
of their body of work and divided their œuvres in samples of given lengths which we then used
to evaluate Zipf’s law under averaging (see Fig. 2.6). As predicted by PA, taking the average
of multiple realizations of the same experiment results in a peloton which diverges from the
traditional Zipf’s law. In this case, the peloton implies that the leaders of this system (i.e.,
the most frequent words) consistently fall within the same range of occurrences.

Lastly, Fig. 2.6d reproduces the scaling analysis of Fig. 2.5(right) for empirical results on
prose samples. The varying surface of the peloton hints at a non-constant vocabulary growth
rate: a well-known feature of written text (see [54] §7.5). A first form of time-dependent birth
rate [103], motivated by empirical observations, will be investigated at the end of this chapter.
Yet, we now complete our study of classical preferential attachment models by looking at the
impact of the attachment kernel. Hitherto, we have focussed on a linear relation between
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Figure 2.6 – Peloton dynamics in prose. Distributions of words by their number of occurrences
in prose samples of different length taken from the complete works of (a) H.P. Lovecraft composed of
nearly 800 000 words, (b) William Shakespeare with around 900 000 words and (c) Herman Melville
with over 1 200 000 words. The peloton dynamics is manifest in all distributions. (d) The rescaling
method of Fig. 2.5(right), with γ = 2.27 and 1 − p = 0.43, is applied to the statistics of Herman
Melville’s work.

one’s current share of the resource and one’s future growth, but we now consider a somewhat
more general framework. This generalization of preferential attachment, along with the time-
dependent results to be considered after, lead to our main contribution which will be presented
in the next chapter.

2.2.2 Preferential attachment with arbitrary kernels

In this section, we investigate the impact of the attachment kernel on the result of a preferen-
tial attachment process following the work of Krapivsky and Redner [67, 65]. More generally,
instead of a strictly linear kernel, where balls are thrown in bins directly preferentially to
their size k, we consider a general kernel of the form G(k) = kν . Consequently, we study any
process where the evolution of the number of elements Nk(t) with share k at time t follow a
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master equation of the type

Nk(t+ ∆t) = Nk(t) +Bδk,1 + G

µt
[(k − 1)ν Nk−1(t)− kνNk(t)] , (2.44)

where B and G are the probabilities that birth and growth events occur during the time step
∆t, and where the exponent ν represents the attachment kernel. Simon’s model of linear
preferential attachment can then be obtained by setting ν = 1, B = p and G = 1− p. Thus,
ν = 1 leads to a direct rich-get-richer process, whereas the case ν < 1 represents a rich-get-
richer process with diminishing returns and ν > 1 the opposite. Whatever the case, µ is the
average contribution of a time step to the normalization of the kernel, i.e. µt =

∑
k k

νNk(t).
For example, with ν = 1 we can directly calculate that µ = B +G.

Since B is the probability of a birth event, the evolution of the normalized distribution {nk(t)}
can be obtained by replacing Nk(t) by Btnk(t):

B (t+ ∆t)nk(t+ ∆t) = Btnk(t) +Bδk,1 + GB

µ
[(k − 1)ν nk−1(t)− kνnk(t)] . (2.45)

Since ∆t is an arbitrary time step, and B and G are just as arbitrary, we can use an equivalent
process in continuous time by using ∆t→ dt,

B (t+ dt)nk(t+ dt) = Btnk(t) + dt

{
GB

µ
[(k − 1)ν nk−1(t)− kνnk(t)] +Bδk,1

}
, (2.46)

from which the following set of ordinary differential equations is obtained:

lim
dt→0

(t+ dt)nk(t+ dt)− tnk(t)
dt

= d

dt
[tnk(t)] = G

µ
[(k − 1)ν nk−1(t)− kνnk(t)]+δk,1 . (2.47)

Solving at statistical equilibrium, i.e. nk(t) = n∗k such that d
dtnk(t) = 0 ∀ k, yields

(
1 + kν

G

µ

)
n∗k = G

µ
(k − 1)ν n∗k−1 + δk,1 (2.48)

or more directly

n∗k =
∏k−1
m=1

G
µm

ν∏k
m=1

(
1 +mν G

µ

) = µ
∏k−1
m=1Gm

ν∏k
m=1 (µ+Gmν)

. (2.49)

This last expression can be analysed through a self-coherent argument using the general
definition of the normalization factor

µ =
∑
k

kνn∗k . (2.50)

More detailed solutions of the asymptotic steady state are kernel dependent and will be
investigated in what follows.
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2.2.2.1 Linear connection kernel (G(k) = k)

In the upcoming sections, we are going to assume a simple case of network growth where
B = G = 1. This corresponds to a process where, at each time step ∆t, a new node is added
to the network and connected to a single existing node according to a given kernel ν. The
resource k under study is then the degree of each node after t nodes/links have been added
to the system.

The simplest version of this process uses the linear kernel that has been simply assumed up
to now: i.e., ν = 1. In that context, Eq. (2.49) yields

n∗k = 2
∏k−1
m=1m∏k

m=1 (2 +m)
= n∗k−1

k − 1
2 + k

, (2.51)

a telescopic product that we can reduce to

n∗k = 4
k (k + 1) (k + 2) . (2.52)

Hence, a strictly linear kernel with B = G = 1 leads to n∗k ∝ k−3; which is consistent
with our previous results for the Barabási-Albert model and for the Simon’s model using
p = B/(B +G) = 1/2 such that γ = (2− p)/(1− p) = 3.

A very interesting consequence of this simple model is that we can tune the scale exponent
by limiting the kernel only to an asymptotic linear behaviour. We use a general attachment
probability equal to G(k) = ak (instead of kν) for nodes of degree k and restrict it to follow
ak = a∞k for k � 1 only. All other probabilities are free, meaning we use arbitrary ak for
smaller k values. The general solution follows a form similar to Eq. (2.49), once again with
G = 1,

n∗k =
∏k−1
m=1 am/µ∏k

m=1 (1 + am/µ)
= µ

ak

k∏
m=1

(
1 + µ

am

)−1
, (2.53)

which has already been shown to scale as k−γ with γ = 1 + (B + G)/G which here gives
(G = 1 and B +G ≡ µ)

γ = 1 + µ . (2.54)

This tunable exponent is thus fixed with

µ =
∑

akn
∗
k = µ

∞∑
k=1

k∏
m=1

(
1 + µ

am

)−1
. (2.55)

This last expression implies
∞∑
k=1

k∏
m=1

(
1 + µ

am

)−1
= 1 (2.56)

for all {am}, such that (
1 + µ

a1

)−1
[
1 +

∞∑
k=2

k∏
m=2

(
1 + µ

am

)−1
]

= 1 (2.57)
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Figure 2.7 – Results on different linear kernels. (top left) Distribution after the introduction
50, 000 nodes using a strictly linear connection kernel. The theoretical steady-state scale exponent is
shown for comparison. (top right) The same system is now compared with systems of the same size with
linear kernels of the form G(k) = ak = k+1 (positive initial fitness) and G(k) = ak = k−1/2 (negative
initial fitness). Those kernels are described in greater details in the next section. (bottom left) Result
of the linear kernel is now compared with an asymptotically linear kernel, i.e. G(k) =

(
k + 2

√
k
)
/3.

(bottom right) Kernels used for the bottom left figure. Note that all distributions are obtained by
iterating Eq. (2.44) with B = G = 1 and slightly modified to consider the appropriate kernel.

or, as a simpler expression,

µ = a1

∞∑
k=2

k∏
m=2

(
1 + µ

am

)−1
. (2.58)

Thus, this case is general enough to reproduce all exponents greater than two (as the case
considered here) even with fixed birth and growth rates. Moreover, a1 can then be elegantly
interpreted as an initial fitness or attractiveness.

Figure 2.7 presents results of system growth based on the model considered in this section
using different, strictly or asymptotically linear connection kernels.

2.2.2.2 Sub-linear connection kernel (G(k) = kν with ν < 1)

We now consider the case of a rich-get-richer process with diminishing returns, i.e. ν < 1.
Rewriting the steady state result of the general process gives

n∗k =
∏k−1
m=1m

ν/µ∏k
m=1 (1 +mν/µ)

= µ

kν

k∏
m=1

(
1 + µ

mν

)−1
. (2.59)

40



To solve the behaviour of n∗k for large k, we write

n∗k = µ

kν
exp

[
−

k∑
m=1

ln
(

1 + µ

mν

)]
∼ µ

kν
exp

[
−
∫ k

1
ln
(

1 + µ

mν

)
dm

]
. (2.60)

The general solution is given in terms of the hypergeometric function 2F1 (a, b; c; z) [1],

n∗k ∼
µ

kν
exp

[
νk · 2F1

(
1,−1/ν, 1− 1/ν,−µk−ν

)
− kln

(
µk−ν + 1

)
− νk + constant

]
. (2.61)

We now keep only the non-vanishing functions of k in the exponential. To do so, we expand
every function in its power series. Let us recall that the hypergeometric series takes the form

2F1 (a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n! (2.62)

where (a)n is again the Pochhammer symbol. The first terms thus removes the linear function
of k and we combine the remaining terms with the power series of the logarithm:

n∗k ∼
µ

kν
exp

[
ν
∞∑
n=1

(−1)n
{ (1)n(−1/ν)n
n!(1− 1/ν)n

+ 1
nν

}
µnk1−nν + constant

]
. (2.63)

The important point here is that keeping only the positive powers of k in the exponential imply
keeping all powers in the series such that 1− nν > 0. Meaning that if ν > 1/2, we keep only
the first term; or more generally if for a natural number m we find 1/(m+ 1) < ν < 1/m, we
keep only the first m terms in the series. The special case where ν = 1/m must be accounted
for separately as the hypergeometric falls back on a logarithmic function. For instance, if
ν = 1/2, the integral becomes

n∗k ∼
µ√
k
exp

[
−
∫ k

1
ln
(

1 + µ√
m

)
dm

]
(2.64)

∼ µ√
k
exp

[
2µ2ln

(
µ+
√
k
)
− kln

(
1 + µ√

k

)
− µ
√
k + constant

]
, (2.65)

(2.66)

where the last two functions in the exponential can be treated as before, but the first term
modifies the power of k outside of the exponential (assuming

√
k � µ since 1 < µ < 2 for

0 < ν < 1). To summarize, the first interval 1/3 < ν < 1 is given by

n∗k ∼


k−νexp

[
−µk1−ν

1−ν

]
if 1/2 < ν < 1

k(µ2−1/2)exp
[
−2µ
√
k
]

if ν = 1/2

k−νexp
[
−µk1−ν

1−ν + µ2

2
k1−2ν

1−2ν

]
if 1/3 < ν < 1/2 .

(2.67)

These distributions all behave as stretched exponential (or power-law with strong cut-offs)
distribution. Finally, the normalization is once again obtained using Eq. (2.58) with, in this
case, a1 = 1.
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2.2.2.3 Supra-linear connection kernel (G(k) = kν with ν > 1)

A preferential attachment process with a supra-linear kernel leads to a rich-get-richer process
with increasing returns: meaning it is progressively easier for the rich to get richer. Simple
arguments can be shown to illustrate how this leads to a condensate phase where most,
if not all, links are attached to a single node. For instance, if the leading node is currently
connected to all other N−1 nodes, it will connect to the next introduced node with probability
(N − 1)ν/ [N − 1 + (N − 1)ν ]. Starting from the beginning, this leading node will maintain
its state indefinitely with probability

P =
∞∏
N=0

1
1 +N1−ν ' exp

[
−
∫ ∞

0
ln (1 +N)1−ν dN

]
' exp

[
−
∫ ∞

0
N1−νdN

]
(2.68)

which is a non-zero probability for ν > 2. For a more general description, we can directly
follow the Nk(t = k) as the probability of having a fully connected condensate (assuming the
leading node is present as an initial condition at time t = 0). Rewriting Eq. (2.44) specifically
for this state, using Nk(t) = 0 ∀k > t, yields

Nk(k) = (k − 1)ν Nk−1(k − 1)
K(k − 1) (2.69)

where K(k − 1) is the time dependent normalization factor (previously µt in the long-time
limit). Simplifying the description using the fact that N2(2) = 1, as there must be a node
with degree 2 when only three nodes are in the system, leads to

Nk(k) =
k−1∏
k′=2

(k′)ν

K(k′) (2.70)

with K(t) constrained by the lower bound tν , as no terms in the product can be higher than
one, and by the higher bound

K(t) =
t∑

k=1
kνNk(t) ≤ tν−1

t∑
k=1

kNk(t) ∼ tν (2.71)

as we know the normalization factor scales linearly with time for ν = 1 regardless of the
distribution at time t. Thus, K(t) ∼ tν . As K(t) is not strictly equal to tν , we can not
directly insert it in Eq. (2.70) and must instead iteratively solve Nk(t). We first concentrate
on the leading behaviour (i.e., leading power in t) for each Nk(t). First for N1(t), we write

Ṅ1(t) = 1− N1(t)
tν

⇒ N1(t) ∼ t (2.72)

as the first term in the rate equation governs the leading behaviour. Similarly for N2(t), we
find

Ṅ2(t) = N1(t)− 2νN2(t)
tν

= t1−ν − 2ν

tν
N2(t) ⇒ N2(t) ∼ t2−ν

2− ν . (2.73)
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Continuing this simple integration of the leading terms in each rate equation uncovers the
following pattern,

Nk(t) ∼

k−1∏
j=1

jν

1 + j (1− ν)

 tk−(k−1)ν . (2.74)

The first correction term can then be obtained by reintroducing N1(t) within the rate equa-
tions and now keeping two terms; for instance N1(t) ∼ t − t2−ν/ (2− ν). Further correction
terms could then be obtained by reapplying the procedure, i.e. N1(t) ∼ t − t2−ν/ (2− ν) +
t3−2ν/ [(2− ν) (3− 2ν)]− . . .

However, we now focus on the leading behaviour to highlight an interesting property. The
leading power of t given by Eq. (2.74) implies that Nk(t) becomes finite once k− (k−1)ν ≤ 0,
which occurs for degree k such that

(k − 1) ν ≥ k ⇒ k ≥ ν

ν − 1 . (2.75)

The key result here is that for (m+ 1)/m < ν < m/(m− 1) we have a finite number of nodes
with more than m links. These nodes thus constitute a condensate of the whole system as a
finite number of nodes will end up sharing an infinite number of links with infinitely many
new nodes. The finiteness of all Nk(t) beyond a certain degree also implies that the share
kmax of the leading node considered earlier, i.e. node Nk(k) or Nkmax(t), must scale linearly
with time (since the number of introduced links equals t).

2.2.2.4 Additional results and discussions on attachment kernels

The results of this section perfectly illustrate how the power-law organization is a critical state
of resource distribution; or, equivalently, how (linear) preferential attachment is a critical
growth process. As mentioned in the introduction, criticality refers to a property of systems
at phase transition. In the context of resource distribution, the two different phases (or
states) at play are a homogeneous or fair system on the one hand, and a condensate or unfair
winner-takes-all scenario on the other hand. Results obtained on linear and sub- or supra-
linear kernels are presented in Figure 2.8 to highlight the difference between phases and their
link with the different kernels.

A slightly different way of visualizing these different cases as different phases is to study the
moments of their respective resource distribution in the long-time or large-size limit (t→∞
or N → ∞). In the homogeneous case, all moments are well-defined. Whereas all moments
but the first (the average share 〈k〉 = (B + G)/B) will diverge in the condensate case. The
critical state is thus characterized by a tunable number of diverging moments (following the
tunable scale exponent).

The non-universality of the scaling exponent, i.e. its dependence on the model parameters, is
an essential feature of a general preferential attachment process as different scale-independent
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Figure 2.8 – Different kernels and phases for resource distribution. (left) Distribution obtained
using strictly linear, sub- and supra-linear connection kernels after the introduction of 50,000 nodes.
Note the condensate, or leading node, at around k =3,500 in the supra-linear case. Results are obtained
by iterating Eq. (2.44) with B = G = 1 and the appropriate kernel. (right) Kernels used for the left
figure: G(k) equal to k,

√
k and k2 for the linear, sub- and supra-linear cases respectively (or ν = 1,

1/2 and 2).

systems often show different scaling exponents. Modifying the connection kernel is one of two
general mechanism that allows us to tune the exponent to the desired value. The second in-
volves time-dependent birth and growth probabilities and will be studied in the next section.
For the moment, suffice it to say that the connection kernel can itself model more complicated
generalizations of the classic preferential attachment process. For instance, the ageing of sites,
and its consequent effect on sites’ attractiveness, has also been shown to affect and potentially
break the scaling behaviour [33]. Yet, share-age correlations and age-attractiveness correla-
tions can always be collapsed into a coherent kernel modification (or share-attractiveness
correlations); especially considering that nodes of equal shares are usually considered as in-
distinguishable.

2.2.3 Preferential attachment with time-dependent birth rate

In this section, we investigate the effect of a time-dependent birth rate [103]. To this end,
we will use Heaps’ law, first hinted at in Sec. 2.2.1.2, which states p(t) ∝ t−α with α ∈
[0, 1]. Using a linear preferential attachment and p(t) = t−α, we now wish to determine the
qualitative steady-state behaviour as a function of α. Rewriting the master equation, we get

N1(t+ 1) = N1(t)− 1− t−α

t
N1(t) (2.76)

Nk(t+ 1) = Nk(t) + 1− t−α

t
[(k − 1)Nk−1(t)− kNk(t)] for k > 1. (2.77)

As we are only interested in the scale exponent, we can get a rough estimate by approximating
both the time and the distribution as continuous. Basically, instead of looking for the ensemble
of solutions {Nk(t)}, we will look for an approximated continuous probability density P (x, t)
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(i.e. P (x, t) ∼ Nx(t)). Equations (2.76) and (2.77) become

P (1, t+ dt) = P (1, t) + dt

[
t−α − 1− t−α

t
P (1, t)

]
(2.78)

P (x, t+ dt) = P (x, t) + dt

[
1− t−α

t

(x− dx)P (x− dx, t)− xP (x, t)
dx

]
(2.79)

equivalent to the following differential equations

∂

∂t
P (1, t) = t−α − 1− t−α

t
P (1, t) (2.80)

∂

∂t
P (x, t) + 1− t−α

t

∂

∂x
[xP (x, t)] = 0 . (2.81)

We are interested in analysing the behaviour in x for t� 1. The solution for P (1, t) is readily
obtained if we keep only the leading temporal term, i.e.

P (1, t) ' At1−α (2.82)

where A is an arbitrary constant. The partial differential equation for the rest of the solution
is more problematic. As we are looking for a qualitative description of the spatial behaviour,
the methods of characteristics can be extremely useful here. We first rewrite it as

∂

∂t
[xP (x, t)] + x

1− t−α

t

∂

∂x
[xP (x, t)] = 0 . (2.83)

We now look for a parametrization of our function as Q(x(s), t(s)) = x(s)P (x(s), t(s)), such
that Eq. (2.83) is actually equivalent

d

ds
Q(x(s), t(s)) = ∂Q

∂t

dt

ds
+ ∂Q

∂x

dx

ds
= 0 . (2.84)

Comparing Eqs. (2.83) and (2.84) yields a characteristic systems of ODEs. We first get

dt

ds
= 1 ⇒ t = s (2.85)

setting t(1) = 1 as an initial condition (t = 0 is undefined). This in turn gives

dx

ds
= x

1− s−α

s
⇒ x = x(1)t · exp

[(
t−α − 1

)
/α
]
. (2.86)

The last ODE is
dQ

ds
= 0 , (2.87)

with initial condition Q(x(1), 1) = Ψ(x(1)) where Ψ is an unknown function. This provides a
general parametrization of the unknown solution if we solve for x(1) in Eq. (2.86):

Q(x(t), t) = Ψ(x(1)) = Ψ
(
x

t
exp

[
−t−α/α

])
. (2.88)
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In terms of our original probability density function, we have

P (x, t) = 1
x

Ψ
(
x

t
exp

[
−t−α/α

])
. (2.89)

which becomes for large t
P (x, t) ∼ 1

x
Ψ
(
x

t

)
. (2.90)

Inspection of the solution Eq. (2.82) for P (1, t) provides the form of Ψ, so that we finally get

P (x, t) ∝ xα−2t1−α ⇒ Nk(t) ∝ k−γ with γ = 2− α ∈ [1, 2]. (2.91)

In the next chapter, we will determine that within our general framework a scaling exponent
between 1 and 2 directly implies some sort of temporal scaling in the birth rate. Moreover,
we will introduce a coupling between the time-dependent birth rate and possible non-linear
deviations in the attachment kernel.
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Chapter 3

On growth I: Universal growth constraints of
human systems

Résumé

L’indépendance d’échelle est une propriété universelle des systèmes complexes qui implique
une organisation extrêmement inhomogène. La recherche s’attarde depuis longtemps à expli-
quer pourquoi des systèmes aussi variés que l’évolution, les interactions entre protéines, ou
les actions en bourse, posséderaient tous cette indépendance d’échelle. Nous prenons plutôt
le chemin inverse: nous supposons la présence de ce comportement et visons à expliquer
comment il émerge, en contraste avec les modèles simplifiés jusqu’ici considérés.

Dans ce chapitre, nous montrons qu’un système dont la distribution de ressource croît vers
l’indépendance d’échelle est assujetti à des contraintes temporelles strictes: la première étant
l’attachement préférentiel et la seconde une nouvelle forme générale de comportement d’échelle
temporel à délai. Ce délai agit comme un couplage entre les deux contraintes, ou plus précisé-
ment, entre la croissance de la population totale et la croissance des ressources d’un individu.
Ces contraintes forment des trajectoires temporelles si précises que même une image instan-
tanée d’une distribution est suffisante pour reconstruire son passé et prédire son futur. Nous
validons notre approche sur plusieurs sphères d’activités humaines, de la productivité scien-
tifique et artistique aux relations sexuelles et activités en ligne.
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Summary

Scale independence is a ubiquitous feature of complex systems which implies a highly skewed
organization with no characteristic scale. Research has long focused on why systems as varied
as protein networks, evolution, and stock actions all feature scale independence. Assuming
that they simply do, we focus here on describing exactly how this behaviour emerges, in
contrast with the more idealized models usually considered.

In this chapter, we show that growing towards scale independence implies strict constraints:
the first is the well-known preferential attachment principle and the second is a new general
form of delayed temporal scaling. The delay acts as a coupling between the two constraints
or, equivalently, between population growth and individual activity. These constraints pave a
precise evolution path, such that even an instantaneous snapshot of a distribution is enough
to reconstruct the past of the system and predict its future. We validate our approach on
diverse spheres of human activities ranging from scientific and artistic productivity, to sexual
relations, and online traffic.

3.1 Introduction

Human systems are often characterized by extreme inequalities. One may think of the distri-
bution of wealth between individuals, the sizes of cities, or the frequencies of sexual activities
to name a few [96, 104, 24, 78, 18]. Interestingly, inequality often tends to manifest itself
through a scale-independent behaviour [96, 104, 24, 78, 18, 102, 92, 12, 56, 11, 10, 23]. In
layman’s terms, these systems are said to be scale-independent because of the absence of a
characteristic scale. Taking the distribution of wealth as an example, the worldwide average
income is meaningless because the variance is too wide. Neither the very poor nor the very
wealthy can be reduced to average individuals; the former are too numerous while the latter
are absurdly richer than the average.

Mathematically, this behaviour takes the form of a power-law distribution. That is, the
number Nk of individuals having a share k (e.g. personal income or sexual partners) of the
total resource K (total wealth or sexual activities) roughly follows Nk ∝ k−γ . One of the first
robust observations of scale-independent systems concerns the distribution of occurrences of
individual words in prose [104] as illustrated in Fig. 3.1(left).

In this chapter, we build upon two general premisses to describe the growth of scale-independent
systems. Firstly, we assume that the underlying distribution roughly follows Nk ∝ k−γ such
that a power law is an adequate approximation for all k (with γ > 1 for normalization in the
asymptotic limit). Secondly, we follow the distribution of a resource or property that can only
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Figure 3.1 – Scale independence, preferential attachment and delayed temporal scaling
in prose samples. (left) Power-law distribution of word occurrences in the writings of authors in
three different languages. Power law with scale factor γ = 1.75 is plotted to guide the eye. Actual
scale exponents are estimated[28] at 1.89 for Goethe, 1.76 for Cervantes, and 1.67 for Shakespeare.
(middle) Preferential attachment in written text with a linear relation for comparison. The algorithm
to obtain G(k) is given in Sec. 3.4. (right) Average birth function for samples of 1000 words, this
procedure is based on the translational invariance [17] of written texts and yields better statistics. Fits
of Eq. (3.17) are overlaid using [α, τ, b] equal to [0.22, 31, 0], [0.25, 15, 0] and [0.28, 25, 0] (with a fixed
by p(1) = 1)for Goethe’s, Cervantes’ and Shakespeare’s writings respectively. This asymptotic scaling
is related to what is generally known as Heaps’ law of vocabulary growth in linguistics [54], but is
given here a much more general expression for all t.

increase or stagnate, namely the total activities of an individual (both past and present).

We use diverse databases to validate our approach: scientific productivity of authors on the
arXiv e-print archive (arXiv), one month of user activities on the Digg social news website
(Digg) [70], productivity of actors on the Internet Movie Database (IMDb), sexual relations in
a Brazilian escort community (sexual) [30] and the writings of William Shakespeare, Miguel
de Cervantes Saavedra and Johann Wolfgang von Goethe.

3.2 Results

Let us consider the growth of a hypothetical system where each individual i possesses a share
ki(t) of the total resource K(t) at time t. Because the system is constantly growing, both in
terms of its total population N(t) and of each individual’s share, time can be measured as the
total number of events. These events can take one of two forms: birth events which increase
the total population N(t + 1) = N(t) + 1 by adding a new individual j with kj(t) = 1; and
growth events which imply ki(t+ 1) = ki(t) + 1 for a given individual i.

We then introduce two functions: a birth function p(t) that prescribes the probability that
the t-th event is a birth event, and a growth function G(k) that describes the average chances
(unnormalized probability) for an individual with current share k of being involved in the next
growth event. Assuming that individuals with the same share are indiscernible, the average
share ki of an individual i can be followed through a mean-field model:

ki(t+ 1) = ki(t) + [1− p(t)] G (ki(t))∑
j G (kj(t))

(3.1)
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Consequently, the probability that a growth event involves any individual of current share k
is given by Nk(t)G(k)/

∑
k′ Nk′(t)G(k′) where Nk(t) is the number of individuals with share

k at time t. This yields the following master equation (for k ∈ N):

Nk(t+ 1) = Nk(t) + p(t)δk,1 + [1− p(t)] Nk−1(t)G(k − 1)−Nk(t)G(k)∑
mNm(t)G(m) (3.2)

with N0(t) = 0 ∀t. For this model to be of any use, at least partial knowledge of G(k) and p(t)
is required. Setting G(k) = k and a constant p(t), we retrieve the classic linear preferential
attachment process [92]. However, our goal is to investigate the constraints imposed by the
scale independence, Nk(t) ∝ k−γ , on the functional forms of both p(t) and G(k) as well as
the coupling between the two.

The next two sub-sections are more technical in scope, but necessary to delineate the func-
tional forms that will constitute the basis of the following study. Although our analysis is
based on asymptotic arguments, and therefore approximate, we will demonstrate that the
following expression,

p(t) = a(t+ τ)−α + b (3.3)

together with G(k) ∼ k and the model of Eq. (3.2), captures the essence of the growth of
diverse human activities. The form of G(k) ∝ k, at least for k greater than a certain bound
k∗, is not new, but emerges naturally from our premisses. As we will see shortly, the temporal
dependence of p(t) is inherent to the growth towards scale independence and is coupled to
the behaviour of G(k) at small k through the parameter τ .

3.2.1 The growth function

The behaviour of the growth function G(k) can be constrained by an argument presented by
Eriksen and Hörnquist [42]. We wish to obtain G(k) solely on the basis of Eq. (3.2). Instead
of measuring G(k) directly by looking at what leaves Nk(t), we can equivalently look at what
arrives in the states k′ > k during the time step t → t + 1. We write this as the difference
between what is in k′ > k at t + 1 [i.e.

∑∞
i=k+1Ni(t + 1)] and what was in k′ > k at time t

[i.e.
∑∞
i=k+1Ni(t)]. We substitute Ni(t+ 1) with Eq. (3.2) and sum over all k′ > k:

∞∑
i=k+1

[Ni(t+ 1)−Ni(t)] =
∞∑

i=k+1

{
p(t)δi,1 + [1− p(t)] Ni−1(t)G(i− 1)−Ni(t)G(i)∑

mNm(t)G(m)

}

= [1− p(t)] Nk(t)G(k)∑
mNm(t)G(m) . (3.4)

This last expression can be interpreted as two measures of the activity in compartment Nk(t)
between t and t+1. The left-hand side measures the mean number of arrivals in compartment
Nk′(t) with k′ > k; i.e. the mean number of individuals which left compartment Nk(t).
The right-hand side is explicitly the ratio of the activity involving the k-th compartment,
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Nk(t)G(k), to the total growth activity,
∑
mNm(t)G(m), times the probability, 1− p(t), that

a growth event has occurred during the time step. From this equivalence, G(k) is readily
obtained from Eq. (3.4):

G(k) =
∑
mNm(t)G(m)

1− p(t)
1

Nk(t)

∞∑
i=k+1

[Ni(t+ 1)−Ni(t)] . (3.5)

For k � 1, we can replace the sum by an integral, and using our only hypothesis, i.e.
Nk(t) = A(t)k−γN(t), where A(t) is a normalization factor, we find:

G(k) '
∑
mNm(t)G(m)

1− p(t)

[
A(t+ 1)N(t+ 1)−A(t)N(t)

A(t)N(t)

]
k

γ − 1 . (3.6)

All factors independent of k are of no concern, since G(k) only makes sense when comparing
the relative values for different k. Hence, at any given time t, we finally obtain:

G(k) ∝ k (3.7)

at least for values of k higher than an appropriate lower bound. This linear relation between
the probability of growth of an individual and its present size, preferential attachment, is
a recurrent feature in scale-independent growth models [102, 47, 24, 92, 12, 56]. This sim-
ple derivation states once again that a scale-independent growing system implies a linear
preferential attachment. See Fig. 3.1(middle) for examples.

In recent years, the idealized preferential attachment process, using G(k) = k and p(t) = p,
has been analysed to great lengths. Most studies have been concerned with the application
of this process to network growth [34, 13] and have focused on solving the resulting network
structure [67, 36], describing the statistics of leading nodes [66], finite-size effects [9], and its
relation to other properties of complex networks such as their modular and self-similar nature
[57].

3.2.2 The birth function

A time-varying birth rate p(t) has been considered before, either in ad hoc manner [92, 103]
or in a specific context [46] based on empirical observations in, for example, written texts
[54] or human mobility [22]. Instead of investigating how a given p(t) might influence the
distribution of resource in the system, we investigate how a given distribution of resource
informs us on the actual p(t) of that system. In doing so, the hope is to provide a more
general framework for understanding how and why scale-independent organization implies
scale-independent growth.

In our model, the birth function has two important roles. First, it is equivalent to the time
derivative Ṅ(t) of the population N(t); and second, it constrains the growth of the largest
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share kmax(t). Two relations can be called upon to connect N(t) and kmax, and obtain a
consistent functional form for p(t).

The first relation is the extremal criterion [67]:
∫∞
kmax(t)Nk(t)dk ∼ 1, intuitively meaning that

the number of individuals with a maximal share is of order one. To simplify the analysis,
we will assume that kmax(t) � 1, such that the normalization A(t) =

[∑kmax(t)
1 k−γ

]−1
has

converged to a constant A∗. We thus use Nk(t) = A∗N(t)k−γ in the extremal criterion and
solve for N(t):

N(t) ∼ γ − 1
A∗

kγ−1
max(t) → N(t)

Ṅ(t)
= kmax(t)

(γ − 1) k̇max(t)
. (3.8)

Note that keeping the temporal dependence of A(t) yields the same result for the leading
temporal term. The second important relation stems from our definition of time t (in number
of events or resource K) such that K̇(t) = 1. We write

K̇(t) = d

dt

kmax(t)∑
m=1

mNm(t) = d

dt

[
k∗∑
m=1

mNm(t) +
∫ kmax(t)

k∗
mNm(t)dm

]
= 1 (3.9)

where k∗ is an appropriate bound for the integral approximation of the sum. Again, using
Nk(t) = A∗N(t)k−γ , we obtain

A∗Ṅ(t)
[
C + 1

2− γ k
2−γ
max(t) + N(t)

Ṅ(t)
k1−γ

max(t)k̇max(t)
]

= 1 , (3.10)

where C is a constant collecting all terms independent of t. Replacing N(t)/Ṅ(t) with
Eq. (3.8) allows us to solve for Ṅ(t) [i.e. p(t)]:

p(t) = Ṅ(t) = (2− γ) (γ − 1)
A∗

1
C (2− γ) (γ − 1) + k2−γ

max(t)
(3.11)

If γ ∈ (1, 2), k2−γ
max(t) is the leading term and p(t) decreases as kγ−2

max(t); if γ > 2, k2−γ
max(t)

becomes negligible and p(t) is essentially governed by the first two terms of the ensuing
geometric series. We can summarize these results, obtained only by assuming Nk(t) ∝ k−γ

and kmax(t)� 1, under a general form:

p(t) ∝

k
γ−2
max(t) if 1 < γ < 2

k2−γ
max(t) + constant if γ > 2 .

(3.12)

The remaining step is to establish the time dependence of kmax(t) to obtain the explicit
temporal form of p(t). In line with our asymptotic arguments, as kmax(t) increases beyond
an appropriate bound k∗, Eq. (3.1) can be rewritten as

kmax(t+ 1) =
[
1 + 1− p(t)

κ (t+ τ)

]
kmax(t) . (3.13)
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The denominator represents the asymptotic behaviour of the normalisation of growth proba-
bilities. One can in fact verify that the sum converges to a linear function of time such that
G(k)/

∑
kG(k)Nk(t) = [κ(t+ τ)]−1 for t� 1, irrespectively of the initial behaviour of G(k).

This initial behaviour can however offset the value of the sum by a constant, encapsulated in
the factor κτ .

Equation (3.13) determines the derivative in the limit of large t:

d

dt
kmax(t) = 1− p(t)

κ (t+ τ)kmax(t) . (3.14)

Since p(t) is limited to the range [0, 1] we can write, without loss of generality, p(t) = f(t) + b

where b is the asymptotic value of p(t). This form yields the exact solution:

kmax(t) = C1(t+ τ)(1−b)/κexp
[
−
∫ t

t∗

f(t′)
κ (t′ + τ)dt

′
]

(3.15)

where t∗ is an appropriate lower bound such that Eq. (3.14) is applicable. As f(t) is bounded,
the exponential factor converges rapidly to one and we find the general solution for large t:

kmax(t) = C1(t+ τ)(1−b)/κ . (3.16)

Inserting Eq. (3.16) in Eq. (3.12), we obtain a functional form for the birth function:

p(t) ' a (t+ τ)−α + b , (3.17)

where we identify α = (2− γ)/κ for 1 < γ < 2 and α = (γ − 2) (1− b) /κ for γ > 2. The first
confrontation of Eq. (3.17) with empirical data is displayed in Fig. 3.1(right).

Before we describe in the next sub-section the procedure adopted to optimise the parameters
[α, τ, b] (the parameter a is fixed by population size) on actual data, a few comments appear
necessary. These three free parameters do not overparameterize the function. Two of them, α
and b, govern the scale exponent in the two fundamentally different regimes γ < 2 and γ > 2
respectively, while the delay τ embodies an intrinsic coupling between population growth and
individual growth. For instance, a large value of τ expresses the fact that the system features
strong diminishing returns on growth for small k (concave G(k)). To a lesser extent, κ plays
a similar role, but combined with other temporal (b) and organizational (γ) features within
α. Moreover, from the asymptotic nature of our derivation, it is not to be expected that the
relations between the exponents α and γ should be strictly observed. However, the results of
Fig. 3.1 (see the numerical values in the caption) indicates that it is nearly true for the three
prose samples studied (cases with b = 0) : the observed 2−κα = 1.80, 1.76, 1.72 are close to the
inferred estimates of γ = 1.89(4), 1.76(3), 1.67(8) respectively. For the cases where b 6= 0, the
classical preferential attachment (CPA) limit (G(k) = k and p(t) = b) of our model dictates
that the asymptotic scaling exponent should be γCPA = (2 − b)/(1 − b). Since the data will

53



seldom have reached their asymptotic regime, deviations will be recorded and the connection
between α and γ will be partly lost. To obtain asymptotic results for growth functions that
are not strictly linear for all values of k, one must study each scenario on a case-by-case
basis [67, 36]; estimating κ alone requires the integration of the model. Nevertheless, despite
the absence of exact expressions for p(t) and G(k), the flexibility of the derived functional
form will provide a useful and versatile parametrization of the complete temporal evolution
of empirical data. The results of the next sub-sections confirm this assertion.

3.2.3 Reconstructing the past

The model based on Eq. (3.2) may now be used to replicate the growth of empirical distribu-
tions. Our objective is in part to verify the presence of constraints on the birth, Eq. (3.17),
and growth, Eq. (3.5), of individuals; but also to use these constraints to determine the past
and future of different systems solely from a snapshot of their present distribution.

Our model consists of iterating Eq. (3.2) for all k, with a given combination of p(t) and G(k),
until time t reaches the total resource, K, of the system’s present state. Hereafter, we do not
at any point show actual fits of the temporal data, but instead find the optimal combination
of p(t) and G(k) that minimizes the error produced by Eq. (3.2) when modelling the present
state of a given system.

A simple analogy will clarify first the strategy behind our optimisation procedure. We are
given a semi-infinite vertical chain of buckets. At the bottom of each one we drill a small
hole of various width such that the k-th bucket has a hole of size G(k). The first bucket, at
the top of the chain, is placed under a dripping faucet whose flow is controlled in time by the
function p(t). Our goal is to adjust both the flow of the water p(t) and the width of the holes
G(k) in order to reach a target quantity Ñk(tf ) of water for each bucket k after a time tf .
This target quantity is itself produced by a hidden p̃(t) and G̃(k). Since the function G(k)
has an infinite number of degrees of freedom, this means that for almost any p(t) we could
find a G(k) respecting the target distribution. However, if the chosen p(t) is very different
from p̃(t), the obtained G(k) will also differ from G̃(k). Therefore, we constrain p(t) first,
having a few degrees of freedom, before optimizing G(k) accordingly.

The quality of our model representation [p(t), G(k)] is assessed by counting the number of
individuals {Nk(tf )} (or water drops) assigned to the wrong share k (or the wrong bucket)
with respect to the empirical state {Ñk(tf )},

∆ [p(t), G(k)] = 1
2
∑
k

|Ñk(tf )−Nk(tf )| . (3.18)

A number of points are worth mentioning. Firstly, the measure ∆, based on absolute errors,
was chosen over, say logarithmic or cumulative errors, because of its robustness to the tails
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Figure 3.2 – Parameter sweep. Quality of our ability to model the growth of the database of
sexual activities with G(k) = k and various p(t). The quality measure is given by 1/∆ (see Eq. 3.18)
and its maximal values are indicated with a dotted line at 1/∆ = 62.68 corresponding to 1.6% of
misassigned shares ki(tf ) at α = 0.53, τ = 3600 and b = 0. Note that these figures are projections of
a 3 dimensional fitness landscape.

of the distributions where the finite-size data falls to a non-zero value (∝ N(tf )−1) while
the mean-field model falls to zero. Secondly, although minimisation of ∆ (or optimisation
of [p(t), G(k)]) is conducted on the sole knowledge of the present state of the system, i.e.
{Ñk(tf )}, our model completely reconstructs its pre-history. Thirdly, while the search for
the optimal parameter values of p(t) seems a daunting enterprise, a number of internal and
empirical restrictions on p(t) constrains the quest: i. since p(t) ∈ [0, 1] ∀ t, b ∈ [0, 1] and
therefore −b ≤ a(t + τ)−α ≤ (1 − b); ii. since p(t) = Ṅ(t) by definition, the total empirical
population Ñ(tf ) can serve as normalisation, removing one degree of freedom:

a = Ñ(tf )− btf
(tf + τ)1−α − (1 + τ)1−α (1− α) . (3.19)

Because a can be positive or negative, our model can just as well describe a growing or
decreasing birth function. Finally, the optimisation procedure is carried out in two stages: i.
a close set of optimal triplets [α, τ, b] are obtained by scanning parameter space to minimise ∆
while maintaining initially G(k) = k (Fig. 3.2 presents an example of this parameter scan); ii.
the growth function G(k) is allowed to vary under the newly acquired best possible p(t) and
constrained by the empirical data {Ñk(tf )}. Details of the algorithm are given in Sec. 3.4.
Based on the quality of the obtained model [p(t), G(k)], no further optimisation was found
necessary.

While the systems studied in Fig. 3.3 vary in nature, age and distributions, our results in-
dicate that they follow qualitatively the same evolution, and confirm the presence of both a
delayed regime of temporal scaling and preferential attachment in all cases. Point estimates
(Maximum-Likelihood Estimation (MLE) over the binary sequence of birth and growth events,
see Sec. 3.4) of the relevant parameters are given on Table 3.1 and are visually compared with
our model in Fig. 3.3(left). The behaviours extracted by our model from static distributions
(without temporal data) are thus shown to be good estimates of the best possible fits to the
actual temporal data.

Because of the form p(t) = a(t+τ)−α+b, the complementary probability (i.e. the probability
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Figure 3.3 – Temporal scaling and preferential attachment in human systems. From left
to right: birth function with temporal scaling of the form a(t + τ)−α + b; growth function with
asymptotic preferential attachment; scale-independent distributions. (left) The orange curves represent
birth functions leading to predictions within 25% of the minimal error between model and empirical
data (present state only). The empirical black curves are presented solely for comparison as no
temporal data is needed for our reconstruction of the past. Likewise, Maximal-Likelihood Estimates
(MLE) of p(t), calculated with the actual sequence of birth and death events are shown in blue to
highlight the accuracy of our model. (middle and right) Growth functions and present distributions:
only the curves with the absolute minimum error are shown. The systems are, from top to bottom:
distribution of papers per author in the arXiv [N(tf ) = 386, 267 at tf = 1, 206, 570], votes per user
on Digg [N(tf ) = 139, 409 at tf = 3, 018, 197], movies per actor on IMDb [N(tf ) = 1, 707, 525 at
tf = 6, 288, 201] and relations per individual in the sexual data [N(tf ) = 16, 730 at tf = 101, 264].
The methodology to measure the empirical birth and growth functions is presented in Sec. 3.4.
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Table 3.1 – MLE point estimates of parameters using the empirical sequence of birth and growth
events.

system arXiv Digg IMDb sexual
α 0.58 0.95 0.46 0.60
τ 12, 066 60, 364 6, 288, 202 3, 038
b 0.240 0.012 0.976 0.072

that the t-th event is a growth event) has the same form with a′ = −a and b′ = 1−b. This fact
is highlighted with the case of IMDb in Fig. 3.3 and is consistent with our analysis where the
constant a (but not b) can be negative. Furthermore, notice that IMDb is not only the sole
system for which p(t) is an increasing function, but also the only system for which G(k) has
initially a non-linear behaviour, and consequently a large τ . This confirms our interpretation
of the role of τ as a coupling between population growth, p(t), and individual growth, G(k).
With hindsight, this initial regime of the IMDb growth function probably corresponds to the
so-called star system: actors with little experience are far less likely to be chosen for a role
than experienced actors, but the first few movies in a new actor’s curriculum are also far more
important than the n-th in the career of a well-established star. This influences the intro-
duction rate of new actors to preserve the system’s scale independence. This interpretation
is somewhat speculative, yet the fact remains that these effects are observed in the temporal
data and that our model is able to extract them solely from the present distribution.

With the exception of one much smaller system (sexual data), the quality of our reconstruction
of the past is surprisingly good considering that it requires no temporal data whatsoever. For
instance, the Digg user activity distribution led us to determine with very high precision that
25% of votes are due to new users 12 hours into the month, whereas this proportion falls
below 2% by the end of the month.

Our ability to infer the birth function based on a single snapshot also implies that we can
distinguish between systems close or far from equilibrium (i.e. their statistical steady-state).
For all investigated cases, both the inferred and observed p(t) agree that none of these sys-
tems have reached their asymptotic b value. In the Digg database, it is even unclear if this
value exists at all. In other systems, it is interesting to discern whether the distribution is
approaching its asymptotic scale exponent γ from above (less heterogeneity) or below (more
heterogeneity). For instance, the sexual database describes a network for which the first two
moments of the activity distribution determine whether or not the introduction of a given sex-
ually transmitted infection will result in an epidemic [48, 62]. These moments being defined
by the scale exponent, our ability to describe the system’s approach to equilibrium directly
translates in an ability to determine which infection could invade the network.

More generally, this idea leads to a crucial point. The results confirm that our model embodies
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Figure 3.4 – Prediction of present state from a snapshot of a past distribution. The model
uses only the distribution at ti = 0.3tf (IMDb) and ti = 0.1tf (Digg) of the system’s history (in blue)
to reconstruct the past (i.e. the birth and growth functions) and predict the future (in orange) of the
database (in black). (top) Past, present (actual and predicted) distributions. (bottom) Relative change
of each compartment Nk measured as [Nk(tf )−Nk(ti)] /Nk(ti); where Nk(tf ) is either the actual
distribution or a prediction. For comparison, a prediction using the classic preferential attachment
model [92, 56] is shown in green.

intrinsic constraints of scale independence. These constraints appear to clearly define the
possible paths that a system can follow. A snapshot of its present state is then sufficient to
determine where it comes from and where it is heading. This naturally leads to a second
question: can we use the reconstructed past of a system to predict its future?

3.2.4 Predicting the future

To turn our model into a predictive tool is a simple matter. We first eliminate the statistical
fluctuations present in the reconstructed growth function. It is reasonable to assume that
these fluctuations stem not from the form of the growth function itself but merely from the
system’s finite size and the stochastic nature of the dynamics. The fluctuations are eliminated
by applying a linear fit to the asymptotic behaviour of the reconstructed G(k). A prediction
can then be obtained by iterating Eq. (3.2) from a chosen present state to a desired future
time.

We apply this predictive model to the largest databases, i.e. actor productivity in the IMDb
and user activities on Digg. The results are shown in Fig. 3.4(top). By using the activity
distribution on Digg after only three days (again without any temporal data, only the current
activity distribution per user), we can extrapolate the distribution over the period of a month.
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Figure 3.5 – Robustness (and sensitivity) of the mechanism and model. (left) The growth
function inferred on the full IMDb dataset (orange), as shown in Fig. 3.3, is compared with the function
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to classical preferential attachment: p(t) = 〈p(t)〉 and G(k) = k. With IMDb’s growth function,
the minimum distance (the most power-like behaviour) is indicated with the vertical dotted line at
6.25× 106 (±2.5× 105) in close agreement with the MLE values of Table 3.1. (right) Examples of the
distributions obtained with different values of τ are compared to the classical preferential attachment
(CPA) which ignores the system’s intrinsic G(k) by using G(k) = k. The color code follows the color
coded dots of the middle figure.

In contrast, assuming a constant birth rate (as in classical preferential attachment [92, 12, 56])
leads to a predicted final population of 475,000 users. Our model correctly compensates for
repeated traffic and predicts a population of 115,000 users, closer to the correct value of
139,000 and missing only some sudden bursts of new user influx. This observation embodies
the strength of our model and the importance of a time dependent birth rate. Similar results
are obtained for actor productivity on the IMDb. Remarkably, we reproduce the state of
the system at year 2012 from its state at year 1974. Given that extrapolation is a delicate
procedure, it seems not unlikely that these agreements are not coincidental. As a comparison,
the classical preferential attachment model shown in Fig. 3.4(bottom) is incapable of discern-
ing whether the scaling exponent of a system is increasing or decreasing with time. Since
the classic model ignores the temporal dependency introduced here, our results highlight the
importance of linking the temporal and organizational features of complex systems.

It could be argued that the growth function should more generally depend on time to include
potential changes in mechanisms. However, our ability to predict the future with a time-
independent growth function seems to rule out, at least in the cases studied, the necessity
for a temporal dependence. In fact, Fig. 3.5(left) compares the growth function inferred from
the IMDb using only records before 1974 and before 2012. While the dataset has more than
tripled in size during these 40 years, the inferred growth functions do not significantly differ
from one another, thereby explaining the quality of our results shown in Fig. 3.4. This also
implies that although the growth function has an influence on the time dependency of the
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dynamics (through the coupling parameter, or delay, τ), it does not itself depend on time.
This is particularly surprising considering that the movie industry has changed dramatically
between these two snapshots. One recalls that 1975 saw the rise of the Blockbuster era follow-
ing the release of Steven Spielberg’s Jaws [75]. The following change in movie making did not
affect the dynamics of the system, which suggests that the growth function may be intrinsic to
the considered human activity and robust to environmental or societal changes. The growth
function of Digg is similarly robust through time as the dataset spans a single month of ac-
tivity. While generalizations of our model could be considered, with growth functions varying
in time or across individuals [19], the apparent time independence of the growth function
is surely worthy of future investigations. Contrariwise, were the mechanism(s) of a system
growth function to change over time, this would reflect immediately in our inability to predict
the future and would precisely be an indication of changes in the underlying mechanism(s).
Hence, even if it was to fail, this model would offer significant insights.

3.2.5 Coupling between the growth function and the temporal delay

An important insight of the previous analysis states that the delay τ embodies an inherent
coupling between the growth function G(k) and the birth function p(t) to ensure robust scale
independence. Put differently, any non-linearity of G(k) for small k should be compensated
by the temporal delay τ if the system is to be roughly scale-independent even for small time
t.

In order to examine this assertion, we make the following experiment. We use IMDb’s growth
function as it is highly non-linear for small k, and test the plausibility of a power law fit to
the model for different p(t). We fix the temporal scaling α to IMDb’s 0.55 0.55, and we fix
the value of a and b by setting both p(1) and the average 〈p(t)〉 (for t ∈ [1, 5 × 106]) also to
that of IMDb. The only parameter allowed to vary freely is the temporal delay τ . Hence,
we always have the same population growing with the same growth function for the same
number of time steps, and starting with the same initial birth rate but with different delays
τ between the initial and final regime of p(t).

We then iterate Eq. 3.2 with each p(t) to obtain the distribution Nk/N from which we ran-
domly generate ten populations of size N(t) to emulate a real system of finite size. The
generated data is then fitted to a power-law distribution with the method of Clauset, Shal-
izi and Newman [28]. The quality of the power-law hypothesis is finally measured with the
distance between the fitted power-law distribution N∗k/N and the original distribution Nk/N

obtained from the model. This distance D is calculated through the Jensen-Shannon diver-
gence of the two distributions and averaged over the ten generated populations, see Sec. 3.4
for details. This approach provides an estimate of how surprising it would be for a sample
obtained from our distributions to have been produced by an actual power-law distribution.
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The results highlight that, given IMDb’s growth function, the particular p(t) which was
observed in the temporal data of IMDb and obtained from our algorithm is the most robust
way for this system to grow towards scale independence. In other words, the p(t) observed
in the IMDb effectively compensates the non-linear deviation observed in its growth function
in a way that ensures a fast convergence to scale independence. Figure 3.5(right) illustrates
this, comparing three distributions obtained with different p(t) with the classical preferential
attachment ([p(t) =< p(t) >,G(k) = k]). The distribution obtained with the optimal solution
(τ = τc) is clearly already ahead of the other, and not so far from the CPA, on the path to
scale independence.

In a nutshell, this simple experiment adds further strength to the validity of our theoretical
framework, and reasserts one of its important conclusions: arbitrary growth rules do not
all lead to scale independence, and certainly not all at the same speed. Finally, while we
confirmed our theoretical insights and our ability to use them in practical applications, the
mechanisms by which p(t) might self-organize in these systems to assure scale independence
remain unknown.

3.3 Discussion

In this study, instead of directly studying the classical preferential attachment model, we have
derived a more general form from the simple assumption that a power-law distribution is a
good approximation of a distribution of interest. Our general model differs from the classic
idealized version in two ways: the growth (or attachment) function is given some flexibility
in its initial behaviour, only required to be asymptotically linear; and the birth function is
time dependent through a delayed temporal scaling. This delay acts as a coupling between
two levels of dynamics: the growth of the population and the growth of a given individual’s
activity.

This general model is both flexible and constrained enough to be useful. In fact, we have shown
that a three dimensional parameter space (temporal scale exponent, delay and asymptotic
birth rate) is sufficient to infer the past and future of a present distribution.

It is important to keep in mind that our analysis is in no way restricted by the nature of the
systems under study. Considering that scale-independent systems are ubiquitous in science
and everyday life, but that temporal data on their growth is seldom available, our framework
provides a new investigation line to reconstruct their past and to forecast their future.
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3.4 Appendix 3.A: Methods

3.4.1 Description of databases

Prose samples. Text files for the works of William Shakespeare, Miguel de Cervantes
Saavedra and Johann Wolfgang von Goethe were downloaded from the Project Gutenberg at
www.gutenberg.org/. Punctuation marks and Project Gutenberg disclaimers were removed
from the files manually.

While not a human system, but certainly a man-made one, these prose samples were used
to get better statistics on the birth function. While human systems are unique and time
dependent, written texts feature a translational invariance [17]. This property allows us
to gain better statistics of their growth by considering multiple samples of equal length as
different realizations of the same process.

Time t and resource K(t) correspond to the total number of written words. Individuals
correspond to unique words and their share ki(t) to their number of occurrences.

Scientific authorships on the arXiv. This database consists of a chronological list of all
author names appearing on papers of the arXiv preprint archive (in order of publication date).
It was compiled using the arXiv API to gain a full list of scientific publications available from
http://arxiv.org/ as of April 2012.

Time t and resource K(t) correspond to the total number of paper authorships. Individuals
correspond to authors and their share ki(t) to their number of publications.

Digg user activities Digg (http://digg.com/) is a social news website where registered
users can vote on news or other types of articles that they deem interesting. This database
is a list of all user votes on top stories (frontpage) over a period of one month in 2009 [70].

Time t and resource K(t) correspond to the total number of votes. Individuals correspond to
registered users and their share ki(t) is their respective number of votes.

IMDb castings The Internet Movie Database (http://www.imdb.com/) consists of an im-
pressive amount of cross referenced lists (released films, cast and crew, etc.). These databases
can be accessed or downloaded in various ways: see http://www.imdb.com/interfaces for
details. From the list of actors featured on IMDb, which records all movies in which they have
appeared, and the list of movie release dates, we built the chronological sequence of ‘castings’.

Time t and resource K(t) correspond to the total number of castings (a given actor playing
in a given film). Individuals correspond to unique actors and their share ki(t) is the total
number of films in which they have appeared.
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Sexual activities in a Brazilian community This database was built from a public online
forum for male clients who evaluate relations with female prostitutes [30]. After preliminary
results using the client and prostitute databases separately, we concluded that it was not
necessary to distinguish between the two. The simplified database is thus a list of unique IDs
corresponding to either a client or a prostitute, in chronological order of sexual relations (at
time of online posting).

Time t and resource K(t) correspond to the total number of such IDs (twice the total number
of relations). Individuals correspond to unique IDs (either client or prostitute) and their share
ki(t) is their respective number of relations.

Table 3.2 – Summary of database sizes and quantities.

Quantities prose arXiv Digg IMDb Sexual
Individuals unique words authors users actors clients/prostitutes
N(tf ) 502 on average 386,267 139,409 1,707,565 16,730
Resource written words papers votes castings sexual activities
K(tf ) = tf cut at 1000 1,206,570 3,018,197 6,288,201 101,264

3.4.2 Measuring the birth function

Prose samples The translational (or temporal) invariance of written text implies that we
can consider different samples of equal length from the same author as different realizations
of the same experiment. The files were thus broken into samples of equal length and analysed
separately. Each experiment can be reduced to a binary sequence of ones (when the word
is a new word; i.e. a birth event) and zeros (when the word is an old one; a growth event).
The birth function p(t) of a given author can then be obtained by simply averaging all binary
sequences.

Other systems In the other systems, since preliminary tests excluded the possibility of
temporal invariance, a different procedure was used. The simplest one is to merely apply
a running average on the binary sequence of birth and growth events. We used temporal
windows of ∆t equal to 1% of the total system size (final time tf ) for the two largest databases
(Digg and IMDb) and between 0.5% and 1% of system size for the others. This method was
shown to preserve the delayed temporal scaling on a random binary sequence whose elements
were drawn from a known probability distribution following p(t).
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3.4.3 Measuring the growth function

In this section, we detail the procedure used to obtain the growth function G(k) of a system
from its temporal data, t ∈ [0, tf ]. We use the following notation: we keep in memory
every encountered individual i, its number of appearances (or current share) ki(t), Nk(t) as
the number of individuals with share ki(t) = k and the total population N(t) after time t.
Starting from t = 1, we proceed as follows.

1. Event. If the t-th individual is new, add it to memory and note:

N(t) = N(t− 1) + 1

kN(t)(t) = 1

N1(t) = N1(t− 1) + 1

and go to step 4. If the individual is already in memory, go to step 2.

2. Chances. We increment a function of chances

C(k, t) = C(k, t− 1) +Nk(t− 1)/N(t− 1) ∀ k

and go to step 3.

3. Success. Noting i the individual involved in the current event, increment a function of successes

S(ki(t− 1), t) = S(ki(t− 1), t− 1) + 1

S(k, t) = S(k, t− 1) ∀ k 6= ki(t− 1)

and the following variables

ki(t) = ki(t− 1) + 1

Nki(t−1)(t) = Nki(t−1)(t− 1)− 1

Nki(t)(t) = Nki(t)(t− 1) + 1

and go to step 4.

4. Repeat. If we have reached the end of the database, go to step 5. Otherwise, go to step 1.

5. Calculation. The growth function is finally given by:

G(k) = S(k, tf )/C(k, tf ) ∀ k

corresponding to the ratio of actual successes to chances under a uniform growth. The deviation from
G(k) = 1 ∀k is the actual growth function.

3.4.4 Reconstructing the empirical growth function

Once the best possible p(t) has been found, we adjust the growth function G(k) by iterating
the following algorithm:

1. Initialization. We fix p(t) and we first consider G(k) = k.

2. Growth. We iterate the following equation from t = 1 with Nk(1) = δk1 up to tf :

Nk(t+ 1) = Nk(t) + p(t)δk1 + 1− p(t)∑
G(k)Nk(t)

[G (k − 1)Nk−1(t)−G(k)Nk(t)] .
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3. Correction. For all k, we adjust G(k):

G(k) = G(k)
Nk(tf )/

∑∞
i=kNi(tf )

Ñk(tf )/
∑∞

i=k Ñi(tf )

4. Iteration. We set G(k) = G(k) and return to step 2.

At step 3, the adjustment factor is simply the ratio of “the quantity of individuals (water)
that made it to share (bucket) k but did not go to k + 1”, as calculated in the model Nk(tf )
versus the target distribution Ñk(tf ). This algorithm is usually iterated 4 or 5 times to obtain
a converged growth function.

3.4.5 Maximum-likelihood estimation

We search for a p(t) that maximizes the binary logarithm of the likelihood L of a given binary
sequence {yi} of birth (yi = 1) and growth events (yi = 0):

log2 L (τ, α, b | {y}) =
tf∑
i=1

yi log2 p(i) + (1− yi) log2 (1− p(i)) .

3.4.6 Jensen-Shannon divergence

Given two distributions, M and F , with probabilities {Mi} and {Fi} respectively, the quantity

DKL (M‖F ) =
∑
i

Mi log2

(
Mi

Fi

)
(3.20)

is called the Kullback-Leibler distance [88] between M and F , or the relative entropy between
the two distributions. A close relative of this quantity, also referred to as the Jensen-Shannon
divergence, is a symmetric form given by

DSKL = 1
2DKL (M‖A) + 1

2DKL (F ‖A) (3.21)

where the distribution A with probabilities Ai = (Mi + Fi) /2 is used to approximate M or
F respectively.

In our study, we want to quantify the similarity between the distribution, M , generated by
our mean-field model and the distribution F obtained from a corresponding power-law fit. In
practice, the procedure goes as follows: with the distribution M = {Nk/N}, we generate a
number of population samples {m(j)} of size N(tf ) and fit each of them to a power-law f (j)

using the standard method of Clauset et al. [28]. Each f (j) is characterized by an exponent
γ(j) and a minimal value k(j)

min (here always equal to 2) marking the beginning of the power-
law tail. These power-law populations are then used to construct the related distributions[
F (j) = {N (j)

k /N}
]
which are finally compared to the tail of the original distribution M over
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the range k(j)
min ≤ k ≤ 5000 [∼ IMDb’s kmax(t)]. The comparison is quantified through the

symmetrical Kullback-Leibler distance averaged over the different samples

D (M ,F ) = 〈DSKL
(
M ,F (j)

)
〉j . (3.22)

3.5 Appendix 3.B: Internal validation of the framework

This section investigates in detail the behaviour of our general preferential attachment process.
More precisely, we validate analytical results on both the time evolution of the system and
on its asymptotic state.

3.5.1 Tracking a general preferential attachment process

We here wish to validate some of the secondary results derived form our framework, namely:

∑
k

G(k)Nk(t) = κ(t+ τ) , (3.23)

kmax(t) ∝ (t+ τ)(1−b)/κ , (3.24)

both in the limit t� 1 and kmax(t) greater than some bound k∗ to be identified.

To this end, we will consider three growth functions G(k). First, the classical preferential
attachment case; second, a concave function similar to the one observed in IMDb; and third,
a convex functions describing an (as yet unobserved) increasing returns behaviour for small
k. Mathematically,

GCPA(k) =k , (3.25)

Gconc(k) =k +
√
k , (3.26)

Gconv(k) =
(
k

10

)2
e−k/10 +

(
1− e−k/10

)
k . (3.27)

The convex function quickly (exponentially) converges towards a linear behaviour, whereas
we have chosen a much slower convergence (1/

√
k) for the concave function. As the concave

case was previously studied within the IMDb dataset, we will here try to investigate how far
k∗ might be for slower convergence to linearity. Also, note that for all growth functions we
have G(k) = k in the limit k →∞, as requested in our derivation of kmax(t) (to simplify the
calculation of κ). Otherwise, if G(k) = a0k for instance, the 1/κ in Eq. (3.24) would actually
be a0/κ. Since G(k) can be rescaled arbitrarily, we fix its linear slope to unity. The three
growth functions are illustrated in Fig. 3.6.
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Figure 3.6 – Three investigated growth functions. Plots of the growth functions GCPA(k),
Gconc(k) and Gconv(k) described in the text.

Normalisation of growth probabilities

Considering a constant birth rate, p(t) = 1/3, we follow
∑
kG(k)Nk(t) as the general PA

model is iterated with different G(k). The results are shown on Fig. 3.7. The results are
not surprising considering the form of the sum. Considering the linear behaviour (with slope
normalized to unity) of G(k) starting at some appropriate bound k∗, we write:

∑
i

G (ki(t)) =
kmax(t)∑
k=1

G(k)Nk(t) =
k∗−1∑
k=1

G(k)Nk(t) +
kmax(t)∑
k=k∗

G(k)Nk(t)

=
k∗−1∑
k=1

G(k)Nk(t) +
kmax(t)∑
k=k∗

kNk(t) . (3.28)

Using our definition of time,

kmax(t)∑
k=1

kNk(t) = t →
kmax(t)∑
k=k∗

kNk(t) = t−
k∗−1∑
k=1

kNk(t) (3.29)

such that

∑
i

G (ki(t)) = t+
{
k∗−1∑
k=1

[G(k)− k]Nk(t)
}
. (3.30)

Now assuming that enough time has elapsed for Nk(t) ' nkN(t) to be a good approximation
({nk} begin the steady-state distribution). The sum becomes

∑
i

G (ki(t)) ' t+N(t)
{
k∗−1∑
k=1

[G(k)− k]nk

}
(3.31)

where the term in braces is time independent. As we can see, the leading temporal term in
the sum is linear as the growth of N(t) is at most linear (growing with a power 1 − α and
converging to bt) in the limit of large time. Thus, the term proportional to N(t) can act as an
offset in the limit of large time (if non-linear), as a modifier of the slope of the sum (if linear)
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Figure 3.7 – Normalisation of growth probabilities. From top to bottom, the curves follow the
sum

∑
G (ki(t)) using the concave Gconc(k), the classical GCPA(k) and the convex Gconv(k). The

linear fits are obtained using an implementation of the non-linear least-squares Marquardt-Levenberg
algorithm.

or both. The main point is that its effect is also modulated by the sum
∑k∗−1
k=1 [G(k)− k]

which embodies the deviation of G(k) from its linear behaviour in values k < k∗.

Figure 3.7 confirms this analysis. A G(k) strictly equal to k will have slope strictly equal to
unity: all events, birth or growth, have exactly a weight of one in the sum. A G(k) initially
below the line G(k) = k, like our convex function, will have a negative deviation from the
linear behaviour: resulting in a slope smaller than unity, and in a negative offset. On the
other hand, the opposite behaviour of our concave function implies a slope greater than unity
and a positive offset.

Following the leader

The previous results confirm that we can use the form
∑
G(k)Nk(t) = κ(t + τ) at least in

some limit of large time t� t∗ (with t∗ depending on the form of G(k) and p(t)). Hence, our
solution for the share kmax of the leading individual should also hold once G(kmax) ∼ kmax

which happens above some bound kmax > k∗. Our solution,

kmax(t) = C1(t+ τ)(1−b)/κ , (3.32)

is validated on Fig. 3.8. To track kmax(t) in the iteration of our model, we simply scan values
of k up to a fixed kc (computational constraint); kmax(t) is the value for which

∑kc
k=kmax(t)Nk(t)

is the closest to unity.

The analytical expressions on Fig. 3.8 (shown in dotted lines) use the values of τ and κ

obtained from the fit on Fig. 3.7. For the concave, classical and convex growth functions,
we found [κ, τ ] = [1.4949, 1], [1, 0] and [0.66,−135000] respectively. The τ used to fit the
kmax(t) obtained with Gconv(k) is modified to facilitate the fit. While the high value τ in the
convex case is not surprising considering the highly non-linear initial behaviour of the growth
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Figure 3.8 – Share of the leading individual with different growth functions. The different
curves follow the same color code as before and use the same concave Gconc(k), classical GCPA(k) and
convex Gconv(k). The solutions (dotted lines) follow kmax(t) ∼ (t + τ)β with β = (1 − b)/κ where
b = 0.33 was fixed in our experiment and κ was obtained by fitting the results of Fig. 3.7.

function, it also means that tracking the kmax(t) up to t � |τ | requires high kc and is thus
computationally impractical. Since, the scaling in (1− b)/κ appears earlier, we simply divide
τ by ten to compare qualitatively the two scaling regime. Similarly, the small value of τ
obtained from the concave function is not surprising considering its behaviour is very close to
G(k) = k, meaning the sum quickly converges to a linear function in Fig. 3.7. However, the
square root correction in Gconc(k) also means that one has to wait for a higher k∗ until the
ODE used to obtain kmax(t) is valid. Thus, the weak non-linear behaviour leads to a small
t∗ in the convergence of the sum, but the slow convergence to an exactly linear behaviour in
Gconc(k) (as a square root versus as an exponential in Gconv(k)) implies a large k∗.

Scale independence of different snapshots

We apply the algorithm of Clauset et al. to infer the scaling exponents produced by the
different growth functions at t = 500, 000. Figure 3.9 presents the results of the algorithm.
The only case where the algorithm clearly fails is the model grown with the convex growth
function.

To illuminate the convex case, we push the iteration of the model further up to t = 106. The
new results are shown on Fig. 3.10. The algorithm now performs much better, and we can
also see why it initially failed. At t = 106, the expected population size is N(t) = 0.33 · 106 =
3.3 · 105. However, the highly non-linear behaviour of Gconv for small k forces a kmin ∼ 102

for the obtained distribution. A visual inspection indicates that γconv ∼ 2, such that we can
only expect around 1% of the data points to fall after kmin ∼ 102. This explains why the
algorithm focuses on the initial behaviour of the distribution. With a bigger sample (i.e. a
bigger population N(t)), there is little doubt that the algorithm would see the power-law tail.
That being said, in all cases the algorithm has now converged to apparently better values.
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Figure 3.9 – Algorithm of Clauset et al. applied to snapshot obtained with different G(k).
For snapshots taken at t = 500, 000, the inferred scale exponents are: γCPA = 2.44, γconv = 3.17 and
γconc = 2.80. The theoretical steady-state CPA exponent is (2−b)/(1−b) = 5/2. The inferred kmin for
which the power-law distributions supposedly holds are shown by the vertical dotted lines (kmin = 1
in the convex case).
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Figure 3.10 – Algorithm of Clauset et al. applied to other snapshots. For snapshots taken at
t = 1, 000, 000, the inferred scale exponents are: γCPA = 2.47, γconv = 2.11 and γconc = 2.84.
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Figure 3.11 – Reconstruction of synthetic growth functions with known past. (left) The
distributions presented in Fig. 3.9 are inserted in our algorithm for growth function reconstruction
(along with the known p(t) = 0.33). The synthetic growth functions are represented with curves and
the results of the algorithm with dots. After only 4 iterations (less for some), only the convex growth
function is not perfectly recovered. (right) We compare the convex growth function with the one
previously inferred after 4 iterations of our method on the distribution obtained at t = 5 · 105 and one
inferred after 10 iterations on the distribution at t = 106.

3.5.2 Testing the limits of our reconstruction algorithms

In light of the results obtained in the last subsection, particularly the peculiar form obtained
with Gconv(k) which is very convex for k < 10, we want to test our ability to reproduce the
past of systems created by these growth functions.

Reconstructing the growth function

We now use the last set of distributions, obtained after t = 5 ·105 time steps, and test whether
or not our reconstruction of the growth function can be applied in all cases. Note that we
first apply the optimization of G(k) with a know p(t). Figure 3.11(left) presents the growth
functions inferred after a few iterations of the algorithm described in the main text. The
algorithm performs well, except on the convex Gconv(k).

To verify the robustness of our algorithm to convex growth function, we both consider a bigger
system (now to t = 106) and do 20 iterations of the growth function reconstruction method.
As observed on Fig. 3.11(right), the method is now more effective even though the convex
regime is still not perfectly captured. The problem is then that that we quantify convergence
of our method by the difference between successive iterations, but some growth functions
cause a much slower convergence. It thus appears that a more conservative approach, i.e.
systematically requiring a very low difference between iterations and/or a very high number
of iterations, would be more appropriate when blindly applying the method on database with
a completely hidden past.
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Figure 3.12 – Reconstructing a far from scale-independent growth. We produced a system
with the concave growth function and p(t) ∝ (t + 104)−2/3. With a delay τ larger than necessary
to compensate the non-linearity of the growth function, the produced distribution is very slowly
converging to its scale-independent state.

Reconstructing an unknown and sub-optimal past

Wemodel a system with a sub-optimal growth toward scale independence by using the concave
growth function with a p(t) using a τ much larger than the one estimated on Fig. 3.7. We use
p(t) = (t+ 104)−2/3(1 + 104)2/3 where the last factor is there to force p(1) = 1. After t = 106

time steps, we obtain the distribution shown in Fig. 3.12. Clearly, this p(t) is sub-optimal
and the system now converges much slower toward scale independence than observed in Fig.
3.9 and 3.10 which used a constant p(t). Nonetheless, we will still attempt to reconstruct the
past of this function based on this current snapshot.

As described before, we reconstruct the past by using G(k) = k as a first approximation
of the growth function and scanning the three dimensional parameter space for p(t). We
then quantify the quality of a given p(t) by the sum of absolute errors between the tar-
get distribution and the tested model. A priori, we have no reason to expect the targets
[αT , τT , bT ] = [2/3, 104, 0] (with which the target was produced) to yield the minimal error;
but we at least want similar values to be in the list of potential candidates for the most likely
past.

As before, we consider all p(t) producing an error within a certain percentage of the absolute
minimal error (tolerance) as candidates for the most likely past. The obtained estimates of
[α, τ, b] are given in Table 3.3. As expected, the minimal error is not obtained with the p(t)
used to produced the target as we are now using G(k) = k as an approximation. The absolute
error is found with α = αT , b = bT , but τ < τT . Yet, the correct [αT , τT , bT ] are within the
intervals obtained for tolerance as low as 4%. Moreover, within 5% tolerance, we find two
distinct local families of solutions: with τ ≤ τT and the correct α = αT or with τ > τT and a
α > αT to compensate.

Finally, as none of these solutions perfectly reproduce the target distribution, they can all be
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used to reconstruct the growth function starting from G(k) = k and (rapidly) converging to
Gconc(k) as observed in Fig. 3.11. Unfortunately, reconstruction based on the convex Gconv(k)
were not investigated since a systematic way to deal with τ < 0 has yet to be formulated.
Most likely, one would need to start the model at t > |τ |, but it is unclear what kind of initial
conditions should be considered. Since, in this unique context, kmax(t) as an initially slow
growth, perhaps one could simply use a population of t individuals with share ki = 1.

Table 3.3 – Candidates for the most likely past of the target distribution .
tolerance α τ b

25% [0.66, 0.75] [2000, 23000] [0, 0]
20% [0.66, 0.75] [2000, 21000] [0, 0]
15% [0.66, 0.75] [2000, 19000] [0, 0]
10% [0.66, 0.75] [2000, 17000] [0, 0]
5% [0.66, 0.75] [2000, 15000] [0, 0]
3% [0.66, 0.67] [2000, 3500] [0, 0]

3.5.3 Revisiting the asymptotic state

Our model is essentially summarized by the following rate equation:

Nk(t+ 1) = Nk(t) + p(t)δk,1 + [1− p(t)] Nk−1(t)G(k − 1)−Nk(t)G(k)∑
Nk′(t)G(k′) . (3.33)

Using our functional form for p(t) and a continuous time approximation yields

d

dt
Nk(t) =

[
a(t+ τ)−α + b

]
δk,1 +

[
1− a(t+ τ)−α − b

] Nk−1(t)G(k − 1)−Nk(t)G(k)∑
Nk′(t)G(k′) .

(3.34)
Using a continuous approximation in k (i.e. Nk(t)→ N(k, t)) as we did in Sec. 2.2.3, we can
rewrite the last equation as the following system:

∂

∂t
N(1, t) =

[
a(t+ τ)−α + b

]
−
[
1− a(t+ τ)−α − b

] N(1, t)G(1)∑
N(k′, t)G(k′) for k = 1; (3.35)

∂

∂t
N(k, t) =

[
1− a(t+ τ)−α − b

] ∂
∂k

[N(k, t)G(k)]
/∑

N(k′, t)G(k′) for k > 1. (3.36)

We now attempt to solve this system using the method of characteristics as in Sec. 2.2.3.
However, we must first solve for N(1, t) which will serve to fix the function along the charac-
teristics. As in Sec. 2.2.3, we keep only the leading term in Eq. (3.35) and directly obtain
the solution (using N(1, 1) = 1):

N(1, t) ∝ a

1− α
{

(t+ τ)1−α − (1 + τ)1−α
}

+ bt− b+ 1 . (3.37)
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The remaining equation is solved by multiplying both sides by G(k); assuming that we are
solving for the regime k > k∗ such that G(k) ∼ k and t > t∗ such that the normalizing sum
is approximated by κ(t+ τ); and considering (again) Q ≡ Q(k(s), t(s) = k(s)N (k(s), t(s)):

∂

∂t
Q+ k [1− p(t)]

κ(t+ τ)
∂

∂k
Q = 0 . (3.38)

This equation is equivalent to dQ/ds = (∂Q/∂t)(∂t/∂s) + (∂Q/∂k)(∂k/∂s) = 0, from which
we identify:

∂t

∂s
= 1→ t = s (3.39)

and

∂k

∂s
= k

1− a(s+ τ)−α − b
κ(s+ τ) → k = c1exp

{1
κ

[ 1
α
a (t+ τ)−α + (1− b) ln (t+ τ)

]}
. (3.40)

Solving for Q as a function of that one initial condition, as we did in Sec. 2.2.3, we obtain in
the limit where the exponential falls to one (as t� 1):

Q = Ψ
(
k(t+ τ)−(1−b)/κ

)
(3.41)

or for N(k, t):

N(k, t) = 1
k

Ψ
(
k(t+ τ)−(1−b)/κ

)
. (3.42)

Comparing with the solution of Eq. (3.37)for N(1, t) we get two regimes: if b = 0 the leading
term of N(1, t) is in (t + τ)1−α such that Ψ(x) ∼ x(1−α)κ; if b > 0, the leading term is
linear and Ψ(x) ∼ xκ/(1−b). These scaling relations imply the following approximated scale
exponents for the original distribution Nk(t):

Nk(t) ∼

k
−(1−α)κ−1 if b = 0

k−κ/(1−b)−1 if b > 0 .
(3.43)

Note that if κ = 1, we fall back on the results of Simon’s model if b > 0. We can thus
have some confidence in this scale exponent 1. However, the method of characteristics yields
γ = 1 + (1 − α)κ for the case b = 0; which is very different from the result of the main text
γ = 2− ακ. We can easily test these result by choosing any growth function G(k) leading to
κ 6= 1 and birth function p(t) with b = 0 and any given α. Figure 3.13 presents the distribution
obtained after 107 iterations of the model with Gconv(k) (κ = 3/2) and p(t) = t−2/3. The
two methods predict γ = 2 − ακ = 1 (main text) or γ = 1 + (1 − α)κ = 3/2 (method
of characteristics). It is readily observed that the method of characteristics significantly
overestimates the scale exponent.

1. Note that in this case, our original asymptotic derivation implies a relation for α as a function of γ
which we should not expect to be reversible. After an infinite time, the regime where α is relevant should be
negligible in comparison to the (infinite) regime where p(t) = b.
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Figure 3.13 – Verification of the scale exponent obtained with concave G(k) and falling
p(t). The model is iterated for 107 time steps and the two competing results for γ are compared to
the obtained distribution.

Going back to our solution, it appears that the main problem could be in neglecting the second
order term in the equation for ∂N(1, t)/∂t. However, the same approximation was used in the
case p(t) ∼ t−α in [Zanette & Montemurro, Journal of Quantitative Linguistics, 12:1 (2010)].
and lead to the correct result. Moreover, if κ = 1, we do recover the result of the main text
(γ = 2−α). Perhaps re-injecting this approximated scaling behaviour in the main differential
equation and considering higher order terms in the Kramers-Moyal expansion could lead to a
better scaling estimate. Considering our initial asymptotic analysis of the rate equation led
to the correct result, this approach has not been pursued.

Finally, we note that, if re-injected in the extremal criterion (see left-hand side relation in
Eq. (8) of the main text), the results of this new analysis do respect the criterion while those
obtained in the main text do so only if κ = 1. As we have validated our results in Fig. 3.13,
this can only mean that the criterion itself is not exact. In fact, considering Fig. 3.12 we can
postulate an explanation: the distribution k−γ is not a good approximation of the distribution,
especially around kmax(t) and if κ 6= 1. It appears that the criterion gives us a good relation
between derivatives, i.e. how do the position of kmax(t) changes in time in relation to how
the population changes in time, but not a good approximation of the absolute position of
kmax(t). Consider for instance how the right-hand side relation in Eq. (8) is respected for
any power-law relation between N(t) and kmax(t). Also supporting this hypothesis: using
the results of Eq. (3.43) with the extremal criterion do not correctly reproduce the scaling
exponent observed in Fig. 3.8 for kmax(t) while our first analysis of the rate equation does.

3.6 Appendix 3.C: Connection to network densification

This last section highlights the relation between the temporal scaling presented in this chapter
and the so-called densification of complex networks. This last concept refers to the evolution of
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the ratio of links to nodes in connected systems. In the case of scale-free (or scale-independent)
networks, this densification was observed to behave as a power-law relation between the
number of nodes and the number of links [71]. Based on our previous results, we can conjecture
a more precise relation.

In analogy to our theory, the number M of links would be directly proportional to the total
number of events (or more precisely time M = t/2 as one link involves two nodes) while
the number of nodes is directly related to the total population N(t). Hence we expect the
numbers of nodes and links to be related through the following expression

N(M) ' a

α+ 1 (2M + τ)1−α − a

1− ατ
1−α + 2bM. (3.44)

With the usual α ≤ 1Eq. (3.44) can be rewritten as

N(M) ' aτ1−α

1− α (1 + 2M/τ)1−α + 2bM − a

1− ατ
1−α (3.45)

to show that the relation is initially linear, i.e. when t and M � τ ,

N(M�τ) ' aτ1−α

1− α

[
1+(1− α)2M

τ
+O

(
M2

τ2

)]
+ 2bM− a

1− ατ
1−α

'
(
2aτ−α + 2b

)
M. (3.46)

Equation (3.44) thus predicts an initially linear densification leading either to a second linear
regime of different slope (b, steady state) or into a power-law relation if b = 0. This last
behaviour is in fact observed in two network databases: the topology of Autonomous Systems
(AS) of the Internet in interval of 785 days from November 8 1997 to January 2 2000 and
the network of citations between U.S. patents as tallied by the National Bureau of Economic
Research from 1963 to 1999 [71]. The results are presented on Fig. 3.14. Of the four systems
considered in [71], these two were chosen to highlight two very different scenarios. On the
one hand, the Internet can be reproduced by multiple pairs of a and τ parameters as long as
τ � t, since the system appears to have reached steady power-law behaviour. On the other
hand, the patent citation networks do not fit with the power-law hypothesis as the system is
transiting from a linear to a sub-linear power-law regime as t ∼ τ . This last scenario, while
very different from a simple power-law growth as previously proposed, corresponds perfectly
to the predictions of our theory.
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Figure 3.14 –Densification of complex networks in log-log scale. Densification, i.e. the relation
between the number of nodes and the number of links, in two connected systems. (a) The Internet at
the level of autonomous systems, reproduced by Eq. (3.44) with a ' 1, τ ' 0, α = 0.16 and b = 0. (b)
The citation network of U.S. patents between 1963 to 1999, reproduced by Eq. (3.44) with a = 5793,
τ = 875000, α = 0.67 and b = 0. The dotted line is the power-law relation claimed in [71].
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Chapter 4

On growth II:
Null models and their importance

Résumé

L’étude quantitative des systèmes sociaux complexes, des langages et des cultures humaines vit
une effervescence remarquable depuis l’arrivée récente d’énormes bases de données. L’évolution
du langage est un sujet particulièrement actif considérant que près de 6% des livres écrits ont
maintenant été digitalisés, couvrant près de cinq siècles de développements culturels. Ce
chapitre s’attaque au problème récent qu’est l’inférence des détails microscopiques d’un sys-
tème à partir de ses propriétés macroscopiques. En particulier, nous traitons de la difficulté
de distinguer, d’une part, la dynamique de notre découverte par échantillonage d’un sys-
tème, et d’autre part, la dynamique de son évolution. La source de ce problème provient
du couplage intrinsèque entre la structure des systèmes indépendants d’échelle et leurs pro-
priétés temporelles. Pour illustrer ce phénomène, nous proposons de simples modèles nuls:
un réservoir statique et des systèmes évoluant selon des règles fixes, mais avec un historique
incomplet. Nous montrons ainsi comment la découverte progressive du premier modèle, ainsi
que l’évolution des autres, reproduisent certaines propriétés dynamiques de vrais langages.
Ces résultats démontrent comment des propriétés temporelles non triviales peuvent émerger
simplement de notre connaissance incomplète du système à l’étude, et comment, même avec
des données parfaites, les propriétés macroscopiques d’un système ne nous informent pas
nécessairement sur les détails microscopiques de son évolution.
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Summary

The study of complex social systems and culturomics, the quantitative studies of human lan-
guages and culture, has flourished in recent years with the advent of large datasets. The
evolution of language has been a subject of particular interest considering that nearly 6% of
books ever written have now been digitized, spanning over five centuries of cultural develop-
ment. This chapter tackles the recent problem of inferring the microscopic details of a system
based on its macroscopic properties. Namely, the difficulty of distinguishing between the dy-
namics of our discovery (or sampling) of a system and the dynamics of its actual evolution.
The root of this problem stems from intrinsic coupling between the structure of scale-free
systems and their temporal properties. To illustrate this, we propose simple null models: a
static reservoir and systems growing with static rules with hidden past or incomplete data.
We show how the progressive discovery of the former and the evolution of the others reproduce
dynamical regularities of language. These results show how non-trivial temporal features can
emerge merely from our incomplete knowledge of the system under study, and also how, even
with perfect data sets, these features do not directly inform us about the rules governing their
evolution.

4.1 Some theoretical processes and potential null models

We now present some potential null models of system evolution. By null models, we mean any
processes whose rules can be simply stated and which can be used to compare to empirical
data. The goal is to have some baselines against which we can test hypotheses. For instance,
if a study observes macroscopic property A and concludes that A stems from a microscopic
property B, we can compare the empirical data with results of null models which do not
include B and see if A still occurs.

In fact, any growth process could be used as a null model in our context. However, we will
only cover a few that include different assumptions. Our goal will be to show that all of these
models feature the constraints uncovered in the last chapter — preferential attachment and
temporal scale independence — either by design or as a consequence of their structure. These
null models all lead to a scale-independent organization and to similar non-trivial temporal
features regardless of their “microscopic” mechanisms. They can thus be used to test if certain
macroscopic features observed in a recent culturomics study [87] can actually tell us anything
about the microscopic details of language evolution.

For consistency with the following discussions, all of our null models will be presented as toy
models for “language evolution” or, more accurately, for word usage. We already know that
the overall distribution of word frequencies tend to roughly follow a power-law distribution,
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as per Zipf’s law 1, with γ < 2. However, things are somewhat different when considering
very large corpora to study the global evolution of language. In fact, very large data sets tend
to feature two scaling regimes [46]. We will not focus on this feature too much as they can
usually be reproduced by considering two populations (for function and content words).

Vocabulary size (the number of unique words) will be our main focus. When studying the
growth of vocabulary size N(K) as a function of the total number K of words written, one
often comes across Heaps’ law which states that the vocabulary size should roughly follow
N(K) ∝ Kβ with β < 1 [54]. While this is usually true for single text with K � 1, again
different behaviours tend to appear when considering extremely small or extremely large
corpora.

4.1.1 Random sampling

Our first null model of language evolution is neither a language (i.e. independent of context)
nor evolving (i.e. static). Our model is inspired from the meta book concept of Bernhardsson
et al. [16]. We suppose that written texts are essentially a random sampling from a bag of
N0 unique words, where a word i appears ki times distributed following Zipf’s law, i.e. the
probability P [ki = k] is proportional to k−γ0 . We use the subscript 0 for N0 and γ0 as the
sample obtained from this bag will itself feature a vocabulary of size N and a potentially
different scale exponent γ.

This model obviously follows the preferential attachment. Once a significant number of words
have already been drawn, our best estimates for a given word’s natural frequency is given
by its frequency in our sample. This way, a word that has appeared x times is x/y times
more likely to reappear next than a word that has appeared y times. This confirms our first
constraint.

For our second constraint, we consider the probability p(K) that the K-th written word is
a new unique word (hence p(K) = dN(K)/dK). To calculate the probability p(K) that the
K-th word chosen from the reservoir is as of yet unseen, we merely sum over all words the
probability that this word was never chosen in the K − 1 prior tries and that it is now picked
on the K-th try. Using K0 = N0〈k〉, where 〈k〉 is the average number of occurrences for a
given word in the reservoir, we write

p(K) =
∑

i={words}

ki
K0

(
1− ki

K0

)K−1
. (4.1)

For K ≈ 1, we easily find a linear growth (N(K) ≈ K as p(K) ≈ 1)

p(K ≈ 1) =
∑

i={words}

ki
K0

(
1− ki

K0

)K−1
'

∑
i={words}

ki
K0

= 1 . (4.2)

1. Zipf’s law is simply the empirical observation of the power-law distribution of word occurrences in a text.
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The behaviour for larger K is however more interesting. Using the fact that ki/K0 � 1 and
K/K0 � 1, since K0 diverges when N0 →∞ with γ0 < 2 (typical value for Zipf’s law in word
occurrences), we can use the following equivalent form

p(K) '
∑

i={words}

ki
K0

(
1− K

K0

)ki
. (4.3)

Or, transforming the sum over the number k of times a given word appears in the reservoir,

p(K) '
∑
k

knk
K0

(
1− K

K0

)k
, (4.4)

and using the scale-free distribution nk = Ak−γ where A is a normalization constant,

p(K) ' A

K0

∑
k

k1−γ
(

1− K

K0

)k
. (4.5)

As γ− 1 < 1 and within the regime K/K0 � 1, larger k values contribute significantly to the
total sum such that it can be approximated by its integral

p(K) ' A

K0

∫ ∞
0

(
1− K

K0

)k
k1−γdk

'− A

K0

[
ln
(

1− K

K0

)]γ−2
Γ (2− γ)

∝
[
K

K0
+O

(
K

K0

)2
]γ−2

∝ (K)γ−2 . (4.6)

The vocabulary size

N(K) =
K∑

K′=0
p(K ′) (4.7)

thus scales as
N(K � 1) ∝ Kγ−1 (4.8)

in the regime 1� K � K0 governed by the integral of Eq. (4.6).

4.1.2 Yule’s process

As seen in Chap. 2, the Yule process is one of the first model for the growth of scale-
independent systems. As with our first null model, the Yule process produces a context
free system (or language); but one which evolves, albeit with static rules. Let us recall the
process, originally a mathematical model of evolution. Each species (every written word) in
the ecosystem (text) undergoes specific mutations which create a new species (a new word is
written) of the same genus (unique word already in vocabulary) at a rate s; and each genus
(unique word in the vocabulary) undergoes generic mutations which create new species (a new
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word is written) of a new genus (unique word new to the vocabulary) at a rate g. Basically,
in our context, words are written in a text of K words with a vocabulary of size N at a
rate sK + gN where the rate sK corresponds to occurrences of existing words and gN to
the introduction of new unique words. This process leads to a distribution of words following
Zipf’s law, i.e. word occurrences following P [ki = k] ∝ k−γ with γ = 1 + g/s.

The Yule process obviously follows preferential attachment by design; which is the first of our
two constraints. As for the vocabulary of the Yule process, we know that in continuous time
t it follows an exponential growth N(t) = egt and we are interested in translating that as a
function of the total number of written words K. As the number of occurrences of a unique
word who first appeared at time t′ follows an exponential growth as es(t−t′), we can obtain
the total number of written words K(t) by integrating these occurrences over the number of
words that appeared during every infinitesimal step dt′. We write

K(t) = est +
∫ t′

0
Ṅ(t′)es(t−t′)dt′ = est + g

g − s
est
[
e(g−s)t − 1

]
, (4.9)

where the first term corresponds to the original word. Since the distribution of written text
always follow a scale exponent γ < 2, we can use the fact that s > g and t � 1 to eliminate
the second exponential and approximate K(t) as

K(t) ' est (1− λ) (4.10)

with λ = g/(g − s). We can thus obtain time as a function of the number of written words,

t = 1
s

[lnK − ln (1− λ)] (4.11)

such that we can write the vocabulary growth N(K) as

N(K) = exp
{
g

s
[lnK − ln (1− λ)]

}
∝ Kg/s ∝ Kγ−1 , (4.12)

which is exactly the dominant behaviour observed in the case of the random sampling.

4.1.3 Incomplete history of preferential attachment

We now consider a null model that encompasses both the incomplete knowledge of random
sampling and the static growth rules of Yule’s process: a system (language) grows according
to preferential attachment and we start reading its output only after the first K0 events.
Effectively, this emulates how we often do not witness (or gather data on) the infancy of
a system (be it a language, the Internet or a social system). This null model will help us
quantify the impact of the finite size in the sampled reservoir.

This “incomplete history of preferential attachment” is essentially equivalent to a combination
between a preferential attachment growth (when new words are used after K0) and sampling
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of a static reservoir (when words created before K0 are reused after K0). As per Eq. (3.17),
we consider two cases for the underlying PA process: a decreasing birth rate p̃(K) ∝ Kγ−2

or the limit p̃(K)→ 0. The tilde is here used to identify properties of the underlying hidden
PA process.

Once again, as both the underlying process and the sampling of the unknown history follow
preferential attachment, we assume that G(k) ∝ k (at least for large values of k) is respected.
Similarly, the birth rate p(K) can also be expected to follow its usual constraint as per the
two processes that we are here combining. We can write, for all possible p̃(K) and K0,

p(K) = p̃(K) + (1− p̃(K))
(

K0
K0 +K

)
p̂
(
K̂(K)

)
(4.13)

where time K is for the incomplete reader (i.e. K = 0 corresponds to K̃ = K0 for the
underlying process), p̂(x) is the expected “birth rate” in our random sampling model of Sec.
4.1.1, and K̂(K) corresponds to the average number of words that have been drawn from the
reservoir at time K. The term proportional to (1− p̃(K)) in Eq. (4.13) is essentially the
probability that the underlying process selects an old word [(1− p̃(K))] times the probability
that this old word is picked from the reservoir of size K0 and not from the new observed
reservoir of size [K0/(K0 +K)] times the probability that the word picked from the reservoir
is an occurrence of a word never seen before by the incomplete reader [p̂(K̂(K))]. This average
K̂(K) is given by the number of past events which picked words from the reservoir. It can be
written as

K̂(K) =
K−2∑
i=0

(1− p̃(K))
(

1− i

K0 + i

)
. (4.14)

Looking only at qualitative behaviour, we can use Eq. (4.6) which yields

p(K) ' p̃(K) + (1− p̃(K))
(

K0
K0 +K

)[K−2∑
i=0

(1− p̃(K))
(

1− i

K0 + i

)]γ−2

. (4.15)

In the regime K0 � K. Equation (4.15) becomes

p(K) ' p̃(K) + (1− p̃(K))2
[
K−2∑
i=0

(
1− i

K0

)]γ−2

. (4.16)

The sum can be evaluated straightforwardly

p(K) ' p̃(K) + (1− p̃(K))2
[
K − 1
K0

(
K0 −

K − 2
2

)]γ−2
(4.17)

and again using K0 � K � 1,

p(K) ' p̃(K) + (1− p̃(K))2Kγ−2 , (4.18)
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we obtain the following leading behaviours for the two general cases of γ < 2 and γ ≈ 2 which
can be obtained using Eq. (3.17) with b = 0 or with α = 2− γ and b ≈ 0 respectively:

p(K) ∝

K
γ−2 +

(
1−Kγ−2)2Kγ−2 ∼ Kγ−2 if p̃(K) ∼ Kγ−2

Kγ−2 if p̃(K) ∼ 0 .
(4.19)

In the regime K ≈ K0 � 1 and beyond. The finite sum in Eq. (4.15) can be evaluated by
applying the Euler-Maclaurin formula [1]. Keeping only the leading term, which is equivalent
to directly approximating the sum by an integral, we get

p(K) ' p̃(K) + (1− p̃(K))2 K0
K0 +K

[K0 ln (K0 +K)]γ−2 (4.20)

whose leading behaviours are

p(K) ∝

K
γ−2 + (K0 +K)−1 (1−Kγ−2)2 [ln (K0 +K)]γ−2 ∼ Kγ−2 if p̃(K) ∼ Kγ−2

(K0 +K)−1 [ln (K0 +K)]γ−2 ∼ K−1 if p̃(K) = b ∼ 0 .
(4.21)

The last case gives us an idea of how the finite size of a reservoir affects the “vocabulary
growth” for large K, either here or in the model of Sec. 4.1.1. Integrating p(K) ∼ K−1 over
an interval of very large K leads to a logarithmic growth, a limiting case already observed in
the previous chapter for the pathological case γ = 2.

4.2 On the problem of distinguishing evolution from discovery in language
and other scale-independent systems.

Linguistics, the study of language, is a science of the microscopic. Words form a language only
when put in structure, form, and context. The recent creation of a large corpus of written
texts by the Google Books Team opens the door for a different approach using large datasets
and a quantitative methodology. However, in considering words as mere data points, one
risks neglecting the structure, form, and context of words, albeit at the benefit of painting a
broader picture through macroscopic statistical features. It is in this context that statistical
regularities of written text and of language evolution have been identified: Zipf’s and Heaps’
laws, and more recently cooling patterns following language expansion [87]. These patterns
show a power-law convergence for the observed frequencies of unique words through time,
as well as a power-law reduction of the rate at which new words are introduced. It is yet
unclear how to reconcile the macroscopic results of theses studies with the microscopic nature
of language.

In this section, we focus on the aforementioned statistical regularities and their potential
relevance (or lack thereof) to the mechanism behind language evolution. Considering that,
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although impressively large, the available corpora constitute only samplings of a given lan-
guage at a given time, there must exist certain dynamical properties inherent to the dynamics
of having a progressively better sampling of a complex system as the years progress (i.e. arte-
facts of the methodology). How can we distinguish the sampling dynamics from the actual
evolution of the language under study? Without this distinction, it is hazardous to infer any-
thing about human languages from macroscopic properties of the corpora. Moreover, even
with a perfect sampling, it is unclear how these macroscopic temporal features of language
are even related to its temporal evolution since the structure of the language can itself affect
certain temporal variables (e.g. vocabulary size and any finite size fluctuations). How can we
then distinguish the effects of language structure from actual language evolution?

To answer the first question, we use our simplest null model of language evolution: the
random sampling of a scale-independent system. We now also impose an ad hoc “syntactic”
constraint that a small number of words must appear on average once every s0 words. This
last constraint is enforced to emulate the role of articles and other highly frequent function (or
structure) words. We use only one such word since the exact number is insignificant as long
as the total frequency s0 is respected. The constraint is introduced to differentiate families
of language, as for instance, Indo-European languages (like English) feature a higher ratio of
function to content words (high s0) than most Asian languages.

To answer our second question, we use the first model of evolution for scale-independent sys-
tems: the Yule process. As with our first null model, the Yule process also produces context
free language; but one which will evolve with static rules. We enforce two additional con-
straints: the aforementioned syntactic rule and an initial unobserved basin of words (species)
of size N0. This basin represents an initial set of words, but is unobserved in the sense that
these words are still unknown until their first specific mutation.

4.2.1 “Evolution” of vocabulary growth in languages

The methodology of our study is simple. We chose two languages with significantly differ-
ent behaviours, Spanish and Chinese, that reproduce the statistical features of most other
languages. We produce null models with different set of parameters to emulate these two
languages. Both the languages and the null models were then analysed in the same fashion.
For a given year t with a corpus of K(t) written words, we computed the vocabulary size
N(K) in both the languages and a corpus of size K(t) built from their corresponding null
models.

As mentioned in introduction, Heaps’ law usually governs N(K) as it roughly follows N(K) ∝
Kβ with β < 1 for single text with K � 1. However, different behaviours tend to appear
when considering small or extremely large corpora and one can then expect to see more than
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Figure 4.1 –Vocabulary size as a function of corpus size versus a random sampling. Number
of unique words found in corpora — real or sampled from the null models — of different sizes. The
results are based on (top) Spanish and (bottom) Chinese corpora. The null models are tuned to best
reproduce the empirical results and use the following parameters. (Spanish) Null model with scaling:
γ = 1.5, N0 = 9×106 and s0 = 0.5; Null model with uniform distribution: N0 = 9×106 and s0 = 0.95.
(Chinese) Null model with scaling: γ = 1.25, N0 = 3 × 105 and s0 = 0.3; Null model with uniform
distribution: N0 = 3 × 105 and s0 = 0.85. The full orange lines correspond to scaling with exponent
γ − 1 and the dotted orange line is a simple linear scaling. Also, the Spanish vocabulary growth give
us a good example of the effects of the reservoir’s finite size in our null model. This effect, according
to Eq. (4.21), is a transition from a scaling behaviour to a logarithmic growth.

one scaling regions with progressively lower β. In a recent study [87], this last feature was
described as a result of a diminishing need for new words; hence the apparent slow-down
(or “cooling”) of vocabulary growth. However, a similar behaviour can be observed in our
null models (see Fig. 4.1). In this case, mostly as a consequence of the scale-independent
distribution of word frequencies. This is illustrated with an equivalent sampling model based
on an underlying uniform distribution which fails to reproduce the scaling regime: N(K) then
merely scales linearly with finite size effects for very large K.

While it is appealing to try and use the huge data sets of the Google Books project to study
the underlying mechanisms of language evolution, our results provide an important warning:
macroscopic data are not necessarily a good proxy for microscopic events and properties, no
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Figure 4.2 – Chinese vocabulary size versus Yule’s process. Yule’s process uses mutation rates
g = 1 and s = 4, an initial basin of size N0 = 150000 and a syntactic constraint s0 = 0.9. Note that
this syntactic constraint is much less realistic than those needed to fit the sampling model to the data.
As before, the dotted orange line corresponds to a linear scaling and the full orange line to a scaling
with exponent γ − 1 = g/s = 0.25. This double scaling behaviour was claimed in [87], and while the
empirical data might not provide much support for this particular hypothesis, our analyses of both
Yule’s process and the of the random sampling model demonstrate the presence of two scaling regimes.

matter how many of those are compiled. For instance, logic might dictate that the initial
linear regime observed in the Chinese dataset is most likely a sampling effect and not a fast
(linear) language expansion. In fact, it is interesting that the syntactic constraint (s0 = 0.3)
used in the null model to reproduce the vocabulary growth is a good estimate of the actual
frequency of function words in Chinese, which is thought to be around 0.25 [25]). We can
expect the same to be true for Spanish where we used s0 = 0.5, as that fraction is almost
0.6 in the English language [86], and both are Indo-European languages with similar syntax.
That being said, the observed behaviour could also be caused by an evolution starting with
some initial population (as in Yule’s process, see Fig. 4.2) or by an era with a significant
“need for new words” as postulated in [87]. At this point, it might important to stress that
the two power-law regimes assumed in Figs. 4.1 and 4.2 are tenuous as other curves might
reproduce might also reproduce the observed behaviour. However, we follow the methodology
of the publication we are using as a case study (i.e., Ref. [87]) and while the empirical data
might not be convincing, our analytical results do show that our null models do feature a
double scaling behaviour.

4.2.2 Cooling patterns in language “evolution”

While the previous results concerned the evolution of two properties through time, namely
the occurrence distribution and vocabulary size, this section focuses on a more dynamical
feature of written text: standard deviation of growth rate fluctuations σ(K). This quantity is
more dynamical in the sense that it depends not only on the state of the system during year
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t, but also on its state during the previous year, i.e. t − 1. To compute σ(K), we must first
compute the growth rate of each unique word between year t− 1 and year t. To this end, we
assume an exponential growth such that the growth rate ri(t) of word i is given by:

ri(t) = log (ki(t))− log (ki(t− 1)) . (4.22)

Using only a fraction of significantly frequent words (we use the same frequency cut-off 2 as
in the previous study [87]), σ(K) is then computed from this ensemble of ri(t).

In this particular case, we only use the random sampling as our sole null model. The point
we wish to make is that the “cool down” observed in Ref. [87] can be mostly explained by
language being a random sampling of a non-evolving (or static) reservoir of words. While the
null model itself is obviously wrong, sampling dynamics could still be the main driving force
behind some temporal patterns observed in the Google Books corpora. This is confirmed
in Fig. 4.3, where the sampling behaviour produces a qualitatively similar convergence of
σ(K) as observed in the empirical data. Importantly, we should note that our results do
not reproduce the cooling exponents observed in Ref. [87]. The reasons for this discrepancy
is unfortunately unknown. The previous study defines corpus size as the number of written
words belonging to words above the cut-off, whereas we define corpus size as the total number
of written words. However, we used both definitions and we can state that this is not the
source of the difference in observed cooling exponents. It may also be caused by an update in
the data set (we use the version published on July 1st 2012). At the very least, we know that
both our two data sets (Chinese and Spanish corpora) and our null models were analysed in
exactly the same fashion.

4.2.3 Discussions (and why preferential attachment is not a mechanistic assumption)

The fact that the study of our null models reproduce certain features of the study of actual
human languages does not tell us anything about the evolution of the languages, and certainly
does not imply that there is a mechanistic link between the models and reality.

What we can conclude is that the random sampling of a static scale-independent system
can itself feature scaling behaviour on diverse fronts, namely in vocabulary growth and the
cooling patterns of the growth fluctuations. Thus, patterns of temporal scaling observed
in culturomics stem not necessarily from dynamical properties of languages, but perhaps
merely from temporal properties of the observation method (e.g. sampling) or from our
incomplete knowledge (hidden past), both of which are closely coupled to the organisational
properties of the sampled system. It thus appears useless to infer microscopic mechanisms

2. Words are kept if their occurrence frequency is at least 10/min{K(t)}, meaning that they would appear
on average at least 10 times even in the smallest corpus available.
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Figure 4.3 – Standard deviation in word usage growth rate as a function of corpus size.
Standard deviation of growth rates ri(t) found in subsequent corpora — real or sampled from the null
models — of different sizes. The results are based on (top) Spanish and (bottom) Chinese corpora
and the null models use the same parameters as for Fig. 4.1. The null model with scaling follows
the correct cooling pattern whereas the uniform null model only approximately does so in one case.
Note that the null models always end up scaling as σ(K) ∝ K−1/2 (orange line) which is a standard
sampling behaviour. The black line follows the scaling originally observed in Ref. [87]

from macroscopic temporal properties as those are often universal consequences of the scale-
independent organisation of language and culture.

On the other hand, there is no denying that human languages have evolved over the last
centuries, and the models presented here have no pretension beyond that of being simple null
hypotheses. The main point is that coarse-grained studies of language evolution are, at least
in regards to the methodology presented here, not able to differentiate between actual evolving
human languages and our sampling model. In fact, this is not a surprising conclusion as the
effects of evolution are mostly microscopic: certain words become more or less frequent as
time goes by, some will die and others will emerge, but perhaps in a self-averaging way. It then
goes without saying that this phenomenon should be studied through microscopic means, e.g.
the evolution in the usage of unique words, rather than by a macroscopic statistical approach.

The same conclusions hold for any scale-independent system. The recipe for models of scale
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independence is quite simple: the constraints we have discussed up to now are necessary in-
gredients and other mechanistic assumptions are mostly for flavour. From there, most macro-
scopic features are influenced by the scale-free organization of the model and not necessarily
direct consequence of the mechanistic assumptions.

As we have seen in our null models, even preferential attachment does not tell us anything
about the underlying mechanisms. In fact, while we use preferential attachment has a literal
mechanism 3, it can also be an artefact (or symptom) of other growth mechanisms. For
instance, in percolation on a lattice, it can be shown that the relation between the growth
rate of a cluster and its size is asymptotically linear (see Sec. 4.3). This is due to the
asymptotically linear relation between a cluster’s size and its parameter, but does not imply
that sites are given to clusters because of a preferential attachment process. Similar analogies
can be made for social sciences where preferential attachment might merely captures how
good an individual is at a given activity, but does not imply that one is good because of one’s
past activity.

This is not so much a shortcoming of our framework as statistical physics usually describes
systems in a macroscopic manner without the corresponding microscopic details. Consider
how the canonical ensemble does not depend on how a given system is coupled to a heat bath
(or energy reservoir), but simply on the fact that this coupling exists. For our framework to
be universal, we have to accept to lose some level of specificity. The objective of this section
was to both show the limits of our own work, and serve as a warning regarding inference of
social or cultural mechanisms from macroscopic models.

4.3 Appendix 4.A: Percolation and self-organized criticality

In Chap. 1 we rapidly presented a few examples of scale-independent systems and we now
highlight a link between two of those: earthquakes and percolation. If you recall, earthquake
magnitudes followed a power-law distribution such that even though most earthquakes are
of negligible magnitude, a microscopic number of them still hold a macroscopic fraction of
all energy released by earthquakes. We then introduced percolation as a toy model to inves-
tigate the link between power-law distribution and this organization apparently in-between
homogeneous and heterogeneous states. In so doing, we clarified the concept of criticality:
this phase transition occurs in percolation only around a well-defined value. We then asked
the following question: Does this imply that the physics of earthquakes is also tuned to a
precise phase transition? Just like the null models presented in this chapter, percolation and
its variants can be used to study real systems, perhaps not languages, but systems which are

3. Meaning that in Chap. 3, it is literally because an individual has share k that he gets G(k) ∼ k chances
to get richer.
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more physical in nature, like earthquakes. They can thus be used to tackle questions like the
one presented above.

In light of the growth constraints introduced in the previous chapter, and observed in the pre-
vious null models, we can ask whether or not percolation follows the preferential attachment
principle and temporal scaling in the introduction of new individuals (clusters). We could
assume that a larger cluster is in fact more likely to gain new occupied sites from its perime-
ter than a smaller cluster, such that preferential attachment would be respected. However,
percolation systematically introduce new resources (occupied sites) and has a finite limit to
its population size (lattice dimensions). Without control over p(t), the system can overshoot
its phase transition and simply grow toward a fully clustered (heterogeneous) state. This is
why the occupation probability u is so important in percolation, it grants us some control
over the total resource K(t).

Therefore, we now wish to confirm that preferential attachment is respected at least for large
clusters, and introduce an adaptive control of the system over its own p(t) to remove the need
for critical tuning of the occupation probability.

4.3.1 Preferential attachment and temporal scaling in percolation

We want to show that, when percolating sites are occupied randomly (in a sequential manner),
clusters of size x are x/y times more likely to grow with the next occupied site than clusters
of size y (at least for x� 1 and y � 1).

Let us consider any geometry where the number of neighbouring sites of a cluster tends to
grow with their size. This assumption is not limiting at all as it covers all interesting cases
(except some pathological cases such as percolation on a one-dimensional chain as considered
in Chap. 1). Let us also consider percolation as a dynamical process: at each time step, a
site is selected for occupation and is occupied with probability u and left empty for all time
with probability 1− u.

We define the perimeter l of a cluster as the number of non-occupied neighbouring sites
which may or may not have been tested for occupation yet. Suppose that we know exactly
the numbers Nkl of possible clusters of size k and perimeter l. By possible, we mean that we
are considering a simple enumeration of possible cluster structure independently of u. With
{Nkl}, we can write the size distribution nk(u) like so [43]

nk(u) = uk
[∑

l

Nklū
u

]
(4.23)

where we ask for k sites to be occupied (probability uk) and for the perimeter of size l to
be unoccupied (probability ūl with ū = 1 − u). Similarly, we can write the distribution of
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perimeter given a size k, noted n(k)
l (u), as

n
(k)
l (u) = Nklū

l∑
l′ Nkl′ ūl

′ . (4.24)

With this new distribution, we can calculate the mean perimeter µk(u) of clusters of size k:

µk(u) =
∑
l lNklū

l∑
lNklūl

= ū
d

dū
log

[
u−knk(u)

]
(4.25)

where the second equality comes from isolating the sum in Eq. (4.23). We now have an
expression for the average perimeter of clusters of size k which depends only on u and on
the distribution of cluster size. We are now interested in the behaviour of this expression in
the limit k →∞ knowing that preferential attachment would imply µk(u) ∝ k. We are thus
wondering whether k−1µk(u) goes to a constant in the following limit,

lim
k→∞

k−1µk(u) = lim
k→∞

k−1ū
d

dū
log

[
u−knk(u)

]
. (4.26)

We first find

lim
k→∞

k−1 log
[
u−knk(u

]
= lim

k→∞

[
k−1 (−k log u) + k−1 log (nk(u))

]
(4.27)

where the second term necessarily goes to zero (product of two decreasing terms), such that

lim
k→∞

k−1 log
[
u−knk(u)

]
= − log u . (4.28)

With this result, we finally find that percolation does in fact follow the preferential attachment
principle,

lim
k→∞

k−1µk(u) = ū
d

dū
[− log u] = ū

u
, (4.29)

meaning G(k) ∝ ūk/u for k →∞.

Preferential attachment is one of two constraints that we want to see respected in models of
scale-independent growth. The second is temporal scaling. We thus check how the cluster
population size N(t) scales with regard to the number of occupied sites t in classical perco-
lation. Hence, using the number of occupied sites as a measure of time allows us to consider
percolation as a dynamical process. More precisely, we consider a two-dimensional square
lattice where at each step (i→ i+ 1) one of L sites is randomly chosen for a percolation trial.
With probability u, the site is occupied and the system clock is increased by one (t→ t+ 1).
Sites can only be chosen once for this trial.

We study the behaviour of connected clusters. What is the probability p(t) that the t-th
occupied site creates a new cluster of size one (none of its four neighbours is occupied yet)?
This probability defines the ratio between the growth of the cluster population to the number
of occupied sites. We want to test whether or not p(t) will follow our functional form.
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The t-th occupied site will mark the birth of a new cluster if none of his four neighbours were
among the (t− 1) first occupied sites. We can then directly write

p(t) =
t−1∏
j=1

(
1− 4

L− j

)
. (4.30)

Rewriting p(t) as

p(t) =
t−1∏
j=1

L− j − 4
L− j

(4.31)

one can see that

p(t) =
4∏
j=1

L− t+ 1− j
L− j

for t > 4. (4.32)

For L� t� 1,

p(t) ' (L− t)4

L4 = (t− L)4

L4 . (4.33)

Equation (4.33) agrees with Eq. (3.17) using a = L−4, τ = −L, α = −4 and b = 0, see Fig.
4.4.
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Figure 4.4 – Percolation on a 1000x1000 square lattice at phase transition (uc = 0.5927 . . .).
(left) The evolution of the probability p(t) that the t-th occupied site results in the creation of a new
cluster (in semi-log plot). (right) Log-log plot of the complementary probability 1− p(t) to highlight
the initial temporal scaling. The solution corresponds to Eq. (4.33).

It is important to note that Eq. (4.33) does not depend on the percolation probability u.
Under this form, the ability of this system to converge towards its critical state depends on
the number of sites occupied, i.e. time t. Noting that t ≡ uL, the critical time tc = ucL,
corresponding to the critical point in u, could perhaps be calculated through a self-consistent
argument on the number of occupied sites required by the scale-free distribution of cluster
size in the critical state. This is however, not our current concern.

4.3.2 Bak-Tang-Wiesenfeld model

We want a model that is loosely based on percolation, and will thus inherit its preferen-
tial attachment property, but that does not need an external tuning of the population size
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Figure 4.5 – Cluster population in the Bak-Tang-Wiesenfeld model. We use a 64x64 square
lattice with critical height z∗ = 4. (left) The evolution of the probability p(t) that the t-th site to reach
a height of z∗ − 1 results in the creation of a new potential avalanche (in log-log plot). (right) Plot
of the complementary probability 1− p(t) for growth events. The fit uses Eq. (3.17) with b = 0.3090,
α = 3.5, τ = 3000 and a fixed by p(1) = 1 (i.e. a = (1− b)(1 + τ)α).

through the percolation probability. The first model of self-organized criticality, the Bak-
Tang-Wiesenfeld process (BTW), shares a similar basic mechanism with percolation and,
interestingly, was introduced as a thought experiment on the distributions of energy released
in avalanches and earthquakes [11]. Their model follows the evolution of a sandpile where
grains of sand are randomly dropped on a two dimensional square lattice. The sand tower on
the site (i, j) crumbles on its four nearest neighbours when its height zi,j reaches a critical
height z∗ = 4. The model can thus be followed by iterating the following algorithm:

1. Initialisation. Prepare the system in a stable configuration: we choose zi = 0 ∀ i.

2. Drive. Add a grain at random site i.
zi → zi + 1 .

3. Relaxation. If zi ≥ z∗, relax site i and increment its 4 nearest-neighbours (nn).

zi → zi − 4 ,

znn → znn + 1 ,

Continue relaxing sites until zi < z∗ for all i.

4. Iteration. Return to 2.

When this algorithm reaches its steady-state, the distribution of cluster sizes at any given
time follows a power law with a cut-off (upper bound) determined by the size of the lattice.
Interestingly, the relation between this upper bound and the lattice size is of the same form
as the relation between the peloton position and time in preferential attachment processes
(see Sec. 2.2.1.2 and Ref. [26] §3.9).

Figure 4.5 follows the BTW sandpile model on a 64x64 square lattice and we can see, almost
surprisingly, that the delayed temporal scaling function offers a good approximation of the
birth rate of critical clusters through time 4. More precisely, we followed the probability p(t)

4. Critical clusters are defined as clusters of connecting sites with height z∗ − 1.
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Figure 4.6 – More cluster populations in the Bak-Tang-Wiesenfeld model. We now follow
the evolution of the probability p(t) that the t-th site to reach a height of z∗−1 because of a manually
inserted grain of sand results in the creation of a new potential avalanche (critical cluster). Different
size L of square lattice (LxL) are investigated: 8x8 leads to b ' 0.018, 64x64 to b ' 0.0003, 128x128
to b ' 0.0002, and 256x256 to b ' 0.00015. All are fitted with p(t) = a(t+L2/2)−3.5 + b with ai fixed
to force p(1) = 1.

that the t-th site to reach a height of z∗ − 1 marked the birth of a new critical cluster, this
site only had neighbours with height < z∗ − 1. The temporal scaling exponent is also very
close to the one observed in percolation, 3.5 instead of 4.0, and both are significantly greater
than those observed in social or man-made systems. Similarly, the steady-state value, b ' 0.3
is far greater than those previously observed.

To change the birth rate parameters observed in the BTW model, we can adjust our metric,
lattice size, or the geometry. Changing our metric can mean, for instance, looking only at
sites that reach a height of z∗ − 1 when we “manually” drop a grain of sand and ignore all
events caused by self-organization (avalanches). This is done in Fig. 4.6 and leads to a much
lower value for the steady-state b. We can also change lattice size and affect both b and
the temporal delay τ . In fact, as seen in Fig. 4.6, we roughly observe τ ' L2/2 on a LxL
lattice. While we have yet to do so, we can assume that changing the geometry of the lattice
would affect all parameters, including the temporal scaling exponent α. Thus, controlling
the lattice geometry and size, we could tune the BTW model to reproduce social systems
with an asymptotic steady-state. While this was not done, the idea of using a sandpile
process to mimic a sexual system or the productivity of artists and scientists is certainly
appealing. Moreover, the death of critical clusters who cause avalanches opens the door to a
generalization of our framework to include removal of individuals.
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Chapter 5

On structure I:
Networks beyond preferential attachment

Résumé

Nous démontrons maintenant comment l’introduction de balles colorées dans le problème
d’urnes classique qu’est l’attachement préférentiel peut modéliser des propriétés universelles
de réseaux complexes. En effet, cet artifice nous permet de suivre quels individus interagissent
entre eux dans le cadre de leurs activités. Il est alors posside de faire ressortir certaines
structures universelles dans les toiles d’interaction obtenues. Plus précisément, nous unifions
ici l’indépendance d’échelle, la modularité et l’auto-similarité des réseaux complexes sous le
concept d’organisation communautaire libre d’échelle.

Pour ce faire, nous offrons une nouvelle perspective d’organisation des réseaux complexes où
les communautés, plutôt que les liens, jouent le rôle d’unités fondamentales. Nous montrons
comment notre modèle simple peut reproduire certaines caractéristiques des réseaux soci-
aux et des réseaux d’information en prédisant leur structure communautaire. De façon plus
importante, nous montrons comment leurs nœuds et leurs communautés sont interconnec-
tés. L’auto-similarité de ces systèmes se manifeste alors dans les distributions de connexions
observées entre noeuds et entre communautés.
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Summary

We here show how introducing coloured balls in the classic preferential attachment balls-in-
urns process models the emergence of some universal properties of complex networks. This
artifice allows us to track which individuals interact as part of their activities. We then
highlight universal features of the obtained web of interactions. More precisely, we here unify
the scale independence, modularity and self-similarity of complex networks under the concept
of scale-free community structure.

This brings a new perspective on network organization where communities, instead of links,
act as the fundamental building blocks. We show how our simple model can reproduce
certain features social and information networks by predicting their community structure.
More importantly, we also show how their nodes and their communities are interconnected.
The self-similarity of these systems then manifests itself in the distributions of connections
observed between nodes and between communities.

5.1 Structural Preferential Attachment: networks beyond the link

5.1.1 A universal matter

Reducing complex systems to their simplest possible form while retaining their important
properties helps model their behaviour independently of their nature. Results obtained via
these abstract models can then be transferred to other systems sharing a similar simplest form.
Such groups of related systems are called universality classes and are the reason why some
models apply just as well to the sizes of earthquakes or solar flares than to the sales number
of books or music recordings [78]. That is, their statistical distributions can be reproduced by
the same mechanism: preferential attachment. This mechanism has been of special interest
to network science [14] because it models the emergence of power-law distributions for the
number of links per node. This particular feature is one of the universal properties of network
structure [12], alongside modularity [48] and self-similarity [94]. Previous studies have focused
on those properties one at a time [12, 49, 94, 3, 52, 95], yet a unified point-of-view is still
wanting. In this chapter, we present an overarching model of preferential attachment that
unifies the universal properties of network organization under a single principle.

Preferential attachment is one of the most ubiquitous mechanisms describing how elements
are distributed within complex systems. More precisely, it predicts the emergence of scale-free
(power-law) distributions where the probability Pk of occurrence of an event of order k de-
creases as an inverse power of k (i.e., Pk ∝ k−γ with γ > 0). It was initially introduced outside
the realm of network science by Yule [102] as a mathematical model of evolution explaining
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the power-law distribution of biological genera by number of species. Independently, Gibrat
[47] formulated a similar idea as a law governing the growth rate of incomes. Gibrat’s law is
the sole assumption behind preferential attachment: the growth rates of entities in a system
are proportional to their size. Yet, preferential attachment is perhaps better described using
Simon’s general balls-in-bins process [92].

Simon’s model was developed for the distribution of words by their frequency of occurrence
in a prose sample [104]. The problem is the following: what is the probability Pk+1(i + 1)
that the (i + 1)-th word of a text is a word that has already appeared k times? By simply
stating that Pk+1(i + 1) ∝ k · Pk(i), Simon obtained the desired distribution [Fig. 5.1a]. In
this model, the nature of the system is hidden behind a simple logic: the “popularity” of an
event is encoded in its number of past occurrences. More clearly, a word used twice is 2 times
more likely to reappear next than a word used once. However, before its initial occurrence, a
word has appeared exactly zero times, yet it has a certain probability p of appearing for the
very first time. Simon’s model thus produces systems whose distribution of elements falls as
a power law of exponent γ = (2− p)/(1− p).

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104

pr
op

or
tio

n 
of

 w
or

ds

occurrences

Ulysses

empirical
numerical

(a) (b)

10-4

10-3

10-2

10-1

100

100 101 102 103

pr
op

or
tio

n 
of

 a
ct

or
s

quantity

IMDb

coactors
movies

(c)

Figure 5.1 – Spectrum of scale-free complex systems. (a) The distribution of words by their
number of appearances in James Joyce’s Ulysses (empirical data). The numerical data was obtained
from a single realization of Simon’s model with p equal to the ratio of unique words (30 030) on the total
word count (267 350). (b) Schematization of the systems considered in this chapter, illustrating how
order (Simon’s model of balls in bins) and randomness (Barabási-Albert’s model of random networks)
coexist in a spectrum of complex systems. (c) The distribution of co-actors and movies per actor in
the Internet Movie Database since 2000. The organization moves closer to a true power law when
looking at a higher structural level (i.e., movies versus co-actors).

5.1.2 On the matter of networks and community structure

Networks are ensembles of potentially linked elements called nodes. In the late 1990s, it was
found that the distribution of links per node (the degree distribution) featured a power-law
tail for networks of diverse nature. To model these so-called scale-free networks, Barabási and
Albert [12] introduced preferential attachment in network science. In their model, nodes are
added to the network and linked to a certain number of existing nodes. The probability that
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the new node chooses an old one of degree k is proportional to k ·Nk, where Nk is the number
of nodes of degree k. As the system goes to infinity, Nk falls off as k−3.

From the perspective of complex networks, Simon’s model may be regarded not as a scheme
of throwing balls (e.g., word occurrences) in bins (e.g., unique words), but as an extreme case
of scale-free networks where all links are shared within clearly divided structures. Obviously,
both Simon’s and the Barabási-Albert’s (BA) models follow the preferential attachment prin-
ciple. However, Simon’s model creates distinct growing structures, like the balls in bins of
Fig. 5.1(a), whereas the BA model creates overlapping links of fixed size, as on the random
network of Fig. 5.1(c). By using the same principle, one creates order while the other creates
randomness [Fig.5.1b]. Our approach explores the systems that lie in between.

The vast majority of natural networks have a modular topology where links are shared within
dense subunits [48]. These structures, or communities, can be identified as social groups,
industrial sectors, protein complexes or even semantic fields [81]. They typically overlap
with each other by sharing nodes and their number of neighbouring structures is called their
community degree. This particular topology is often referred to as community structure [Fig.
5.1b]. Because these structures are so important on a global level, they must influence local
growth. Consequently, they are at the core of our model.

The use of preferential attachment at a higher structural level is motivated by three obser-
vations. First, the number of communities an element belongs to, its membership number,
is often a better indicator of its activity level than its total degree. For instance, we judge
an actor taking part in many small dramas more active than one cast in a single epic movie
as one of a thousand extras, as we may consider a protein part of many complexes more
functional than one found in a single big complex.

Second, studies have hinted that Gibrat’s law holds true for communities within social net-
works [91]. The power-law distribution of community sizes recently observed in many systems
(e.g., protein interaction, word association and social networks [81] or metabolite and mobile
phone networks [2]) supports this hypothesis.

Third, degree distributions can deviate significantly from true power laws, while higher struc-
tural levels might be better suited for preferential attachment models [Fig. 5.1c].

5.1.3 A simple generalization of Preferential Attachment

Simon’s model assigns elements to structures chosen proportionally to their sizes, while the BA
model creates links between elements chosen proportionally to their degree. We thus define
structural preferential attachment (SPA), where both elements and structures are chosen
according to preferential attachment. Here, links will not be considered as a property of two
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given nodes, but as part of structures that can grow on the underlying space of nodes and
eventually overlap.

Our model can be described as the following stochastic process. At every time step, a node
joins a structure. The node is a new one with probability q, or an old one chosen proportionally
to its membership number with probability 1 − q. Moreover, the structure is a new one of
size s with probability p, or an old one chosen among existing structures proportionally to
their size with probability 1 − p. These two growth parameters are directly linked to two
measurable properties: modularity (p) and connectedness (q) [Fig. 5.2]. Note that, at this
point, no assumption is made on how nodes are linked within structures; our model focuses
on the modular organization.

Whenever the structure is a new one, the remaining s−1 elements involved in its creation are
once again preferentially chosen among existing nodes. The basic structure size s is called the
system base and refers to the smallest structural unit of the system. It is not a parameter of
the model per se, but depends on the considered system. For instance, the BA model directly
creates links, i.e. s = 2 (with p = q = 1), unlike Simon’s model which uses s = 1 (with q = 1).
All the results presented here use a node-based representation (s = 1), although they can
equally well be reproduced via a link-based representation (s = 2). In fact, for sufficiently
large systems, the distinction between the two versions seems mainly conceptual (see Ref.
[57] for details).

In our process, the growth of structures is not necessarily dependent on the growth of the
network (i.e., the creation of nodes). Consequently, we can reproduce statistical properties
of real networks without having to consider the large-size limit of the process. This allows
our model to naturally include finite size effects (e.g., a distribution cut-off) and increases
freedom in the scaling properties. In fact, we can follow Sn and Nm, respectively, the number
of structures of size n and of nodes with m memberships, by writing master equations for
their time evolution [35]:

Ṡn(t) = (1−p)(n− 1)Sn−1(t)− nSn(t)
[1 + p(s− 1)] t + pδn,s ; (5.1)

Ṅm(t) = (1+p(s− 1)− q)(m−1)Nm−1(t)−mNm(t)
[1 + p(s− 1)] t + qδm,1 . (5.2)

Equations (5.1) and (5.2) can be transformed into ordinary differential equations for the
evolution of the distribution of nodes per structure and structure per node by normalizing Sn
and Nm by the total number of structures and nodes, pt and qt, respectively. One then obtains
recursively the following solutions for the normalized distributions at statistical equilibrium,
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Figure 5.2 – Structural preferential attachment and the systems it creates. (top) Represen-
tation of the possible events in a step of node-based SPA; the probability of each event is indicated
beneath it. (bottom) A schematization of the spectrum of systems obtainable with SPA. Here, we
illustrate the conceptual differences between node-based s = 1 and link-based systems s = 2: Simon’s
model (q = 1) creates structures of size one (nodes), while the BA model (p = q = 1) creates random
networks through structures of size two (links).

{S∗n} and {N ∗m}:

S∗n =
∏n−1
k=s kΩs∏n

k=s (1 + kΩs)
where Ωs = 1− p

1 + p(s− 1) (5.3)

N ∗m =
∏m−1
k=1 kΓs∏m

k=1 (1 + kΓs)
where Γs = 1 + p(s− 1)− q

1 + p(s− 1) , (5.4)

which scale as indicated in Table 5.1, N ∗m ∝ m−γN and S∗n ∝ n−γS .
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System base s Membership scaling γN Size scaling γS
Node (s = 1) (2− q) / (1− q) (2− p) / (1− p)
Link (s = 2) [2 (p+ 1)− q] / (1 + q − p) 2/ (1− p)

Table 5.1 – Scaling exponents of SPA. Exponents of the power-law distributions of structures
per element (membership) and of elements per structure (size) at statistical equilibrium. One easily
verifies that the membership scaling of link-based systems with p= q = 1 corresponds to that of the
BA model (γN =3), and that node-based systems with q = 1 reproduce Simon’s model.
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Figure 5.3 – Reproduction of real systems with SPA. Circles: distributions of topological quan-
tities for (a) the cond-mat arXiv circa 2005; (b) Internet at the level of autonomous systems circa 2007;
(c) the IMDb network for movies released since 2000. Solid lines: average over multiple realizations of
the SPA process with (a) p = 0.56 and q = 0.59; (b) p = 0.04 and q = 0.66; (c) p = 0.47 and q = 0.25.
For each realization, iterations are pursued until an equivalent system size is obtained. The Internet
data highlights the transition between exponential and scale-free regimes in a typical community de-
gree distribution. It is represented by a single realization of SPA (dots), because averaging masks the
transition.

5.1.4 Results and discussions

There are three distributions of interest which can be directly obtained from SPA: the mem-
bership, the community size, and the community degree distributions. In systems such as
the size of business firms or word frequencies, these distributions suffice to characterize the
organization. To obtain them, the SPA parameters, q and p, are fitted to the empirical scaling
exponents of the membership and community size distributions. In complex networks, one
may also be interested in the degree distribution. Additional assumptions are then needed to
determine how nodes are interconnected within communities (specified when required).

The first set of results considered is the community structure of the co-authorship network
of an electronic preprints archive, the cond-mat arXiv circa 2005 [Fig. 5.3a], whose topology
was already characterized using a clique percolation method [81]. Here, the communities are
detected using the link community algorithm of Ahn et al. [2], confirming previous results.

Using only two parameters, our model can create a system of similar size with an equiva-
lent topology according to the four distributions considered (community sizes, memberships,
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community degree and node degree). Not only does SPA reproduce the correct density of
structures of size 2, 3, 4 or more, but it also correctly predicts how these structures are inter-
connected via their overlap, i.e., the community degree. This is achieved without imposing
any constraints whatsoever for this property. The first portion of the community degree dis-
tribution is approximately exponential; a behaviour which can be observed in other systems,
such as the Internet [Fig. 5.3b] and both a protein interaction and a word-association net-
work [81]. To our knowledge, SPA is the first growth process to reproduce such community
structured systems.

Moreover, assuming fully connected structures, SPA correctly produces a similar behaviour
in the degree distribution of the nodes. Obtaining this distribution alone previously required
two parameters and additional assumptions [3]. In contrast, SPA shows that this is a sig-
nature of a scale-free community structure. This is an interesting result in itself, since most
observed degree distributions follow a power law only asymptotically. Furthermore, this par-
ticular result also illustrates how self-similarity between different structural levels (i.e., node
degree and community degree distributions) can emerge from the scale-free organization of
communities.

Finally, the Internet Movie Database co-acting network is used to illustrate how, for bigger
and sparser communities which cannot be considered fully connected, one can still easily
approximate the degree distribution. We first observe that the mean density of links in
communities of size n approximately behaves as log(n)/n (see Sec. 5.2). Then, using a
simple binomial approximation to connect the nodes within communities, it is possible to
approximate the correct scaling behaviour for the degree distribution [Fig. 5.3c]. This method
takes advantage of the fact that communities are, by definition, homogeneous such that their
internal organization can be considered random.

5.1.5 Conclusion and perspective

In this chapter, we have developed a complex network organization model where connections
are built through growing communities, whereas past efforts typically tried to arrange ran-
dom links in a scale-free, modular and/or self-similar manner. Our model shows that these
universal properties are a consequence of preferential attachment at the level of communities:
the scale-free organization is inherited by the lower structural levels.

Looking at network organization beyond the link is also useful to account for missing links
[27] or to help realistic modelling [62, 64]. For instance, this new paradigm of scale-free
community structure suggests that nodes with the most memberships, i.e., structural hubs,
are key elements in propagating epidemics on social networks or viruses on the Internet. These
structural hubs connect many different neighbourhoods, unlike standard hubs whose links can
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be redundant if shared within a single community. Consequently, local action on these nodes
can be a more globally effective way to control a given dynamics [58].

There is no denying that communities can interact in more complex ways through time [80].
Yet, from a statistical point-of-view, those processes can be neglected in the context of a
structurally preferential growth. Similarly, even though other theories generating scale-free
designs exist [37], they could also benefit from generalizing their point of view to higher levels
of organization.

5.2 Appendix 5.A: Data, details and methods

This section gives more details on the datasets used in the chapter and on the methods
employed to characterize their topology.

5.2.1 Data

Internet Movie Database The dataset used for the co-acting network of IMDb consists only
of movies released after December 31st 1999. Interestingly, the degree distribution is almost
identical to that published a decade earlier [12] which consisted of all movies released before
the turn of the century. This suggests, since the two networks contain distinct and exclusive
ensembles of movies, that the growth parameters of the IMDb network are constant. The
network contains 7 665 259 links between 716 463 nodes (actors), where two actors share a
link if they are credited alongside another for at least one movie. It was only analysed using
the link community algorithm, because of memory issues with CFinder. The organization
levels corresponding to actual movies, which is how the dataset was originally compiled, was
deemed unsuitable for the study because of the presence of economic (limiting the number
of actors in a movie) and artistic (typically requiring a minimal number of characters in a
movie) constraints. We believe that a community detection process on the network actually
frees the system from these constraints and yield communities of actors linked by genre, time,
location, etc.

arXiv The cond-mat arXiv database uses articles published at http://arxiv.org/archive/cond-
mat between April 1998 and February 2004. In this network, an article written by n co-authors
contributes to a link of weight (n−1) between every pair of authors. The unweighted network
was obtained by deleting all links with a weight under the selected threshold of 0.1; resulting
in a network of 125 959 links between 30 561 nodes (authors). This dataset was compiled,
analysed and presented in [81].
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Internet This dataset is a symmetrized snapshot of the structure of the Internet at the level of
autonomous systems, reconstructed from BGP tables posted at archive.routeviews.org. This
snapshot was created by Mark Newman from data for July 22nd 2006. The network contains
22 962 nodes and 48 436 links.

5.2.2 Community detection

Community detection in networks is a challenge in itself. For instance, SPA creates network
when communities overlap. Consequently, we require algorithms that can 1) assign nodes to
more than one communities and 2) be tuned to investigate different levels of organization to
find one suited to be modelled through preferential attachment. In order to characterize the
networks used in Sec. 3.1, two independent and completely different algorithms were used:
a link community algorithm [2] and the clique percolation method of CFinder [81]. Results
use the link community algorithm, because it proved to be faster and better suited to detect
communities within communities. When possible, CFinder was used for cross-checking the
community partition.

Link communities

This algorithm assigns links, instead of nodes, to communities. Two links, eij and eik, stem-
ming from a given node i are said to belong to the same community if their Jaccard coefficient
J(eij , eik) (similarity measure) is above a given threshold Jc :

JA,B = A ∩B
A ∪B

> Jc , (5.5)

where A (B) is the set containing the neighbours of j (k) including j (k).

A large community can thus be composed of different smaller communities where the similarity
of their members’ neighbourhoods is higher than in the larger community. The link community
algorithm proved to be quite efficient at detecting these nested communities. That being said,
we have since developed a naive but simple and efficient way to get even better results from
the same algorithm [101].

CFinder and clique percolation

The original clique percolation method used by CFinder is designed to locate the k-clique
communities of unweighted, undirected networks. This community definition is based on the
observation that a typical member in a community is linked to many other members, but
not necessarily to all other nodes in the community. In other words, a community can be
interpreted as a union of smaller complete (fully connected) sub-graphs that share nodes.
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Such complete sub-graphs in a network are called k-cliques, where k refers to the number of
nodes in the sub-graph, and a k-clique-community is defined as the union of all k-cliques that
can be reached from each other through a series of adjacent k-cliques. Two k-cliques are said
to be adjacent if they share k − 1 nodes. CFinder is available at http://cfinder.org/.

5.2.3 Levels of organization

The first step when looking to compare the structure of real networks with systems produced
by SPA is to analyse the empirical data. As mentioned earlier, our main algorithm (the link
community algorithm [2]) has a single parameter to tune for community detection: its Jaccard
threshold. The Jaccard threshold embodies how similar the neighbourhoods of the ends of
two links must be in order for these links to be considered as part of the same link community.
Tuning this parameter, demanding how tightly connected a group of nodes must be in order
to be labelled as a community, allows us to look at different levels of organization within the
network. If too small, the algorithm will most likely end up with communities corresponding
to the connected components of the networks. If too big, significant communities will be
broken up into different smaller ones. In this work, we proceeded by sweeping this parameter
in order to find the level of scale-free organization.

5.2.4 A note on node-based and link-based systems

All results presented in the SPA section used a node-based version of SPA. Which means
that new structures contain a single node and that they will remain disconnected from the
other components of the network until they reach an older node. For the IMDb data, this
choice is not even a question as the network contains many such satellites structures (even
some of size one) which are disconnected from the giant component. In other systems, like
the arXiv network, the choice can be more complicated. One might be tempted to use a link-
based system process to reproduce the arXiv, since it is a co-author network and thus cannot
contain isolated nodes. However, it does contain some disconnected components, which a link-
based process like the Barabási-Albert model [12] is incapable of producing. Hence, it seemed
logical to use the node-based process and simply remove the structures of size one (nodes
who failed to co-author a paper) from the final system. As a final point on the subject, it is
interesting to note that we have been able to reproduce all results using both the node-based
and link-based version of SPA. In sufficiently large and connected systems, the distinction
between the two seems mainly conceptual. In fact, a naive mapping of one to the other has
been shown to be very accurate [57].
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Figure 5.4 – Supplementary results for SPA on the Internet and the IMDb. (a) �: distribu-
tions of topological quantities for the ensemble of the Internet at the level of autonomous system circa
2007; solid lines: average over multiple realizations of the SPA process with p = 0.04 and q = 0.66. The
empirical network was analysed using the link community algorithm [2] with Jaccard threshold 0.08.
(b) The mean number of links per node within a given community as a function of the community size
in the IMDb network. The fit is done using a logarithmic function of the form f(x) = a · log(x+ b)− c.

5.2.5 Supplementary results and discussions

Section 3.1 presented our results for the arXiv network, the Internet and the Internet Movie
Database. The arXiv data is completely shown, but the Internet is illustrated for communities
of size 3 or bigger (as done by the authors of the detection algorithm [2]) because the algorithm
can overestimate the number of communities of size 2 and the goal is here to highlight the
connectedness of communities. For the IMDb, the community size distribution is normalized
for communities of size 3 or bigger, but the communities of size 2 are considered in the
membership and degree distributions. These results highlight how these systems follow a
scale-free community structure and how SPA can be used to predict behaviour outside of the
model’s specification. More precisely, the numerical systems predict how the communities
are interconnected via their overlap, reproducing the exponential behaviour and the heavy
tail of the community degree distribution. It is interesting to note that averaging over many
iterations of the SPA process highlights the distribution cut-off caused by the finite size of
the system. This effect is mostly visible on the arXiv results. On the other hand, because
the position of the transition between exponential and power-law behaviour observed in the
cumulative community degree distribution is highly dependent on the amount of “leading”
structures (i.e. the number of structures which are able to break away from the majority and
thus have a significantly bigger size), it can differ slightly between two realizations of SPA.
In this context, averaging over multiple iterations of the same process partly smooths out the
transition. For this reason, a single realization of the model is also presented on Fig. 5.4a to
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better illustrate the behaviour of community degree in a finite system.

5.2.6 From communities, back to links

This last subsection presents results which, although preliminary, imply that individuals
within a given social community can be approximated as being randomly connected. The
first step in shifting our point of view from communities back to links is to evaluate just how
connected the communities of our systems are. Figure 5.4b illustrates the mean number of
links per node within a given community as a function of the community size, which is found
to grow logarithmically. Using this measure to determine the density of a structure of a given
size, we simply throw a dice for each possible link to determine which links actually exist,
while respecting the actual density of the network. This allows us to move from a potential
degree distribution to an estimated degree distribution. If the binomial approximation (all
links within a given community exist only with a certain probability) is correct, this esti-
mated degree distribution should be close to the actual degree distribution of the system we
are trying to reproduce. According to Fig. 5.3c, this is indeed the case. It is easy to note
that the number of nodes of small degree is overestimated by SPA. As we will see in the next
chapter, this is most likely a result of not considering enough structural levels.

5.3 Appendix 5.B: A preview of a future application

This chapter dealt with the so-called community structure of networks: a description of the
grouping of nodes in communities in terms of group size and overlap. However, except for very
basic assumptions, we never attempted to describe the structure of communities: an internal
description of communities as sub-networks. In fact, the community structure literature is far
from reaching any consensus on how to define these communities. How dense or clustered are
they? How flexible must our definition be for it to remain applicable in a scale-independent
community structure? In one of our ongoing projects, we attempt to answer these questions
in order to generalize SPA to a model of community structure and structure of communities.
To do so, we focus mainly on empirical observations.

5.3.1 Empirical observations

As mentioned in introduction, even though the field of community detection on networks is
blooming, there are currently no consensus on what a community should look like. Con-
sequentially there is no clear definition of what models of network growth should aim for
when modelling the structure of communities. That being said, some common features can
be extracted from almost all definition of communities, such that one could hope to design a
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(a) (b) (c)

Figure 5.5 – Examples of unacceptable structure of communities. Although unacceptable on
their own, our mechanism implies a flexible definition encompassing the variable density of (a), the
potential heterogeneity of (b) and the connectedness of (c).

model flexible enough to be useful in association with most detection algorithms. Figure 5.5
presents a few possible organization of communities. Yet, all of these organisations can and
should be rejected based on intuitive properties of social groups.

First, Fig. 5.5a presents communities formed through a Poissonian scheme (or Bernouilli
trial) as in Erdős-Rényi graphs [41], where each pair of nodes are potentially linked with
a fixed probability. This scheme does not reject the possibility of having nodes of degree
zero. Intuitively, a community with individuals sharing no links with the other members does
not make much sense. Similarly, with the network as sole information, no algorithm could
potentially assign a node to a group in which he share no connection. Our first consideration
thus implies community connectedness: each member of a community should be reachable
from any other member.

Second, Fig. 5.5b presents highly heterogeneous communities. Community structure, under its
simplest form, is defined in opposition to random organization; implying correlations between
one’s friends, and the friends of his friends. Community can be heterogeneous, but they must
at least be distinguishable from the rest of the network. This second consideration requires
a certain redundancy between the neighbourhoods of members of a given community, and
consequently, that small community should be denser than expected in a corresponding fully
rewired (or random) network.

Third, Fig. 5.5c presents fully connected communities. While these communities respect our
first two considerations. They are obviously far too rigid to be of practical use. For instance,
in a network of professional ties where we would seek to identify different fields and companies,
we would never require a given individual to be connected with every single other employee of
his company. Obviously, while a complete density might be expectable for smaller groups, it
is hardly ever achieved in larger social structure (companies, universities, cities). This third
consideration merely relaxes the second one: large communities can be sparse even while
featuring redundancy in the neighbourhoods of their members.
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Based on these three considerations and the SPA model, we can go forward and propose a
simple and intuitive mechanism describing how social groups tend to grow.

5.3.2 Including the structure of communities in SPA

A preferential attachment scheme at the level of communities implies that a community has
a growth rate (or recruitment rate) proportional to its current size. This can be interpreted
as if each current member of a community introduces a new member at a given rate. This
preferential attachment mechanism is not only intuitive, but does in fact reproduce properties
of real networks [56]. It is then natural to consider a similar logic for the creation of new links
between members of a community.

Our generalized SPA* model is simply stated. The growth of communities is governed by
our SPA model, but we include an additional process for the growth of structure within
communities. From an internal point of view, each member of a community of size n recruits
a new member at rate r, such that the growth rate ṅ of a community of size n is proportional
to rn. The new member is initially connected only to the individual who introduced it within
the group (its degree, i.e. number of links, equals 1 within this community). This assures
connectedness (consideration #1). However, each member also creates a new link at a rate
b until its degree equals n − 1 (such that it is connected to every other member). The links
created by existing members must then randomly select a receiving individual. Consequently,
a single member can gain degree faster than rate b if other members make the effort of creating
the link, thus helping smaller communities maintain a high density (consideration #2).

The number nk(t) of individuals with degree k within an average community of size n can be
followed through time t by a master equation:

ṅk(t) = rnδk,1 + b
(
nk−1δ̄k,n − nkδ̄k,n−1

)
+ r (nk−1 − nk)

+
(
b
n−2∑
k′=1

nk′

)
(n− k)nk−1 − (n− 1− k)nk∑n−1

k′=1 (n− 1− k′)nk′
(5.6)

where δi,j is the Kronecker delta and δ̄i,j = 1 − δi,j . The first term accounts for the arrival
of new members (with k = 1) at rate rn. The second term is due to the creation of links,
which brings an individual of degree k − 1 to degree k [positive for nk(t)], and individual of
degree k to degree k + 1 [negative for nk(t)]. The third term is due to the receiving end of
links created when a new individual joins the community; while the last term accounts for
the link creation between existing members. The parenthesis is the creation rate, while the
ratio yields the probabilities of it affecting a node of degree k − 1 [positive for nk(t)] or of
degree k [negative for nk(t)]. This complete description of the average state of a community
is validated in Fig. 5.6.
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Figure 5.6 – Internal structure of diverse communities in SPA* and empirical data. (top)
Degree distribution for various community sizes with λ = 9. Comparison between results of Eq. 5.6
(small dots) and the average of Monte-Carlo simulations (closed squares, circles and triangles). Lines
are added to guide the eye. Small and medium size communities are highly homogeneous, while
degree distributions of larger communities are heavily skewed: with a mode at k = 1 for an average
approaching 〈k〉n = 20 in the limit n → ∞. The discrepancy between simulations and the results
of Eq. 5.6 can be traced back to the continuous approximation involved in writing differential mean-
field models, as well as the absence of structural correlation in this type of model. The net effect
is a shift of the prediction toward higher degrees for the bulk of the distribution. (bottom) Similar
organization found in real-world networks: (left and middle) small and medium size communities found
in the sexual network presented in Chap. 3, (right) large scale communities found in the co-authorship
network presented in this chapter. Lines again follow the mean-field description of the model, with λ
chosen by hand to qualitatively reproduce the correct internal state. The empirical distributions are
obtained by averaging over multiple communities of similar size.

A simpler point of view can be adopted to gain further insights into the relation between
the internal degree of an average individual (node) 〈k〉 and the size n(t) =

∑
k′ nk′(t) of the

community. Since the average internal degree 〈k〉n is directly related to the average number
of links L(t) within a community of size n(t) at time t, we obtain a mean-field equation for the
latter as it is easier to follow analytically. Assuming a uniform and uncorrelated distribution
of links among individuals, we can write

dL

dt
= rn+ bn

[
1−

(
L

Lmax(n)

)n−1
]
, (5.7)

since any given individual will create a link at rate b if he has currently less than n− 1 links.
Here Lmax(n) simply equals n(n− 1)/2 (the case where every link exists). A straightforward
transformation yields L as a function of the average size at time t (using dn/dt = rn):

dL

dn
= dL

dt

dt

dn
= 1 + λ

[
1−

(
L

Lmax(n)

)n−1
]
, (5.8)

where λ = b/r. While the degree distribution is neither uniform nor uncorrelated in the
complete model (see Fig. 5.6), we will see that our simplification are robust enough, and that
Eq. (5.8) accurately reproduces the average density of communities.
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Figure 5.7 – Relation between SPA* and “Dunbar’s number”. We show the average number
of connections for a given individual within a group of size n. (top) arXiv (bottom) MathSciNet [83].
The community detection algorithms are: (gray squares) cascading approach to clique percolation
(CCPA) [101, 81], (red inverted triangles) link community algorithm (LCA) [2], (blue triangles) order
statistics local optimization method (OSLOM) [68], (green circles) greedy modularity optimization on
line-graphs (LG) [45], and (magenta lozenge) greedy clique expansion (GCE) [69]. All algorithms are
used as prescribed by their original authors: CCPA is performed with k-cliques of sizes 6,4, and 3; the
maximal density partition that excludes singleton is selected for LCA, the basic level of organization
(community structure) is selected for OLSOM, the random-walker mapping with weights and self
loops is used for LG, and we use default parameters for GCE (4 is the minimal clique size). Analytical
predictions of Eq. 5.8 are shown in solid lines, tuned for the organization represented by each algorithm,
with averages of the corresponding Monte-Carlo simulations in colorless symbols. All values of λ were
set using Eq. 5.10 and are, from top to bottom: (arXiv) 6.5, 4.7, 2.7, 2.5 and 1.8. (MathSci) 2.5, 1.3,
1.1 and 0.7.

A simple analysis of Eq. (5.8) highlights an interesting feature of this model. For large sizes n,
the ratio L/Lmax(n) goes to zero while n� 1 by definition, such that a maximal link creation
rate

dL

dn
' 1 + λ (5.9)

is attained. Hence, the intensive quantity L/n → (1 + λ) converges toward a constant that
depends on the parametrization of the model alone. Considering that one link equals two stubs
(or degree), the asymptotic average degree is directly related to the parameter λ through:

〈k〉∞ = 2L
n

= 2 (1 + λ) . (5.10)

This indicates a maximal average number of connections in social group (consideration #3).

5.3.3 Relation to Dunbar’s number

Previous results and those presented in Fig. 5.7 illustrate how different community detection
algorithms possess qualitatively equivalent features even if they use different definitions of
communities and consequently investigate different organizations. More precisely, results
of Fig. 5.7 highlight how there exist two different behaviours for the average number of
links per individual in relation to the size of a social group. For low sizes n, the mean
degree 〈k〉n essentially scales linearly with the community size as everybody knows each other
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within small groups (e.g. family or close friends). For larger sizes n, 〈k〉n reaches a plateau 1,
Eq. (5.10), where a typical individual will not gain new connections when the potential number
of connections is increased. So while there is no maximal community size per se, there is a
maximal number of connections that an average individual might possess within a given group
(e.g. large companies or online communities). This effectively implies a maximal community
size as connection density will decrease as size is increased until the community barely qualifies
as a group.

Interestingly, this behaviour of individual activity 〈k〉n with respect to community size n has
been previously observed in studies related to an anthropological theory known as Dunbar’s
number [40]. This theory is based on the observed relation between neocortical sizes in
primates and the characteristic sizes of their social groups. Its interpretation usually involves
information constraints related to the quality of interpersonal connections and our ability to
maintain such relationships. While the importance of neocortical sizes is surely disputable
[31], the fact remains that empirical evidence supports the existence of an upper bound in the
absolute number of active relationships for a given individual [51]. Similarly, our empirical
results indicate that an upper bound may exist in the number of connections one individual
can maintain within a given social group.

In our intuitive model, this upper bound naturally emerges and is solely dependent on the
λ parameter. This parameter can be interpreted as the ratio between the involvement of an
individual in a community, in the sense of bonding with other members, and its contribution to
the growth rate of the community. For low λ or large community sizes, the rate of change in the
population is higher than an individual’s involvement, such that the maximal degree stagnates.
Whereas, for high λ and small communities, the individual is able to follow population changes
and hence create relationships with most of its members. Thus, different types of social groups
will feature different λ and consequently different values of “Dunbar’s number”.

In this interpretation, the upper bound for individual degree in social groups is due to the
fact that connections and introduction of new members have linear requirements for indi-
viduals, whereas this implies that groups grow exponentially. Other mathematical models
exist to describe Dunbar’s number (e.g. [51]), usually based on arguments of priority and/or
time resources. However, our model is based on the observed community structure of real
world networks and consequently, explains Dunbar’s number in terms of its two base units,
individuals and groups, and the ratio of their respective characteristic rates.

Future work will investigate the use of this complete model as a benchmark for community
detection algorithm. Investigating, for instance, how Dunbar’s number implies a limit in
detectability for communities of very large sizes as they become sparser than the global
density of the network.

1. The transition between the two density regimes was initially observed in Fig. 5.4b.
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Chapter 6

On structure II:
Hierarchical preferential attachment

Résumé

Les systèmes complexes réels n’ont pas de structure fixe, et il n’existe aucune règle pour leur
reconstruction. Tout de même, dans leur apparent désordre, d’étonnantes propriétés struc-
turelles semblent émerger universellement. Dans ce dernier chapitre, nous proposons qu’une
large classe de systèmes complexes peut être modélisée comme une construction de plusieurs,
voire une infinité, de niveaux d’organisation suivant tous le même principe universel de crois-
sance qu’est l’attachement préférentiel. Nous donnons des exemples de telles hiérarchies, dont
la pyramide de production de l’industrie cinématographique. Nous démontrons aussi com-
ment les réseaux complexes peuvent être interprétés comme une projection de notre modèle,
de laquelle leur indépendance d’échelle, leur modularité, leur hiérarchie, leur fractalité et leur
navigabilité émergent naturellement. Nos résultats suggèrent que certaines propriétés des
réseaux complexes peuvent être relativement simples, et que leur complexité apparente est
largement une réflexion de la structure hiérarchique complexe de notre monde.
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Summary

Real complex systems are not rigidly structured; no clear rules or blueprints exist for their
construction. Yet, amidst their apparent randomness, complex structural properties appear
to universally emerge. In this last chapter, we propose that an important class of complex
systems can be modelled as a construction of potentially infinitely many levels of organization
all following the same universal growth principle known as preferential attachment. We give
examples of such hierarchy in real systems, for instance in the pyramid of production entities of
the movie industry. More importantly, we show how real complex networks can be interpreted
as a projection of our model, from which their scale independence, their clustering, their
hierarchy, their fractality, and their navigability naturally emerge. Our results suggest that
certain properties of complex networks can be quite simple, and that the apparent complexity
of their structure is largely a reflection of the hierarchical nature of our world.

6.1 What makes complex networks complex

The science of complexity is concerned with systems displaying emerging properties; i.e.,
systems where the properties of the parts do not directly dictate the properties of the whole
[93]. In what follows, we generalize the work of the previous chapter and show how one
property of the whole, hierarchy, can alone be the origin of more complex features. We describe
hierarchical systems through a general model of coloured balls in embedded bins which itself
explains the emergence of other features through the projection of these hierarchical systems
onto complex networks.

Real networks tend to be sparse and appear highly disorganized, but they also tend to feature
properties not found in any classic models of sparse random networks: scale independence,
fat-tailed degree distribution [24, 12]; modularity, the grouping of nodes in denser groups
[98, 49, 56]; hierarchy, the embedding of multiple levels of organization [90, 27]; fractality,
the self-similarity between levels of organization [94, 95]; and navigability, the possibility of
efficient communication through a hidden metric space [20, 21, 84].

Sophisticated algorithms can be designed to reproduce most of these features, often based
upon a multiplicative process to force their emergence by reproducing a basic unit on multiple
scales of organization [89, 82]. These models are useful as they can create realistic structures
and test hypotheses about measured data. However, these constructions are not intended to
provide any insights on the underlying mechanisms behind a system’s growth.

On the other hand, simple generative models are quite successful at suggesting principles
of organization leading to specific properties. For example, simple models exist to propose
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possible origins for scale independence [12] or of the small-world effect [98], but they fail to
model the emergence of properties not included by design. Consequently, the identification
of new universal properties require the creation of new generative models, such that a single
unifying principle has yet to be proposed.

In this last chapter, we bridge the gap between complex deterministic algorithms and simple
stochastic growth models. To this end, we propose that to accurately model a complex
network, we should first ignore it. The hierarchical nature of networks suggests that the
observed links between nodes are merely projections of higher structural units [27, 56, 57]
(e.g., people create groups within cities in given countries). These subsystems will be our
focus. We use one general assumption to design an equally general model of hierarchical
systems: embedded levels of organization all follow preferential attachment. We validate
this model on the well documented dataset of production entities in the movie industry (i.e.,
producers produce films within companies in given countries). We then study the structure of
the projection of this system onto a complex network of co-production between film producers.
Interestingly, the resulting networks feature a scale-independent hierarchical organization,
community structure, fractality and navigability.

By reducing the complex to the simple, we provide new insights on the mechanism behind
the growth of complex networks at the level of individual nodes and open new perspectives
on the origins of networks as we know them.

6.2 Hierarchical Preferential Attachment (HPA)

6.2.1 A return to classical preferential attachment

The preferential attachment principle is a ubiquitous right-get-richer mechanism modelling
complex systems of all nature [102, 47, 92, 32, 24, 12, 56]. Simply put, it implies that the
likelihood for a given entity to be involved in a new activity is roughly linearly proportional
to its past activities. For instance, an individual with 10 acquaintances in a social network is
roughly 10 times more likely to gain a new connection than one with a single acquaintance.
This simple mechanism leads to a scale-independent organization of the distribution of the
activity in question; modelling any system where the distribution of a resource among a pop-
ulation roughly follows a power-law distribution. Consequently, the number Ns of individuals
with a share s (∈ N) of the resource scales as s−γ , where γ is the scale exponent.

We consider a discrete time process where, during an arbitrary time step ∆t, a new element i
of share si = 1 is introduced within the system with probability B (birth event) and that the
share sj of one existing element j is increased to sj+1 with probability G (growth event). We
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can write a mean-field equation governing the number of individuals Ns with a given share s:

Ns(t+ ∆t) = Ns(t) +Bδs,1 + G

(B +G) t [(s− 1)Ns−1(t)− sNs(t)] (6.1)

where (B +G) t =
∑
sNs(t), the sum of all shares, is used to normalize the transition prob-

abilities. This simple model is easily shown to converge toward the following asymptotic
organization

lim
t,s→∞

Ns(t) ∝ s−γ with γ = 2 + B

G
. (6.2)

Considering that this organization is found in distributions of friends [12], of members in
social groups [56] and of city population [104], it is natural to ask: How would a preferential
attachment occurring on multiple levels influence the created structure? It is a popular idea
that complexity frequently takes the form of hierarchy and that a hierarchical organization
influences the property of the whole independently of the nature of its content [93]. With
the recent successes of preferential attachment models, we hereby propose a generalization
for hierarchical systems.

6.2.2 Hierarchical preferential attachment (HPA)

Classic preferential attachment processes can be described as schemes of throwing balls in
bins. In the last chapter, we introduced coloured balls to represent individuals in social
systems where individuals (unique colours) can be interpreted as a resource of social groups
(boxes) and vice versa [56]. This leads to a natural interpretation of preferential attachment
as a growth process for structured systems. Here, we generalize further by considering systems
consisting of an arbitrary number d of embedded levels of organization. Hence, we can describe
HPA as a scheme of throwing coloured balls in d embedded levels of structures (say, urns in
bins in boxes for d = 3).

HPA processes can be described by using d different versions of Eq. (6.1) for the sizes of
structures (e.g., how many balls in each urn? or how many urns in each bin?) and d more for
the activities of individuals (e.g., in how many urns/bins/boxes does a given colour appear?).
The dynamics is then completely determined, assuming we obtain the birth and growth
probabilities (i.e., B and G for colours and structures at each structural level).

6.2.3 A model of HPA

We here describe a simple HPA model based on Herbert Simon’s preferential attachment
process [92] and explicitly show how it can be followed analytically. However, note that the
details involved in the analytical description of the model are not necessary to our results.
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Figure 6.1 – Schematization of hierarchical preferential attachment. HPA process frozen as
a green ball (labelled 4) is added to structure f3. In this event, structure a1 was chosen for growth
(probability 1 − p1), then structure c2 (probability (1− p2) · 3/6), then structure f3 (probability
(1 − p3) · 3/8). The colour had to be new for structure f3 (q3 = 1), and was chosen to be new for
structure c2 (probability q2), but old for structure a1 (probability 1− q1). At this point, the accessible
colours were those labelled 1, 2, 3 and 4 and all had the same probability of being chosen as they all
belong to a single level 2 structure. (top left) Representation as coloured balls in embedded levels of
structure (urns in bins in boxes). (top right) Hierarchical representation as an inverted tree. Navigating
downward corresponds to moving in smaller structure until we reach the balls therein. (bottom left)
Network representation of links between balls. In this case, two nodes share an edge if they belong
to a same level 3 structure. Other projection could be considered: for example, the network of level
2 structures sharing at least one type of ball. In this case, adding ball number 4 to structure f3
would connect b2 and c2 while a2 remains disconnected. (bottom right) Mathematical representation
according to the quantities defined in the text: numbers Nk,m of balls appearing in m structures of
level k and numbers Sk,n of level k structures containing n substructures (or ball) at level k + 1.

Some visual representations of the model are given in Fig. 6.1. While cryptic at this point,
they should become clearer with the following description.

During a time step ∆t, one event takes place: a ball is thrown in d embedded structures. We
refer to level 1 as the top, or superior, level (i.e., the biggest boxes). Consequently, this event
marks the birth of a new structure at level 1 with probability p1, or the growth of an existing
level 1 structure with complementary probability 1 − p1. If a new structure is created, this
forces the creation of one structure on all inferior levels. If an existing structure is chosen
for growth, this is done preferentially to their size, i.e., the number of level 2 structures that
they contain. Within the chosen structure, the process is repeated. A new level 2 structure
is created with probability p2 or an existing one grows with probability 1 − p2. Once the
level (the smallest structure, the urn) in which the event occurs has been chosen — which
implies that either a level x structure has been created or that we have reached the lowest
level (x = d) — the colour of the involved ball must then be determined.
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With probability 1−qx−1 the colour is chosen, among all colours already occurring within this
particular level x − 1 structure, proportionally to the number of level x structures in which
they appear; whereas with probability qx−1 the colour is chosen according to a superior level.
In this second scenario, we move to the superior level and then repeat the operation (with
qx−i using i = 2 then higher values if necessary) until one of two situations is encountered.
If the colour has to be chosen within a level y structure, which occurs with probability
(1− qy)

∏x−1
z=y−1 qz, the colour is chosen among all colours occurring in this level y structure,

proportionally to the number of level y+1 structures in which they appear. If the colour has to
be chosen according to a level superior to level 1, a new colour is introduced with probability
q0 or chosen in the other level 1 structures with probability 1− q0. Thus, for an HPA process
with d levels, the needed parameters are pi with i ∈ [1, d] and qj with j ∈ [0, d − 1]. Some
trivial parameters that will be useful are p0 = 0 and qd = pd+1 = 1; respectively meaning we
never create a new system, never put a ball twice in the same urn, nor put balls within balls.

Table 6.1 – Summary of mathematical quantities involved in HPA

B
(S)
k Probability of a new structure appearing at level k during a time step

G
(S)
k Probability of a level k structure getting a new level k + 1 structure

B
(N)
k Probability of a new ball colour appearing at level k, B(N)

k = Q ∀ k
G

(N)
k Probability of a ball colour appearing in a new level k structure

Q Probability of a new colour/node being born in a time step, B(N)
k = Q ∀ k

Sk,n Number of level k structures containing n level k + 1 structures
Nk,m Number of ball colours appearing in m level k structures
Pk Probability that a level k + 1 structure belongs to a level k structure of size one
Rk Probability that the colour of the ball involved in an event was chosen according to level k

We then map these construction rules onto an embedded systems of preferential attachment
equations. For each ∆t, the structures of level k have probabilities of birth, B(S)

k , and growth,
G

(S)
k , given by

B
(S)
k =

k∑
i=1

pi

i−1∏
j=1

(1− pj) and G
(S)
k = pk+1

k∏
i=1

(1− pi) (6.3)

since birth events occur if structures are created at level k or at a superior level (k′ < k), but
growth events require a creation at level k + 1. From these probabilities, the number Sk,n(t)
of structures of level k with size n can be approximately followed using Eq. (6.1) (a more
complete set of embedded equations is given in Sec. 6.5):

Sk,n(t+ ∆t) = Sk,n(t) +B
(S)
k δn,1 + G

(S)
k(

G
(S)
k +B

(S)
k

)
t

[(n− 1)Sk,n−1(t)− nSk,n(t)] . (6.4)
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From Eq. (6.2), we obtain the asymptotic scaling of structure sizes at level k:

γ
(S)
k = 2 + B

(S)
k

G
(S)
k

. (6.5)

While the description of structure sizes is a straightforward problem, things get convoluted
for the number Nk,m(t) of colours appearing in m structures of level k. An important logical
constraint occurs for structures of level k < d with size equal to one: if the colour is new for
its sole inferior structure of level k + 1, it must logically be new for the structure of level k.
Thus, the probabilities {qk} are not strictly respected, but instead follows a corrected set of
probabilities:

q′k(t) = qk + Pk−1(t) (1− qk) = qk + Sk−1,1(t)∑
n nSk−1,n(t) (1− qk) (6.6)

where Pk−1(t) is the probability that the structure of interest at level k is the sole substructure
of the selected structure of level k − 1. In other words, if the colour is new at level k, it can
either be because of the initial probability qk, or because it was forced to be new by the
aforementioned logical constraint. The probabilities Pk−1(t) can be obtained from the master
equation for sizes of level k − 1 structures, and so can their steady state values in the limit
t→∞ (as per our usual method, see Sec. 6.5). These values yield

lim
t→∞

q′k(t) = qk + (1− qk)
1 + 2G(S)

k−1/B
(S)
k−1

. (6.7)

It is then a matter of evaluating the birth and growth probabilities, B(N)
k and G(N)

k for colours
occurrences within level k. As a new colour must simultaneously appear in one structure of
all levels, the birth probabilities are simply given by the global birth probability Q (total
probability that a new colour is introduced during a time step):

B
(N)
k = Q =

d+1∑
x=1

px

x−1∏
y=0

q′y

[x−1∏
z=0

(1− pz)
]
∀ k . (6.8)

To obtain the growth probabilities, we first write the probability Rk that the chosen colour
is an existing one selected according to level k. These probabilities are easily calculated for
the two lowest structural levels (e.g., Rd implies that we reach level d and select an existing
colour at level d− 1):

Rd =
(
1− q′d−1

) d−1∏
i=1

(1− pi) (6.9)

Rd−1 = pd−1
(
1− q′d−2

) d−2∏
i=1

(1− pi) + q′d−1
(
1− q′d−2

) d−1∏
i=1

(1− pi) . (6.10)
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Figure 6.2 – Hierarchical structure of movie production. Events involving producers are dis-
tributed among three structural levels: movies on level 1, production companies on level 2 and
countries on level 3. (left) Distribution of the number of movies/companies/countries a given pro-
ducer is involved with. (right) Number of producers/movies/companies involved within a given
movie/company/country. The empirical data is shown in dots, while lines and crosses are obtained
by iterating Eqs. (6.4) and (6.13) and by direct Monte-Carlo simulation of HPA respectively for 106

time steps using p1 = 0.0005, p2 = 0.185, p3 = 0.385, q1 = 0.80, q2 = 0.60, and q3 = 0.50. Simulated
results of S1,n are not shown to avoid cluttering the figure (note that the plateau observed in the
empirical data is due to finite size). The correspondence between the observed scale exponents and
our mathematical results implies that the model is not over parametrized. The chosen parameters
were selected to roughly reproduce the qualitative behaviour of each distribution.

Extrapolating from the construction of these probabilities yields a recursive expression:

Rk−1 = pk−1
(
1− q′k−2

) k−2∏
i=1

(1− pi) + q′k−1
(
1− q′k−2

) Rk
1− q′k−1

, (6.11)

starting from Rd given above. The terms G(N)
k can then be written as the sum of the proba-

bilities of choosing an existing node according to level k or any superior level:

G
(N)
k =

k∑
i=1

Ri . (6.12)

This result respects Q(t) + G
(N)
k (t) = 1 for k = d as we always add at least one ball to one

urn. We here made the time dependency explicit since {q′i} are time dependent for small t.
It is finally obtained that the numbers of colour appearing m times in level k follow

Nk,m(t+ ∆t) = Nk,m(t) +Q(t)δm,1 + G
(N)
k (t)[

Q(t) +G
(N)
k (t)

]
t

[(m− 1)Nk,m−1(t)−mNk,m(t)] .

(6.13)
where we make the time dependency of Q(t) and G(N)

k (t) explicit, since {q′i} are time depen-
dent for small t. For t → ∞, the system converges to statistical equilibrium and scales as
m−γ

(N)
k following {q′i} given by Eq. (6.7) and:

γ
(N)
k = 2 + Q

G
(N)
k

. (6.14)
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Figure 6.3 – Scale independence and clustering of a projected hierarchical systems. (left)
Degree distribution observed in networks created by projecting the systems of Fig. 6.2 on webs of
co-production credits (the actual data and one simulated system). A network obtained through the
classic preferential attachment model [12] (PA) is given for comparison. (middle) Average clustering
coefficient for nodes of degree k. PA leads to a vanishing clustering C(k) = 0 for all degree k in
large networks. (right) Distribution of node centrality measured with their coreness c under k-core
decomposition of the networks. PA leads to a unique shell of coreness c = 1 because of the network’s
tree like structure.

To validate Eqs. (6.4) and (6.13), we reproduce the pyramid of production entities in the
movie industry. Based on the Internet Movie Database (IMDb), we study a system with 3
structural levels where producers (coloured balls: one ball is one producing credit, while a
colour represents a unique producer) are thrown in films (urns) which are associated with one
principal production company (bins), itself associated with one country (boxes). The results
of this case study are presented in Fig. 6.2. To fix the HPA parameters with the empirical
data, we simply start by reproducing by eye the size distributions from the top down since
they are independent of {qi} and only depend on the size of the superior levels. We then
reproduce the membership distributions from the bottom up since they only depend on the
previously fixed {pi} and the memberships at inferior levels.

6.3 Complex networks as an emerging property of HPA

Even with the advent of large databases, few hierarchical systems are categorized and refer-
enced as such. Consequently, research tend to focus on a single level of activity. For instance,
the IMDb is often studied as a network of co-actors [12, 98]. Or, in the case of the system
used in Fig. 6.2., a network of co-production where producers are connected if they produced
a film together (if their balls are found within a common level d structure). Effectively, this
implies that the system is reduced to a projection of all structural levels onto the chosen
activity. While the involvement of actors and producers in movies are well captured, their
involvement in different companies and countries is then encoded, and thus usually lost, in
the structure of the resulting network.

Figure 6.3 presents some basic properties obtained by projecting the movie production hierar-
chical system onto a network of co-producing credits. Namely, we first investigate the degree
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distribution n(k) (co-producing link per producer) and the clustering function C(k) (proba-
bility that two links of a degree k producer are part of a triangle) of a network projection of
a HPA system based on the parameters used in Fig. 6.2. The non-trivial clustering [98, 90]
and the power-law tail of the degree distribution [12], properties ubiquitous in real networks,
are reproduced here as emergent features of our HPA model. Similarly, Fig. 6.3 also presents
result of a centrality analysis known as core decomposition. This analysis relies on the con-
cept of c-cores, i.e., the maximal subset where all nodes share c links amongst one another. A
node is consequently assigned the coreness c if it belongs to the c-core but not to the (c+ 1)-
core. This procedures effectively defines a periphery (low c) and core (high c) to the network
and was recently shown to reflect structural organization beyond mere local correlations [59].
Consequently, we can be confident that the model effectively reproduces the structure of the
real hierarchical systems beyond the statistical properties previously considered in Fig. 6.2.

Besides scale-independent degree distribution and non-trivial clustering function, the fractal-
ity of complex networks is often a tell-tale sign of hierarchical organization [94, 95]. One can
unravel the fractal nature of a network using a box counting method: groups of nodes within
a distance (number of links) r of each other are grouped assigned to the same box. The
fractal dimension db of a network manifests itself as a scaling relation between the number Nb

of boxes needed to cover all nodes and the size r of the boxes (Nb ∝ r−db). The self-similarity
of network structure was previously assumed to stem from a repulsion or disassortativity
between the most connected nodes [95]. However, Fig. 6.4 demonstrates that fractality can
also emerge from a scale-independent hierarchical structure, without further assumptions.
Interestingly, Fig. 6.4(left) also illustrates how, even if fractality might imply hierarchy, the
opposite is not necessarily true.

The box decomposition method tells us something about how networks cover the space in
which they are embedded, and consequently at what speed a walker might encounter new
nodes in this network. However, it tells us nothing about the geometrical space that supports
the network, or how a walker could find one specific node. In that respect, the navigability
of complex networks has recently been a subject of interest for two reasons. First, the devel-
opment of a mapping of networks to a geometrical space allows to predict the probability of
links as a function of geometrical distance between nodes, which in turn enables an efficient
navigation through the network [20, 21]. Second, network growth based on preferential at-
tachment fails to capture this geometrical property [84]. In a recent paper [84], this metric
was consequently considered as evidence of an opposition between two organizational forces:
popularity (preferential attachment) and similarity (assortativity). Our last case study, shown
in Fig. 6.4(right), indicates that geometrical constraints, or network navigability, can emerge
under a strict preferential attachment; which implies a growth driven by popularity only, but
one occurring on multiple structural levels. The different hierarchical levels can a posteriori
be interpreted as indicators of similarity, but are conceptually much more general.
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Figure 6.4 – Fractality and navigability of projected hierarchical systems. (left) Box counting
results on a well-known fractal network (protein interaction network of Homo Sapiens) and a non-fractal
network (the Internet at the level of autonomous systems). HPA can approximately model how both of
these networks span and cover their respective space, with p1 = 0.01, p2 = 0.02, p3 = 0.30, q1 = 0.95,
q2 = 0.80 and q3 = 0.30 (fractal) or p1 = 0.005, p2 = 0.195, p3 = 0.395, q1 = 0.60, q2 = 0.40 and
q3 = 0.30 (non-fractal). The conditions in which HPA leads to fractality are discussed in Sec. 6.5.
(right) Probability of connection Pc(l) between nodes at a distance l after an inferred projection of the
networks onto an hyperbolic space. (The distance is given as a fraction of the hyperbolic disc radius.
See Boguñá et al. [21] or Sec. 6.6 for details on the method.) Both the Internet and its HPA model
are the same as presented on the left and share a similar scaling exponent for their degree distribution
(see inset: distribution pk versus degree k). The CCM corresponds to a rewired network preserving
degree distribution and degree-degree correlations, but obviously lacking the more complex structural
correlations.

We also compare the results obtained on the actual network and on its HPA model with
those obtained on a rewired network that preserves the degree distribution and degree-degree
correlations (Correlated Configuration Model) [76]. The fact that this last process does not
preserve the navigability of the Internet structure indicates that it emerges mostly from long-
range correlations. As the HPA network does reproduce the navigability of the Internet,
these long-range correlations could very well be consequences of the hierarchical structure.
It would thus be instructive to investigate whether the inferred structure corresponds to
the actual hierarchy of the Internet (probably of geographical nature: continents, countries,
regions).

6.4 Conclusion

This chapter is a proof of concept for the Hierarchical Preferential Attachment model (HPA)
which reproduces the hierarchical nature of complex systems.We have illustrated with case
studies how complex networks are better reproduced by first modelling their hierarchical
structure, and then projecting this structure onto a network. Not only does this procedure
yields the non-trivial clustering of networks and their degree/centrality distributions at mul-
tiple levels, but it also gives access to the hidden geometrical metrics of these networks and
the way they occupy space.

125



The fact that so many key features of network structure are modelled using two minimal
assumptions, hierarchy and preferential attachment, indicates that HPA provides more than
theoretical insights; it leads credence to these assumptions. HPA could therefore be used
to infer the possible hierarchical structure of networks where this information is not directly
available.

Finally, while HPA is essentially a simple stochastic growth process, it is one which per-
fectly illustrates how complex structural features of real networks — e.g. scale independence,
clustering, self-similarity, fractality and navigability — can emerge through the hierarchical
embedding of scale-independent levels. Perhaps this is the most important lesson here: to
study the structure of complex networks, one should avoid focusing on unique level of activ-
ity (e.g. links), but instead investigate the hidden hierarchical organizations from which the
networks emerge.

6.5 Appendix 6.A: Notes on HPA

6.5.1 Reminder: solving a preferential attachment process

We study any process where the evolution of the number of elements Ns(t) with share s at
time t follow a master equation of the type:

Ns(t+ ∆t) = Ns(t) +Bδs,1 + G

(B +G) t [(s− 1)Ns−1(t)− sNs(t)] . (6.15)

Since B is the birth probability, the evolution of the normalized distribution {ns(t)} can be
obtained by replacing Ns(t) by Btns(t):

B (t+ ∆t)ns(t+ ∆t) = Btns(t) +Bδs,1 + GB

B +G
[(s− 1)ns−1(t)− sns(t)] . (6.16)

Since ∆t is an arbitrary time step, and B and G are just as arbitrary, we can use an equivalent
process in continuous time by using ∆t→ dt,

B (t+ dt)ns(t+ dt) = Btns(t) + dt

{
GB

B +G
[(s− 1)ns−1(t)− sns(t)] +Bδs,1

}
, (6.17)

from which the following set of ordinary differential equations is obtained:

lim
dt→0

(t+ dt)ns(t+ dt)− tns(t)
dt

= d

dt
[tns(t)] = G

B +G
[(s− 1)ns−1(t)− sns(t)] + δs,1 .

(6.18)
Solving at statistical equilibrium, i.e., ns(t) = n∗s such that d

dtns(t) = 0 ∀ s, yields(
1 + s

G

B +G

)
n∗s = G

B +G
(s− 1)n∗s−1 + δs,1 (6.19)
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or more directly

n∗s =
∏s−1
m=1

G
B+Gm∏s

m=1

(
1 +m G

B+G

) . (6.20)

Assuming a scale-free behaviour for s→∞, this steady state can be shown to scale as

lim
s→∞

n∗s+1
n∗s

=
(
s+ 1
s

)−γ
where γ = 2 + B

G
. (6.21)

6.5.2 On structure sizes in HPA

In Sec. 6.2.3, structure sizes were approximated to follow simple equations under the general
form of Eq. (6.15). However, while this is exact for the first structural level, the probability
that a structure of size n in level 2 will depend on the size m of the level 1 structure in which
it is nested. Mathematically, level 1 evolves according to

S1,m(t+ ∆t) = S1,m(t) + p1δm,1 + (1− p1) p2
[p1 + (1− p1) p2] t [(m− 1)S1,m−1(t)−mS1,m(t)] (6.22)

and level 2 follows

S2,n,m(t+ ∆t) = S2,n,m(t) + p1δn,1δm,1

+ (1− p1)mS1,m(t)
[p1 + (1− p1)p2] t

{
(1− p2)p3

(n− 1)S2,n−1,m(t)− nS2,n,m(t)∑
i iS2,i,m(t) − p2

S2,n,m(t)
S1,m(t)

}

+ (1− p1)p2(m− 1)S1,m−1(t)
[p1 + (1− p1)p2] t

{
S2,m−1,n−1(t)
S1,m−1(t) + δn,1

}
(6.23)

where S2,n,m(t) is the number of level 2 structure which are of size n and nested in level 1
structure of size m.

To obtain a master equation following the form of Eq. (6.15) one must sum over all m while
assuming 〈n〉2,m =

∑
i iS2,i,m(t)/mS1,m(t) = 〈n〉2 ∀ m, such that [p1 + (1− p1)p2] t · 〈n〉2 will

be equal to [p1 + (1− p1)p2 + (1− p1)(1− p2)p3] t; yielding the form presented directly in Sec.
6.2.3 by considering uncorrelated levels of organization. These approximations are the source
of the error observed in the mean-field description of distribution Sk,n(t) for k > 1 and are
progressively worse for higher k (lower structural levels). The progression in error is essentially
caused by the fact that a strict description of the third level, for instance, should not only
be given in terms of S3,n,m(t), but of S3,n,m,l(t) describing the number of level 3 structures of
size n nested in level 2 structures of size m themselves nested in level 1 structures of size l.

6.5.3 On node memberships in HPA

We are interested in obtaining the thermodynamic limit, i.e., when t→∞, for the distribution
of node memberships at level k (the distribution of level k structures in which a given color
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appears). In the main text, we solved the problem of logical constraints on node memberships
by introducing a biased set of probabilities {q′i}:

q′k(t) = qk + Sk−1,1(t)∑
n n · Sk−1,n(t) (1− qk) . (6.24)

Within our mean-field description of time evolution, these probabilities can be explicitly
calculated at each time step using the current size distribution at level k − 1. In the ther-
modynamic limit, we can instead use the steady-state distributions described by Eq. (6.20).
Doing so yields

q′k = qk +
S∗k−1,1∑

n n · S∗k−1,n
(1− qk) = qk +

G
(S)
k−1 +B

(S)
k−1

2G(S)
k−1 +B

(S)
k−1

1− qk
〈n〉k−1

(6.25)

where the average size 〈n〉k−1 is straightforwardly calculated as the ratio of total events to
birth events:

〈n〉k−1 =

[
G

(S)
k−1 +B

(S)
k−1

]
t(

B
(S)
k−1

)
t

(6.26)

such that

q′k = qk +
(1− qk)B

(S)
k−1

2G(S)
k−1 +B

(S)
k−1

. (6.27)

This set of probabilities is then used to obtain master equations following Eq. (6.15) by
assuming that memberships and structure sizes are uncorrelated. We here assume that nodes
with m and m′ memberships at level k see the same structure size distribution at level k+ 1.
Such that an event at level k + 1 is m/m′ times more likely to involve the first node and not
the latter. Similarly, when a structure is created at level k − 1, we are effectively adding a
membership at level k. Assuming that the node with m memberships at level k has m/m′

more memberships at level k− 1 than the node with m′ memberships, these events affect the
distribution in the same manner than regular growth events.

6.5.4 Multiple scale independence

We showed how we can only approximately follow the time evolution of the size distributions.
However, we can derive multiple scale exponents in the thermodynamic limit t→∞. In the
main text, we found the general scaling exponent for the size distribution of level k structures
and, using the steady-state value of the corrected probabilities, we also found the scaling
exponent for node memberships.

When looking at projected properties of a hierarchical system, for instance the degree distri-
bution of the resulting network, we can compose the membership and size distributions of the
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lowest level (where links are created) and deduce the resulting scaling exponent. As shown
in [57], the idea is to define the following probability generating functions (pgf):

S(x, t) =
∑
n

Sd,n(t)xn and N (x, t) =
∑
m

Nd,m(t)xm . (6.28)

As a community of size n implies n− 1 links for each node, the first of these distributions can
be generated by

Sl(x, t) ≡
d
dxS(x, t)

d
dxS(x, t)|x=1

=
∑
n Sd,n(t)nxn−1∑

n Sd,n(t)n . (6.29)

The degree distribution is then generated by a pgf D(x, t) combining the distribution of
memberships and that of links obtained from each of this membership:

D(x, t) = N (Sl(x, t), t) , (6.30)

which simply scales as the slowest falling function between N (x, t) (of scale exponent γ(N)
d )

and Sl(x, t) (of scale exponent γ(S)
d − 1 because of the derivative in Eq. 6.29). The scale

exponent of the degree distribution is thus given by

min
[
γ

(N)
d , γ

(S)
d − 1

]
. (6.31)

The same method could of course be used to determine the scaling of other projections; e.g.,
network of companies sharing or having shared at least one producer.

6.5.5 On the fractality of projected networks

As previously shown, HPA can produce both fractal and non-fractal networks. Since the
definition of network fractality is somewhat ambiguous, so is the distinction between set of
HPA parameters leading to fractality or not. However, a rule of thumb can be established.

The dimensionality of a network is analysed through standard box-counting: boxes of sizes r
cover groups of nodes all within a distance r − 1 or less of one another (the distance being
measured in number of links). Fractal networks are characterized by a box-counting dimension
db governing the number Nb(r) of boxes of size r needed to cover all nodes. This relation
takes the form Nb(r) ∝ r−db . It remains to be determined whether or not this box counting
method is truly equivalent to an actual measure of dimensionality. Nevertheless, it can at
the very least be interpreted as an observation of how easily a network can be covered. This
in itself is interesting and is similar to a spreading process, or other dynamics which can be
coarse grained.

Most models of stochastic network growth produce networks with very low mean shortest
paths, low clustering and no long-range correlations. Consequently, the number of boxes
needed to cover the whole network decreases very rapidly. In HPA, we can control the way
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1 2 1 3 4 2 5 6 7 873

Figure 6.5 – Example of how nodes act as bridges between structures in HPA.

Table 6.2 – Parameters used in the case study of fractal behaviour in HPA.
Network p q

A [0.1, 0.2, 0.3] [0.69, 0.9, 0.1]
B [0.01, 0.02, 0.3] [0.95, 0.8, 0.3]

boxes cover the network since the distance between higher structural level is directly influenced
by the memberships at this level. Hence, HPA can generate networks that are robust to box
covering (i.e., such that Nb(r) decreases slower with regards to r) if higher structural levels
feature less nodes that act as bridges between structures and levels. For example, in Fig. 6.5,
only nodes 1, 2 and 3 can be used by boxes to move from one level to the other (from cities
to countries, here illustrated as an inverted tree).

More precisely, let us consider two different networks: A and B, built using the parameters
given in Table 6.2. Roughly speaking, in network A, level 2 structures contain on average two
level 3 structures whereas nodes belong to over 4 level 3 structures. Therefore, a single node
typically grants access to all level 3 structures contained within any of its level 2 structure,
such that a box covering at least part of a level 2 structure typically covers all of it. The
network is thus easily invaded as higher levels are not any harder to navigate.

In contrast, level 2 structures of network B contain on average eleven level 3 structures. An
average node may be found within four level 3 structures, so that even a single average level 2
structure may have nodes at a distance greater than three steps. The network is thus harder
to cover and can be expected to be much more robust to box-covering. As a general rule
of thumb, we found that to feature measurable network self-similarity the average size of a
structure (at level x) had to be at least greater than the memberships of a node at the lower
level (at level x+ 1).
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6.6 Appendix 6.B: Data sets and network analysis algorithms

6.6.1 Data

Co-producers in the Internet Movie Database All information related to the production of
movies were downloaded from the Internet Movie Database in August 2013. The data sets,
available as text files are as follows.

– For a given movie, the main country of production is listed;

– for a given movie, the main production company is listed along with secondary compa-
nies identified with, e.g., “in association with” or “with the participation of”;

– for each producer in the database, all productions in which he or she was involved is
listed.

Any movie which could not be cross-referenced across the three lists was removed from the
dataset. For the rest, we obtained a list of producers involved in movies produced by compa-
nies (main production company only) in given countries. This list contains 363,571 producers
involved in 42,691 movies produced by 12,196 companies in 197 countries,

Protein interaction network of Homo Sapiens The protein interaction network of Homo Sapiens
was downloaded from the DIP database available at
http://dip.doe-mbi.ucla.edu/dip/Main.cgi.

According to their homepage, “the DIPTM database catalogues experimentally determined
interactions between proteins. It combines information from a variety of sources to create a
single, consistent set of protein-protein interactions. The data stored within the DIP database
were curated, both, manually by expert curators and also automatically using computational
approaches that utilize the the knowledge about the protein-protein interaction networks
extracted from the most reliable, core subset of the DIP data.”

Internet This dataset is a symmetrized snapshot of the structure of the Internet at the level of
autonomous systems, reconstructed from BGP tables posted at archive.routeviews.org. This
snapshot was created by Mark Newman from data for July 22nd 2006. The network contains
22 962 nodes and 48 436 links.

6.6.2 Fractal dimension through box counting

To investigate how networks cover space, we use the box counting algorithm of Song et al.
[94]. The algorithm is simple. For a given box size r,

131



– i. select an unassigned node k at random as a seed;

– ii. assign one of the maximal (non-unique) subset of nodes that are within a distance
r − 1 of k and of one another to a box;

– iii. repeat until all nodes are assigned to a box.

We are then interested in how the number of boxes needed to cover the network scales with
regards to box size r. As explained by Song et al. [94], while their are multiple covering
possibles, they lead to the same scaling exponents (or lack thereof).

6.6.3 Centrality structure via k-core decomposition

In this chapter, we use a measure of centrality based on the concept of coreness. A node’s
coreness c is defined through its place in the network’s k-core decomposition. This decom-
position separates the network into different shells, thereby identifying the effective core and
periphery of the network. A k-core is a subset of the original network where all nodes in-
cluded have degree equal or higher than k amongst one another. We then define the k-shells
(the ensemble of nodes of coreness c = k) as the nodes part of the k-core, but not of the
(k + 1)-core.

Through this definition, the coreness may appear complex to compute, but a simple algorithm
allows us to do the decomposition very efficiently [15].
1: Input graph as lists of nodes V and neighbours N
2: Output list C with coreness for each node
3: compute and list the degrees D of nodes;
4: order the set of nodes V in increasing order degrees;
5: for all v ∈ V in the order do
6: C(v) := D(v);
7: for all u ∈ N (v) do
8: if D(u) > D(v) then
9: D(u) := D(u)− 1;

10: Reorder V accordingly
11: end if
12: end for
13: end for

In a recent publication, we show how the coreness structure can be used as an efficient
analytical model for percolation on networks; reproducing degree-degree correlations and
unique features of power-grids for instance [59].

132



6.6.4 Mapping to a hyperbolic space

The problem of network navigability lies in the apparent paradox between their complex
structure and the efficiency with which they seem to be navigable. Be it how people are able
to identify potential paths between them and a stranger based only on local information and
some identifying traits of the stranger [97]; or how fast routing is achieved on the Internet
without a global map [21]. This begs the question, is it possible to obtain the underlying map
in which we seem to navigate? If so, in what kind of space are these networks embedded?

We use a recent algorithm that maps complex networks to hyperbolic space [84]. As each
point of this hyperbolic space is a saddle point, the algorithm can use the local manifolds to
account for how an individual can be part of different social groups that have nothing to do
with each other: groups on different manifolds may be close to the same node, but do not
have to be close to one another.

While we avoid going into too much details here, let us just paint a broad picture of how
the algorithm attempts to draw the map of a given network. Now that we chose a space
in which to draw the network (hyperbolic), we must assign a position (ri, θi) to each node
i ∈ [1, N ] in a way that maximizes the likelihood 1 of the observed links as a function of all
node positions. With observations (i.e., number of links) typically scaling as N , and inferred
parameters scaling as 2N , this is not a simple matter. To simplify the problem, the algorithm
fixes the radial position of a node as a decreasing function of its degree; the idea being that
the nodes with more links are more likely to end up closer to everyone else and thus near
center. The nodes are then separated into layers, the number of which is an input parameter
that needs to be varied to assure robust results. The angular position of each node within a
layer is then optimized iteratively: starting by optimizing θi given the other θs in the layer
(marginal distribution), and iterating through all nodes more than once (until convergence,
usually of the order of maximal degree within the layer).

When we have a map, i.e., a position (ri, θi) in space for each node, we can measure the
distribution of hyperbolic distance l between nodes and the probability Pc(l) that nodes at
a distance l are connected. On random networks, the algorithm tend to separate all nodes
by some minimal distance; such that nodes are never near one another. This is because the
following statement rarely holds within random network: node i is close to node j and k, so
node j and k must be close. Even with clustering, their other neighbours would tend to be
far apart. In fact, this is what we observe using HPA with d = 1 (SPA). The way to enforce
some geometrical-like constraints in random networks is to consider a hierarchical structure.
In our case, a hierarchical dimensionality d = 3 appears to be sufficient.

1. As in any Bayesian inference problem, we need to fix a model that describes the likelihood of an obser-
vation (e.g., link between i and j) as a function of our inferred parameters (ri, θi, rj , θj). Without getting into
the details, we obviously want the connection probability to decrease with hyperbolic distance.
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Conclusion

My five years in graduate school were mostly inspired by the following quote from Herbert
Simon [92]:

Human beings, viewed as behaving systems, are quite simple. The apparent
complexity of our behaviour over time is largely a reflection of the complexity of
the environment in which we find ourselves.

Consequently, this thesis tackled the following questions: how well can we describe social
systems based on simple principles and processes? In what context can human interactions be
reduced to games of balls and urns? The first step to answer our questions was to define scale
independence and universality; to suggest that the microscopic details of some social systems
did not matter as the same lack of characteristic scale was found across very diverse activities
and populations. These concepts led us to focus on a certain class of social systems which can
be studied by statistical physics. Our goal was thus to develop the statistical physics of social
systems and to describe how resources and activities are shared, or how those distributions
and structures change in time, based on the knowledge of their asymptotic scale-independent
state.

Statistical physics of social systems? Obviously, while we are still far from a true statistical
physics of social systems, we have successfully applied statistical physics to study the evolu-
tion of resource distribution in social systems. In light of the work done, we can postulate
this explanation to Herbert Simon’s statement: human interactions are quite simple from
a macroscopic point-of-view. We can describe statistical or structural properties of social
systems with simple processes, as long as we do not zoom in on the microscopic details. In
fact, most of the microscopic details are lost in our assumption of indistinguishability between
individuals with the same past involvement in the system.

Similarly, in part because of this assumption, our description does not imply that we actually
gain a mechanistic explanation for the growth of these systems. As was highlighted in Chap.
4, plenty of different null models with different assumptions and mechanisms happen to fall
within our framework. To quote Herbert Simon again [92],
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No one supposes that there is any connexion between horse-kicks suffered by
soldiers in the German army and blood cells on a microscope slide other than that
the same urn scheme provides a satisfactory abstract model of both phenomena.

That being said, what did we learn about that urn scheme? How much can we learn by
throwing balls in urns through the preferential attachment process? Is it just a toy model
for the growth of scale-independent systems or can it actually be used to predict or infer
properties and behaviour of actual complex systems?

Firstly, we saw that our simple description manages to capture some of the complex intricacies
of social systems. Arbitrary growth rules do not reproduce the universal behaviours of some
class of social systems, most importantly their scale independence. This suggests that some
specific rules must be present to govern the emergence of said behaviours. For instance,
there exists a self-organized coupling between the growth of a population as a function of the
available resource, and the distribution of this resource among the existing population. This
self-organization implies a set of constraints which, assuming that the underlying mechanism
(i.e., G(k)) does not change in time, dictate the path that systems can take towards scale
independence. These constraints effectively draw a map of how different systems reach their
final organization. In essence, the knowledge of the state of a system at one point in time
is sufficient to deduce where it came from and where it is going. Temporal data, seldom
available in practice, can thus be extracted from a static snapshot of a resource distribution.

Secondly, we also discussed how the coupling of multiple scale-independent systems in a
hierarchical fashion can lead to fascinating emergent behaviours. The basic idea is that
social structures are a resource for individuals and, reciprocally, individuals are a resource for
social structures. For example, scientists aim to collaborate with different institutions/labs
or research groups just as these structures aim to grow and recruit scientists. This simple
idea led us to generalize the preferential attachment game of balls and urns to an equivalent
game of coloured balls in urns. The colours allow us to break, at least to some extent, the
indistinguishability of different individuals and structures. We can now look at the structure
of a system by tracking which colours (balls) are found in common urns (communities). Even
with a single structural level of structure (urns), we can obtain a decent description of social
networks with community structure. We thus gather some intuition on how modularity and
clustering emerge in networks. The generalization of the process to a game with embedded
levels of structure (urns in bins in boxes and so on) allows us to describe networks with
more complex properties: hierarchical clustering, onion-like centrality structure, navigability,
and self-similarity or fractality. In short, without directly considering network structure,
but rather the hierarchical systems in which they live, we gain an understanding of how the
complexity of complex networks can emerge.

136



Implications and applications Reducing the complex to the simple allows us to describe varied
problems in the same language. The work presented in this thesis provides us with a sim-
ple and elegant dictionary to quantify and compare different systems by means of multiple
structural and temporal scale exponents (γ and α). For more precision, we could consider the
other temporal parameters: the non-linear deviation (κ), temporal delay (τ) and asymptotic
state (b) for each relevant structural level (hierarchical dimension d).

Comparing systems of a different nature and size is a central question in network science.
Which metrics allow us to efficiently differentiate, for example, a social network from a bio-
logical food web? Or a gene regulation network from a technological communication system?
Talking about the dimensionality (d) of their relevant hierarchical structure is an interesting
first step, be it an actual hierarchy or just an effective description. One could then zoom in
to look at the different scale exponents of individual levels, or at their temporal description.
For a given level, we find universality classes of growth and structure; just as for the whole
system we could unify these in classes of classes. For instance, one could want to differentiate
expanding hierarchies γi > γi+1 from contracting hierarchies γi < γi+1, or mixtures of both.
These different mixing of levels and their effects on the lack of characteristic scale could be
expected to lead to very different behaviours for the dynamical processes occurring within
these structured systems.

This last step would allow the generalization of the framework developed here to more general
problems. We could ask for instance what disease can invade a sexual network? When will a
pathological disease be allowed to become endemic as the system evolves? Or how likely are
public discussion forums to reach consensus on a given issue? What are their characteristic
time scales to consensus if any? The hope is that by clarifying the coupling of temporal and
structural features, we are also laying the groundwork toward a better understanding of social
dynamics based on their underlying structure.

Finally, the path to scale independence remains to be further investigated. In a given sys-
tem, what is intrinsic to its nature or to the considered activity? We saw in Chap. 3 that
the growth functions for individuals involved in the Internet Movie Database and the Digg
website remained relatively constant in time. Is this a feature shared by most social systems?
In contrast, what is changing in time and self-organizing for criticality? And through what
mechanisms does self-organization occur? Is it merely a question of entropic forces due to the
distribution of resources and activities, or is a feedback loop taking place between social dy-
namics and social structure? In answering these questions, we can expect not only to broaden
the applicability of the framework presented in this thesis, but also to better understand social
systems and the relevance of criticality.
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