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Résumé

Les structures photoniques complexes permettent de façonner la propagation lumineuse à l’échelle

de la longueur d’onde au moyen de processus de diffusion et d’interférence. Cette fonctionnalité

à l’échelle nanoscopique ouvre la voie à de multiples applications, allant des communications op-

tiques aux biosenseurs.

Cette thèse porte principalement sur la modélisation numérique de structures photoniques com-

plexes constituées d’arrangements bidimensionnels de cylindres diélectriques. Deux applications

sont privilégiées, soit la conception de dispositifs basés sur des cristaux photoniques pour la ma-

nipulation de faisceaux, de même que la réalisation de sources lasers compactes basées sur des

molécules photoniques. Ces structures optiques peuvent être analysées au moyen de la théorie de

Lorenz-Mie généralisée, une méthode numérique permettant d’exploiter la symétrie cylindrique

des diffuseurs sous-jacents.

Cette dissertation débute par une description de la théorie de Lorenz-Mie généralisée, obtenue des

équations de Maxwell de l’électromagnétisme. D’autres outils théoriques utiles sont également

présentés, soit une nouvelle formulation des équations de Maxwell-Bloch pour la modélisation

de milieux actifs appelée SALT (steady state ab initio laser theory). Une description sommaire des

algorithmes d’optimisation dits métaheuristiques conclut le matériel introductif de la thèse.

Nous présentons ensuite la conception et l’optimisation de dispositifs intégrés permettant la gé-

nération de faisceaux d’amplitude, de phase et de degré de polarisation contrôlés. Le problème

d’optimisation combinatoire associé est solutionné numériquement au moyen de deux métaheu-

ristiques, l’algorithme génétique et la recherche tabou.

Une étude théorique des propriétés de micro-lasers basés sur des molécules photoniques – consti-

tuées d’un arrangement simple de cylindres actifs – est finalement présentée. En combinant la

théorie de Lorenz-Mie et SALT, nous démontrons que les propriétés physiques de ces lasers, plus

spécifiquement leur seuil, leur spectre et leur profil d’émission, peuvent être affectés de façon non-

triviale par les paramètres du milieu actif sous-jacent. Cette conclusion est hors d’atteinte de l’ap-

proche établie qui consiste à calculer les états méta-stables de l’équation de Helmholtz et leur fac-

teur de qualité. Une perspective sur la modélisation de milieux photoniques désordonnés conclut

cette dissertation.
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Abstract

Complex photonic media mold the flow of light at the wavelength scale using multiple scattering

and interference effects. This functionality at the nano-scale level paves the way for various appli-

cations, ranging from optical communications to biosensing.

This thesis is mainly concerned with the numerical modeling of photonic complexes based on two-

dimensional arrays of cylindrical scatterers. Two applications are considered, namely the use of

photonic-crystal-like devices for the design of integrated beam shaping elements, as well as active

photonic molecules for the realization of compact laser sources. These photonic structures can

be readily analyzed using the 2D Generalized Lorenz-Mie theory (2D-GLMT), a numerical scheme

which exploits the symmetry of the underlying cylindrical structures.

We begin this thesis by presenting the electromagnetic theory behind 2D-GLMT. Other useful frame-

works are also presented, including a recently formulated stationary version of the Maxwell-Bloch

equations called steady-state ab initio laser theory (SALT). Metaheuristics, optimization algorithms

based on empirical rules for exploring large solution spaces, are also discussed.

After laying down the theoretical content, we proceed to the design and optimization of beam

shaping devices based on engineered photonic-crystal-like structures. The combinatorial opti-

mization problem associated to beam shaping is tackled using the genetic algorithm (GA) as well

as tabu search (TS). Our results show the possibility to design integrated beam shapers tailored for

the control of the amplitude, phase and polarization profile of the output beam.

A theoretical and numerical study of the lasing characteristics of photonic molecules – composed

of a few coupled optically active cylinders – is also presented. Using a combination of 2D-GLMT

and SALT, it is shown that the physical properties of photonic molecule lasers, specifically their

threshold, spectrum and emission profile, can be significantly affected by the underlying gain

medium parameters. These findings are out of reach of the established approach of computing

the meta-stable states of the Helmholtz equation and their quality factor. This dissertation is con-

cluded with a research outlook concerning the modeling of disordered photonic media.
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Avant-propos

Cette thèse présente mes travaux de doctorat effectués entre septembre 2011 et août 2014. Quatre

articles publiés dont je suis le premier auteur sont insérés dans le corps du texte et constituent

l’essentiel du contenu de cette thèse. J’ai effectué l’ensemble des travaux de nature numérique

contenus dans ces articles au moyen de codes développés en grande partie par moi-même.

Trois des contributions de recherche insérées dans cette thèse concernent la manipulation de

faisceaux au moyen de structures optiques bidimensionnelles composées d’arrangements de cy-

lindres diélectriques (chapitres 4 à 6). Le principal outil numérique développé afin de réaliser ce

projet de recherche est basé sur la théorie de Lorenz-Mie généralisée, une méthode de solution des

équations de Maxwell centrale à cette thèse. Comme le problème de manipulation de faisceaux

considéré dans cette thèse est en fait un problème d’optimisation combinatoire, j’ai également

programmé deux algorithmes d’optimisation dits méta-heuristiques, soit l’algorithme génétique

et la recherche tabou.

La première contribution (D. Gagnon, J. Dumont et L. J. Dubé, J. Opt. Soc. Am. A, Vol. 29, pp.

2673–2678) date de 2012 et est insérée au chapitre 4. On y définit le problème de manipulation

de faisceaux de même que les méthodes numériques utilisées pour sa solution, soit la méthode de

Lorenz-Mie et l’algorithme génétique.

La seconde contribution (D. Gagnon, J. Dumont et L. J. Dubé, Optics Letters, Vol. 38, pp. 2181–

2184) a été publiée quelques mois plus tard en 2013 et est insérée au chapitre 5. La nouveauté de

cette publication, présentée sous forme de lettre, est la manipulation de la phase du faisceau (seule

l’amplitude était optimisée dans le travail précédent). Par ailleurs, en 2013, j’ai développé un code

d’optimisation plus performant utilisant la recherche tabou plutôt que l’algorithme génétique. Ce

code est utilisé pour la première fois dans cette publication.

La troisième et dernière contribution concernant la manipulation de faisceaux (D. Gagnon, J. Du-

mont, J.-L. Déziel et L. J. Dubé, Optics Letters, Vol. 39, pp. 5768–5771) est insérée au chapitre 6.

Cette lettre porte plutôt sur l’optimisation du degré de polarisation des faisceaux de sortie en plus

de leur profil d’amplitude.

La quatrième contribution de recherche (D. Gagnon, J. Dumont, J.-L. Déziel et L. J. Dubé, J. Opt.

Soc. Am. B, Vol. 31 pp. 1867–1873) a été publiée en 2014 et est insérée au chapitre 7. Elle concerne
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plutôt la modélisation de molécules photoniques, une réalisation possible de sources laser micro-

scopiques. Ce travail est effectué au moyen de la théorie de Lorenz-Mie généralisée développée

dans le cadre de mes travaux parallèles sur la manipulation de faisceaux. Par conséquent, l’article

inséré au chapitre 7 est indépendant des trois autres. Cette publication a été écrite avant la troi-

sième sur la manipulation de faisceaux, mais elle est insérée à la toute fin de la thèse afin d’assurer

une certaine cohérence thématique de la présentation.

Bien que les quatre publications insérées soient indépendantes, trois chapitres introductifs et une

conclusion ont été ajoutés à cette thèse. Le chapitre 1 se veut une introduction de nature pédago-

gique permettant de situer mes contributions dans le contexte plus global des structures photo-

niques complexes, un champ de recherche en plein essor. Le chapitre 2 présente de façon détaillée

les développements théoriques associés à mes publications. L’emphase est placée sur la méthode

de Lorenz-Mie généralisée – sujet principal de cette thèse – mais aussi sur une théorie du laser ré-

cemment développée intitulée SALT, acronyme de « steady state ab initio laser theory ». Le chapitre

3 présente de façon sommaire les algorithmes dits méta-heuristiques, des algorithmes d’optimisa-

tion qui constituent un sujet de recherche à part entière. L’emphase de ce chapitre est placée sur

l’implémentation numérique des méta-heuristiques utilisées dans cette thèse, soit l’algorithme

génétique et la recherche tabou. Le chapitre 8 contient un résumé des conclusions de chacune

de nos contributions, un aperçu d’autres algorithmes de modélisation électromagnétique (§8.2) et

une perspective sur les milieux photoniques désordonnés (§8.3).

À l’exception du résumé, des remerciements, de l’avant-propos et de résumés individuels avant

chaque publication insérée, cette thèse est rédigée entièrement en anglais. Il s’agit d’un choix fait

par souci de cohérence entre le texte des chapitres introductifs et le texte anglais des publications

insérées. Ce texte est aussi près que possible des originaux publiés à l’exception de la mise en

forme, de quelques ajustements visant à harmoniser la notation utilisée dans ce document et de

la correction de quelques coquilles mineures. L’utilisation de l’anglais vise également à faciliter la

diffusion de ces travaux auprès de la communauté scientifique.
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Foreword

This dissertation contains a synthesis of my doctoral work, performed between September 2011

and August 2014. Four articles of which I am the first author are inserted in the body of this thesis

and constitute the bulk of its content. I have carried out the totality of the numerical work con-

tained in these articles using programs developed in-house.

Three of the contributions inserted in this thesis are concerned with beam shaping using two-

dimensional (2D) photonic-crystal-like structures (chapters 4 to 7). The numerical tool central

to this research project is based on the 2D generalized Lorenz-Mie theory (2D-GLMT), a method

for solving Maxwell’s equations in cylindrically symmetrical geometries. Since the beam shaping

problem tackled in this thesis is in fact a combinatorial optimization problem, I have also imple-

mented two so-called metaheuristic optimization algorithms, specifically the genetic algorithm

and tabu search.

The first contribution (D. Gagnon, J. Dumont and L. J. Dubé, J. Opt. Soc. Am. A, Vol. 29, pp. 2673–

2678) was published in 2012 and is inserted in chapter 4. The beam shaping problem is defined

in this paper, as well as the numerical methods used for its solution, namely 2D-GLMT and the

genetic algorithm.

The second contribution (D. Gagnon, J. Dumont and L. J. Dubé, Optics Letters, Vol. 38, pp. 2181–

2184) was published a few months later in 2013 and is inserted in chapter 5. The novel aspect of

this publication, presented in letter form, is the shaping of the phase front of the output beam

(amplitude shaping only was considered in the 2012 article). Also in 2013, I have developed a more

efficient optimization routine based on tabu search rather than the genetic algorithm. This code is

used for the first time in this publication.

The third and final contribution on beam shaping (D. Gagnon, J. Dumont, J.-L. Déziel and L. J.

Dubé, Optics Letters, Vol. 39, pp. 5768–5771) is inserted in chapter 6. This letter is concerned with

the optimization of the degree of polarization of the output beams in addition to their amplitude

profile.

The fourth research contribution (D. Gagnon, J. Dumont, J.-L. Déziel and L. J. Dubé, J. Opt. Soc.

Am. B, Vol. 31 pp. 1867–1873) was published in 2014 and is inserted in chapter 7. It is concerned

with the numerical modeling of photonic molecules, possible realizations of wavelength-scale
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laser sources. This study is carried out using the 2D-GLMT approach used in my parallel works

on beam shaping. Consequently, the article inserted in chapter 7 is mostly independent from the

three others. This publication was written before the latest one on beam shaping, but it is inserted

at the end of the dissertation in order to keep the presentation thematically coherent.

Although the four publications inserted in this thesis are completely self-contained, three intro-

ductory chapters and a conclusion complete them. Chapter 1 is a pedagogical introduction, the

goal of which is to show the connection of my contributions with the broader and very active

research field of complex photonic media. Chapter 2 details the theoretical aspects of my con-

tributions. The emphasis is placed on 2D-GLMT – the central topic of this thesis – and also on

a recently formulated laser theory called “steady-state ab initio laser theory”, or SALT. Chapter 3

contains a summary of metaheuristics, optimization algorithms which constitute a full-fledged re-

search field. The emphasis of this chapter is placed on the numerical implementations used in this

thesis, specifically the genetic algorithm and tabu search. To conclude, chapter 8 contains a sum-

mary of the main findings of each of my contributions, as well as a survey of alternative numerical

methods (§8.2) and a research outlook on disordered photonic media (§8.3).

This thesis is for the most part written in English, with the exception of the Acknowledgements

section being solely written in French. It was decided to write all the scientific content in English

to ensure cohesion of the presentation. The text of the inserted publications is as close as possible

to the original source material, with some minor notation and formatting adjustments. The use of

English is also intended to facilitate the dissemination of this work to other researchers.

xxvi



Chapter 1

Introduction

This chapter introduces the scope of this thesis within the research field of complex photonic me-

dia, optical materials which are imbued with functionalities at the wavelength-scale level. The goal

of this chapter is to give a pedagogical, hands-on introduction to the subject, leaving the theoret-

ical and numerical aspects of the electromagnetic theory to chapter 2, as well as the algorithmic

details of combinatorial optimization to chapter 3. The main objectives of this doctoral work are

summarized in section 1.2, which also contains a plan of the dissertation.

1.1 Background: Photonic complexes

Traditional optical media, such as lenses and beam-splitters, are often called “macroscopically ho-

mogeneous”, in the sense that the characteristic scale of their variation, or inhomogeneities, is

much smaller than the wavelength of light [102]. On the other hand, optical geometries charac-

terized by wavelength-scale inhomogeneities are called complex photonic media. Some typical ex-

amples of complex photonic media are photonic crystals [27], metamaterials [24] and disordered

photonic materials [120, 167]. Photonic crystals can be viewed as composite optical materials char-

acterized by spatial periodicities on the order of the wavelength of light, similar to Bragg gratings.

Controlling the flow of light on the micro- and nano-scale level is one of the main technological

breakthroughs enabled by the use of complex photonic media [102, 120]. Although this descrip-

tion suggests that complex photonic media are passive, they can also be composed of active optical

material, making possible the fabrication of wavelength-scale laser sources.

One of the key objectives of this thesis work is to develop numerical tools for the modeling of com-

plex photonic media. This is intrinsically challenging, since novel media often involve rich un-

derlying physical phenomena, such as bandgaps [7], resonances [89] and Anderson localization of

light [120, 165]. Counter-intuitive effects such as slow light [9] and negative refraction [95] can also

take place in complex photonic media. Moreover, some of the tools typically taught in graduate

courses in optics, such as the paraxial approximation and ABC D matrices, are often incompatible

with complex optical geometries. In short, numerical modeling tools for complex photonic me-
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Chapter 1. Introduction

dia must often compose with the full vectorial nature of the electromagnetic field (described by

Maxwell’s equations), potentially active or nonlinear media and non-trivial boundary conditions.

Although the engineering of photonic materials allows a great level of control on the propagation of

light, one important issue is how to integrate these materials on photonic circuits. This is crucial to

the deployment of innovative optical elements onto existing technological platforms, for instance

silicon-on-insulator wafers [27, 121] or plastic substrates [83]. One way to achieve integration is

by effectively confining light propagation in two dimensions using planar waveguides, in which

wavelength-scale structures are written using micro-fabrication technology [167]. In this thesis,

we are mostly concerned with optical structures based on cylindrical scatterers introduced in the

form of holes in a dielectric waveguide core [27]. Structures based on pillars are also possible [27].

The geometric properties of arrays of scatterers found in recent studies vary widely, ranging from

periodic to aperiodic [25, 155] or completely disordered [39, 120, 167]. Throughout this thesis, we

shall refer generically to these 2D wavelength-scale arrays of cylinders as photonic complexes.

An effectively 2D geometry defines two privileged propagation directions, namely the direction

parallel to the scatterers’ axis and the direction perpendicular to this axis. For modeling purposes,

this allows one to uncouple the polarization of the electromagnetic field in two components com-

monly termed “TM” and “TE”. The TM polarization corresponds to the electric field component

parallel to the scatterers’ or holes’ axis, and the TE polarization is defined as the orthogonal com-

ponent. This terminology shall be useful for the remainder of this section, in which we introduce

the two kinds of photonic complexes that will be thoroughly studied in this thesis. In section 1.1.1,

we briefly introduce photonic-crystal-like periodic arrangements of cylindrical scatterers. The em-

phasis is placed on the definition of a bandgap, an important wave effect that lies outside the reach

of classical optics. Photonic-crystal inspired devices are the main topic of chapter 4 to 6 of this the-

sis. In section 1.1.2, we introduce the so-called photonic atoms and molecules, defined as simple

arrangements of optically active cylinders. Photonic atoms and molecules often exhibit highly con-

fined resonances, which suggests that they may be used as wavelength-scale laser sources. This is

the main topic of chapter 7 of this thesis.

1.1.1 Photonic crystals

Photonic crystals (PhCs), defined as engineered periodic structures that exhibit photonic function-

ality at the material level [7], are a prime example of photonic complexes. This research field has

been active since the seminal 1987 paper by Yablonovitch [172]. In this early work, the author ob-

served that multiple scattering in a PhC could slow down the group velocity of light to the point of

completely inhibiting propagation. The frequency interval in which waves cannot propagate in a

PhC is called the bandgap. Bandgap effects can be predicted from the computation of the Bloch

modes of photonic crystals, in essence solutions of Maxwell’s equations in a periodic potential

[140].
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1.1. Background: Photonic complexes

In this dissertation, we are mostly concerned with 2D PhCs, periodic in a plane and homogeneous

in the perpendicular dimension [7]. As an example, a 2D square lattice of dielectric rods placed

in air can possess a complete bandgap for the TM polarization if the refractive index contrast be-

tween the rods and the surrounding medium is sufficiently large. This means that a light wave

characterized by a polarization parallel to the cylinders axis cannot propagate in such a crystal. An

example of this bandgap phenomenon can be seen from in Fig. 1.1e. This band diagram shows

the first two TM-polarized Bloch modes of the crystal are separated by a frequency interval which

corresponds to the bandgap. Analogously, a 2D triangular lattice of air holes in a dielectric core can

exhibit a complete bandgap for the TE polarization [7]. This means that the in-plane polarization

component cannot propagate in this PhC geometry. This can be seen from Fig. 1.1f. In this thesis,

computational analysis of the band structure of PhCs is carried out using the plane wave expansion

method [73, 140]. The main hypothesis behind this numerical scheme 1 is that the Bloch modes of

photonic crystals – periodic functions in space – can be expanded in terms of Fourier series or, in

other words, plane waves [140, p. 132].

PhC inspired optical elements can readily be fabricated using micro-fabrication methods such as

UV [171], holographic [140] or electron beam [27, 120] lithography. This relative ease of fabrication

has enabled the realization of various integrated optical elements based on bandgap effects. No-

table instances are Mach-Zehnder interferometers [104, 114], waveguides [72, 169], mirrors [114],

polarization beam-splitters [114] and all-optical switches [64]. One of the main contributions of

this thesis is to use PhC inspired integrated optical elements to achieve beam shaping, which is

broadly defined as redistributing the irradiance and phase of an input beam into an output beam

with pre-defined amplitude, phase and polarization characteristics [30].

In most of the practical applications described above, including beam shaping, the pillars or holes

arrangements considered are often finite and irregular. This means the Bloch modes analysis does

not strictly hold, since the arrangement of holes and pillars are neither infinite nor periodic. For

this reason, this thesis is mostly concerned with numerical methods able to deal with non-periodic,

finite PhCs. However, the Bloch modes analysis sometimes proves to be a useful design tool for

integrated devices since it allows one to determine at which frequencies scattering is stronger, and

how the two orthogonal polarization directions are affected by the presence of 2D scatterers.

1.1.2 Photonic atoms and molecules

The term “photonic crystal” is often defined by analogy with atomic and molecular structures, the

photonic bandgap being the counterpart to the electronic bandgap. Following this analogy, the

building blocks of photonic crystals – basically wave scatterers – are sometime called photonic

atoms and molecules. Photonic atoms are often understood as composed of a single scatterer,

while more than one of these building blocks coupled together constitutes a photonic molecule

1. The free and open-source software package MIT PHOTONIC BANDS, developed by S. G. Johnson, is a readily avail-
able implementation of the plane wave expansion method [73].
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Figure 1.1 – Two usual 2D photonic crystal geometries. (a) Photonic crystal based on rods in air. (b)
Photonic crystal based on holes in a planar waveguide core. The refractive index of the dielectric
materials is set to n = 3.3, and the aspect ratio between the cylinders (or holes) and the lattice
constant is set to 0.3. (c-d) Irreducible first Brillouin zones (shaded) with an identification of high
symmetry points. Plotting the Bloch mode frequencies along the irreducible zone is sufficient to
establish the presence of a bandgap [140]. (e-f) Band diagrams along the irreducible first Brillouin
zones, computed using the MIT PHOTONIC BANDS software package [73]. Shaded areas indicate
complete bandgaps for either polarization (e: TM , f: TE).
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1.1. Background: Photonic complexes

(PM) [12, 13]. They are most often composed of a high refractive index dielectric medium in which

the electromagnetic radiation can be trapped by means of total internal reflection, forming a cav-

ity. This gives rise to various resonances, or eigenmodes. Cavity eigenmodes are inherently lossy,

since they constitute physical systems open to the outside environment. Low losses are associated

to a high quality factor (Q-factor), which is proportional to the number of round-trips a photon

makes in the cavity in a given time interval. A high Q-factor also implies a narrow resonance.

The most common shapes of individual photonic atoms include 3D geometries such as spheres

[18] and tori [96], as well as effectively 2D geometries such as disks [85], rings [86] and stadium-

shaped cavities [80, 82]. Additionally, mass production of photonic atoms and molecules is in prin-

ciple possible since they can be integrated on a chip using standard photo-lithographic techniques

[156].

The optical properties of microcavities and PMs, in particular their resonant behavior, make them

useful for a variety of applications [153]. The detection of biological molecules, for instance pro-

teins, is one application of microresonators that has emerged in the last decade [6, 156, 157]. In a

typical biosensing experiment, the resonant spectrum of a microresonator is continuously moni-

tored using a tunable laser. After a certain amount of time, the molecule to be detected attaches

itself on the surface of the resonator, which is functionalized with appropriate binding agents [156].

The attachment event results in a shift of the resonance spectrum, the signature of the presence

of the target molecule. This biomedical application is successful because microcavities are char-

acterized by very narrow resonances, making attachment events easy to detect [6]. In other words,

the high Q-factor of typical microresonators comes with a high sensitivity to outside perturbations

[156].

Another privileged application of photonic atoms and molecules is the development of novel com-

pact laser sources [98, 153]. Various active materials have been used to realize these small-scale

lasers, including silica glass [18], semiconductors [47] and chalcogenide [154]. While silica glass

is the preferred material used for sensing applications because of the very low associated losses

[156], chalcogenide is particularly interesting for laser applications because of its very high Raman

gain [154] and ease of integration on plastic substrates [83]. Indeed, pump thresholds as low as 13

µW have been reported in a spherical chalcogenide Raman microlaser operating at a wavelength

of λ = 1550 nm [154]. These conspicuously low threshold values are a direct consequence of the

low mode volume and high Q-factors typical of photonic atoms and molecules. Other applications

that stem from the high Q-factor of microresonators include filters in optical communications [57]

and frequency combs [28].

Keeping laser applications in mind, much work has been devoted to the achievement of direc-

tional emission from photonic atoms and molecules [54, 58, 61, 74, 81, 110, 125, 126, 144, 160].

Directional emission is defined as a far-field profile concentrated in a few preferential directions,

and is usually achieved by breaking the geometric symmetry of a resonator, since symmetrical

resonators are non-directional. There are two possible ways to realize this symmetry breaking.
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(a) Diatomic photonic molecule

(b) Triangular photonic molecule

Figure 1.2 – Two representative photonic molecules and associated resonances. The colormap is
in arbitrary units of irradiance and the cylinders are schematically represented, with an arbitrary
height for visualization purposes. (a) Representation of the result of Fig. 7.2a. (b) Representation
of the result of Fig. 7.11a.

The originally proposed approach is to consider a photonic atom with an irregular boundary, for

instance smooth deformations of a circular cavity [58, 82, 144, 160]. Another approach that has

emerged in recent years is to couple several symmetrical photonic atoms to form a directionally

emitting PM [125, 126].

In this thesis, we are mostly concerned with the numerical modeling of PMs as compact laser

sources. Although the coupling of several irregular individual photonic atoms is possible, we re-

strict our attention to PMs composed of a few coupled symmetric, or cylindrical cavities. Two pos-

sible realizations of this geometry are shown in Fig. 1.2, namely a diatomic PM composed of two

active cylinders of different radii, and another one composed of three identical cylinders arranged

on the vertices of an equilateral triangle.

1.2 Objectives and organization of this thesis

As stated in section 1.1, there exist two notable realizations of photonic complexes composed of

coupled cylindrical structures. The first one is a passive arrangement of dielectric scatterers form-

ing a so-called “finite PhC”, and the second one is the coupling of several active cylinders forming a

PM. The key topic of this thesis is the study of these coupled structures using a numerical method

that exploits the circular symmetry of the individual scatterers. These schemes are usually referred

to as Generalized Lorenz-Mie theories [56]. Different schemes that can deal either with individual

or coupled symmetrical scatterers such as spheres and cylinders are available in the literature [56].

Since this thesis primarily deals with the modeling of coupled cylindrical structures, the numerical

scheme we use in this thesis can be referred to as 2D Generalized Lorenz-Mie theory, or 2D-GLMT.

Its objective is to obtain non-paraxial solutions to Maxwell’s equations in passive or active media,

yielding the full electromagnetic field for both the TM and TE polarizations.
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1.2. Objectives and organization of this thesis

The specific research objectives of this thesis are as follows:

1. The design and optimization of integrated optical elements dedicated to beam shaping,

which convert a given input beam into another one with pre-defined, amplitude, phase and

polarization characteristics. The basic design procedure for these elements consists in op-

timizing the spatial arrangement of cylindrical scatterers on a photonic lattice. An integral

part of this optimization procedure is to compute the field transmitted by the beam shaping

elements using 2D-GLMT, which we generically refer to as scattering computations.

2. The numerical investigation of the physical properties of PM lasers. This is achieved via the

determination of the resonances of coupled active cylinders using 2D-GLMT. More specif-

ically, the objective is to better understand the effect of the underlying gain media on the

lasing thresholds, lasing frequencies and emission patterns of photonic molecule lasers.

In order to achieve these two objectives, a numerical implementation of 2D-GLMT able to deal

both with scattering and resonances of photonic complexes is presented in this dissertation. Be-

sides 2D-GLMT, additional computational and theoretical tools are needed for both objectives.

The first research objective (beam shaping) involves the solution of a hard optimization problem,

which means that it is not practical to systematically enumerate its solutions. Consequently, this

thesis is partly concerned with optimization algorithms called metaheuristics, robust methods that

involve searching for optimal solutions in an empirical, albeit guided way. As for the second re-

search objective (PMs), it involves dealing with optically active media. In order to obtain an accu-

rate description of gain transitions, we choose to combine 2D-GLMT with the recently formulated

steady-state ab initio laser theory (SALT).

This dissertation is organized as follows:

Chapter 2 – Methods I: Electromagnetic theory. This chapter contains a summary of the elec-

tromagnetic theory behind our research contributions. In section 2.1, a derivation of the vector

and scalar Helmholtz equation for generic 2D geometries is presented, starting from Maxwell’s

equations. The difference between scattering and resonances of photonic complexes is discussed

in section 2.1.1. The concept of quasi-bound states, a common definition of a resonance, is also

introduced in this section.

Section 2.2 contains a discussion of the so-called steady-state ab initio laser theory (SALT), which

is central to our contributions on PM lasers. The main features of SALT are also briefly discussed,

specifically the introduction of new classes of resonant states.

Finally, section 2.3 contains a theoretical description of 2D-GLMT, the numerical scheme central

to this thesis. The main hypotheses of the theory are stated, following by a description of how

to apply it to scattering and eigenstates of arrays of coupled cylinders. Limitations and possible

extensions of the methods are discussed in section 2.3.6.
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Chapter 1. Introduction

Chapter 3 – Methods II: Metaheuristics for combinatorial optimization in photonics design.

This chapter contains a summary of metaheuristics, broadly defined as optimization algorithms

dedicated to the solution of “hard” optimization problems. In section 3.1, the definition of a “hard”

combinatorial optimization problem is first presented. This is followed by a brief overview of the

two algorithms that are used in this thesis, namely tabu search (§3.2.1) and the canonical genetic

algorithm (§3.2.2).

Chapter 4 – Beam shaping using genetically optimized 2D photonic crystals. This chapter con-

tains our first original research contribution concerning beam shaping. More specifically, we de-

sign integrated amplitude beam shapers using a combination of the 2D-GLMT approach presented

in chapter 2 and the genetic algorithm (GA) presented in chapter 3. We show that it is possible to

use optimized photonic lattice configurations to generate different orders of Hermite-Gauss pro-

files, while maintaining reasonable losses and tolerance to variations in the input beam and the

slab refractive index. Detailed characterization of the optimized configurations are presented in

supplement 4.6.

This chapter is the reproduction of a peer-reviewed article published in 2012 [44]. On a side note,

the GA is used in this contribution mainly for historical reasons, as it was quickly replaced by tabu

search for reasons that shall become clear in chapter 5.

Chapter 5 – Multiobjective optimization in integrated photonics design. This chapter contains

a second original contribution concerning beam shaping, and can be viewed as a “sequel” to the

previous one. While the beam shaping devices proposed in chapter 4 were designed to control

solely the amplitude profile of the output beam, this contribution addresses the control of the

phase profile as well (coherent beam shaping). The phase control represents another objective

function to optimize in addition to the amplitude-related objective function. Consequently, the

optimization problem to be solved becomes more computationally intensive. To alleviate this in-

creased computational cost, we propose the use of an alternative metaheuristic called parallel tabu

search (PTS). Using this improved algorithm, the coherent beam shaping problem can be solved

more efficiently as illustrated by the generation of Hermite-Gauss beams of controlled phase pro-

file, leading to a better beam collimation.

This chapter is the reproduction of a peer-reviewed article published in 2013 [46]. One of the take-

home messages of this work is to propose the use of PTS as a possible alternative to the GA for

combinatorial optimization problems in photonics design. Indeed, while the GA is part of the

lore of the photonics research community, PTS is not as well-known and is seldom used in this

field. Additional results concerning self-collimation in photonic crystals and the tolerance of beam

shaping devices to fabrication imperfections are presented in appendices of this chapter.

Chapter 6 – Optimization of integrated polarization filters. This chapter is the last of our trilogy

on beam shaping. In this contribution, we optimize integrated optical devices that combine two

8



1.2. Objectives and organization of this thesis

functionalities, specifically beam shaping and logical polarization filtering. The basic geometry

and optimization procedure are similar to those used in chapter 5. Using a rods-in-air lattice as

a basis for a TE filter and a holes-in-slab lattice for the analogous TM filter, we show the possibil-

ity to generate Gaussian beams with a degree of polarization of up to 98 %, while maintaining a

transmission efficiency greater than 75 %.

This chapter is the reproduction of an article published in 2014. While we restrict the discussion

to Gaussian beams in the main contribution, the generation of arbitrarily shaped polarized beams

is possible. This is hinted at by the results found in supplement 6.5.1. This chapter also suggests a

possible application of the beam shaping devices proposed in this dissertation, since polarization

is a physical dimension of light that can be exploited to increase the transmission rate of optical

networks [113, 168].

Chapter 7 – Ab initio investigation of lasing thresholds in photonic molecules. This chapter

is concerned with another application of 2D-GLMT, the computation of resonances in PMs. It

begins with a discussion of how the usual method of computing the quasi-bound (or meta-stable)

resonances falls short of giving accurate quantitative predictions of the lasing thresholds in laser

resonators. Indeed, the gain medium parameters – such as the gain transition central frequency

and its linewidth – are not taken into account in the theory leading to quasi-bound states. To

improve this description, we use 2D-GLMT to compute the threshold lasing modes of a simple PM,

a new kind of eigenstate central to the SALT theory. We then proceed to extract the value of the

lasing thresholds from these modes and show that they depend non-trivially on the gain medium

parameters, a result that is out of reach of the usual quasi-bound states approach.

This chapter is the reproduction of a peer-reviewed article published in 2014 [42]. The aim of this

contribution is to show the importance of using SALT to accurately describe the lasing charac-

teristics of photonic atoms and molecules, especially lasing thresholds. In addition, supplement

7.6 shows how the gain medium parameters can affect the emission profiles, thereby yielding an

additional control parameter for the achievement of directionally emitting compact laser sources.

Chapter 8 – Conclusion This chapter summarizes the main findings of this doctoral work and

presents a research outlook on disordered photonic media. Alternative modeling tools for complex

photonic media are also briefly discussed.

Reading guide. As this dissertation is composed of 3 introductory chapters (1 to 3) followed by 4

chapters containing peer-reviewed contributions (4 to 7), there are several possible ways to read it

in a self-consistent manner, as explained in Fig. 1.3.

The application of 2D-GLMT to beam scattering (§2.3.4) and chapter 3 on combinatorial opti-

mization are necessary only to the peer-reviewed contributions concerning beam shaping. For

the reader mostly interested in these contributions, the sections on SALT (§2.2) and eigenmode

9



Chapter 1. Introduction

Introduction
Photonic complexes

Chap. 1

Electromagnetic theory
2D-GLMT

Chap. 2

Scattering computations
§ 2.3.4

Combinatorial optimization
Metaheuristics

Chap. 3

Beam shaping devices
Chap. 4, Chap. 5, Chap. 6

Conclusion and outlooks
Random lasers

Chap. 8

Steady-state ab initio
laser theory (SALT)

§ 2.2

Eigenmode computations
§ 2.3.5

Lasing thresholds in
photonic molecules

Chap. 7

Figure 1.3 – Flowchart of this thesis. In chap. 2, a branching point exists between research contri-
butions on beam shaping (left track) and contributions on PMs (right track), although the thesis
can still be read continuously. The nodes labeled in bold indicate peer-reviewed contributions
reproduced in this dissertation.

computations (§2.3.5) can be skipped, as well as chapter 7. This corresponds to the left track in

Fig. 1.3.

Similarly, the SALT theory (§2.2) and eigenmode computations (§2.3.5) are reused chiefly in chap-

ters 7 and 8 of the thesis. Consequently, all of these sections are independent from chapters 3 to

6. This corresponds to the right track on Fig. 1.3, which can be followed by readers mostly in-

terested in the parts of this thesis concerned with microcavities and PMs. Despite this apparent

disconnection of the two topics (scattering and eigenmode computations), we attempt to present

a coherent, natural progression from passive to active complex photonic media, both within chap-

ter 2 and throughout the dissertation.
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Chapter 2

Methods I: Electromagnetic theory

In a theory which has given results

like these, there must certainly be a

great deal of truth.

H. A. Lorentz

In this chapter, we summarize the electromagnetic theory used in this thesis. We begin by deriving

the vector and scalar Helmholtz equations for 2D geometries, starting from Maxwell’s equations

(§2.1). While the derivation of the Helmholtz equation for linear optical media is straightforward,

the approach must be modified to take active optical media into account. This can be achieved

using a stationary formulation of the Maxwell-Bloch equations called steady-state ab initio laser

theory (SALT). This recently formulated approach, as well as the new kind of optical eigenmodes it

introduces, are described in section 2.2.

After these derivations of the basic equations for passive and active 2D geometries, we move on

to a description of the central modeling tool behind this thesis, the two-dimensional generalized

Lorenz-Mie theory (2D-GLMT, §2.3). This theory is in fact a numerical method used to compute

the interaction of light with arrays of cylindrical scatterers. This is achieved via the expansion of

the electromagnetic field in a basis of cylindrical waves centered on each individual scatterer.

The electromagnetic theory presented here is a prelude to our contributions described in chapters

4 to 7. The problem of beam shaping using passive two-dimensional structures is approached

using 2D-GLMT in chapters 4 to 6. Finally, 2D-GLMT is combined with the SALT theory in chapter

7 to investigate the lasing behavior of coupled active cavities.

2.1 Electromagnetic theory

The starting point for the electromagnetic theory presented in this chapter are Maxwell’s equa-

tions. In a non-magnetic medium (unitary magnetic permeability, or µ= 1), these equations take

11



Chapter 2. Methods I: Electromagnetic theory

the following form 2

∇·D = ρ, (2.1.1a)

∇·H = 0, (2.1.1b)

∇×E =−1

c

∂H

∂t
, (2.1.1c)

∇×H = 1

c

∂D

∂t
+ J

c
. (2.1.1d)

These equations relate the four fundamental vector fields of electromagnetism – the electric field

E, the magnetic field H, the current density J and the electric displacement field D – as well as two

scalar quantities – the volume charge density ρ and the speed of light in vacuum c. We are chiefly

concerned by obtaining rigorous solutions of Maxwell’s equations in regions of space that contain

no free charges and no free currents, that is [15]

ρ = 0, (2.1.2a)

J = 0. (2.1.2b)

However, since we are also interested in solutions of Maxwell’s equations in active media, we sup-

pose the following relation between the displacement field D and the electric field E [15, 29]

D = E+P, (2.1.3)

where P is the nonlinear polarization field. It contains both a contribution from the linear response

of the medium (basically the optical density, or refractive index) and the nonlinear response. Under

these conditions, Maxwell’s equations take the following form

∇·D = 0, (2.1.4a)

∇·H = 0, (2.1.4b)

∇×E =−1

c

∂H

∂t
, (2.1.4c)

∇×H = 1

c

∂E

∂t
+ 1

c

∂P

∂t
. (2.1.4d)

Taking the curl of (2.1.4c) and (2.1.4d), one obtains the following wave equations

∇×∇×E+ 1

c2

∂2E

∂t 2 + 1

c2

∂2P

∂t 2 = 0, (2.1.5a)

∇×∇×H+ 1

c2

∂2H

∂t 2 − 1

c

∂

∂t

[∇×P
]= 0. (2.1.5b)

These two fundamental equations for E and H can be further reduced if the response of the optical

media is assumed to be linear. In the remainder of this section, we shall suppose it is indeed the

case and continue the discussion for nonlinear and/or active media in section 2.2.

2. Without loss of generality, the system of Heaviside-Lorentz electromagnetic units is used throughout this work ex-
cept where indicated. In this system of units, the SI constants are fixed to µ0 = ε0 = 1, which leaves only the fundamental
constant c in the equations. This definition also implies that the units of E and H are the same. Details of the conversion
between Heaviside-Lorentz and other systems, i.e. SI or Gaussian units, can be found in [29].
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2.1. Electromagnetic theory

In the case of a linear response of the medium, we suppose that the polarization field is a linear

function of the electric field, more specifically

P =χe E, (2.1.6)

where χe is the electric susceptibility of the medium, i.e. χe = 0 in free space. The substitution of

the Ansatz (2.1.6) in (2.1.5a) and (2.1.5b) yields the linear wave equations

∇×∇×E+ ε

c2

∂2E

∂t 2 = 0, (2.1.7a)

∇×∇×H+ 1

c2

∂2H

∂t 2 − 1

c

∂

∂t

[∇× (χe E)
]= 0, (2.1.7b)

where we have redefined ε≡ 1+χe , the frequently used relative dielectric permittivity. Using a few

vector identities, these wave equations can be recast as

∇(∇·E)−∇2E+ ε

c2

∂2E

∂t 2 = 0, (2.1.8a)

∇(∇·H)−∇2H+ ε

c2

∂2H

∂t 2 − 1

c

∂

∂t

[
E×∇χe

]= 0. (2.1.8b)

In the case where ε(r) is a continuous function of space, these equations can not be further simpli-

fied. However, in most cases of interest for this thesis, ε(r) will be a piecewise constant function,

meaning that the photonic structures of interest to this work are composed of constant relative

permittivity regions separated by well defined interfaces, where the value of ε(r) is discontinuous.

It is therefore possible to solve the equations under the assumption that ∇ε(r) = 0 and ∇χe (r) = 0,

and then connect the solutions at the interfaces using appropriate electromagnetic boundary con-

ditions. In other terms, it can be assumed that most of the time there is no refractive index gradient

in the photonic structures we consider. This excludes graded index media, for instance.

Under these circumstances, ∇ ·E = 0, as can be shown from (2.1.4a). Expanding the divergence

operator yields

∇·D =∇· [εE] = ε∇·E+E ·∇ε= 0. (2.1.9)

Since, ∇ε(r) = 0, one concludes that ∇ · E = 0. The substitution of these results in (2.1.8a) and

(2.1.8b) finally yields the vector Helmoltz equations

∇2E− ε

c2

∂2E

∂t 2 = 0, (2.1.10a)

∇2H− ε

c2

∂2H

∂t
= 0. (2.1.10b)

These equations are more conveniently solved in the frequency domain, using the following sub-

stitution for temporal derivatives

∂2

∂t 2 ←−ω2. (2.1.11)
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Chapter 2. Methods I: Electromagnetic theory

This is equivalent to assuming a harmonic time-dependence of the electromagnetic field, i.e. E =
E(r)e−iωt and H = H(r)e−iωt . This yields

∇2E+ε(r)k2E = 0, (2.1.12a)

∇2H+ε(r)k2H = 0, (2.1.12b)

where we have used the definition of the wavenumber k ≡ω/c.

The vector Helmholtz equation is a general description of wave propagation in fully three-dimen-

sional, linear media of piecewise constant refractive index. This covers a wide range of optical

geometries, such as optical fibers and waveguides [106], dielectric cavities such as spheres and

tori [153] and three-dimensional photonic crystals [7, 92, 140]. Since the scope of this thesis is

mostly two-dimensional structures, an additional symmetry can be further used to reduce the vec-

tor Helmholtz equation to a scalar form [41].

Two dimensional geometries usually suggest two privileged polarization directions. Formally, it

is possible to uncouple the electromagnetic field in two orthogonal polarization components if

variations of the relative permittivity ε(r) are restricted to a plane, say the (x, y) plane, meaning

ε(r) = ε(x, y). (2.1.13)

Under this condition, the electromagnetic field can be uncoupled in a transverse-electric (TE)

component (E field component parallel to the x, y plane, H field component normal to the x, y

plane) and a transverse magnetic (TM) component (H field component parallel to the x, y plane,

E field component normal to the x, y plane). Under this condition, (2.1.12a) and (2.1.12b) can be

recast in a single scalar Helmholtz equation, that is

∇2ϕ(x, y)+ε(x, y)k2ϕ(x, y) = 0, (2.1.14)

where ϕ stands for either the Ez or Hz field component, and the ω dependence is dropped. As

described in section 2.3, the scalar Helmholtz equation (2.1.14) is particularly suitable for modeling

dielectric cylinders. Indeed, as with (2.1.12a) and (2.1.12b), the scalar form of the equation means

that the eigenfunctions of the Helmholtz equation are of similar form for both polarizations, with

the boundary conditions however differing (see for instance §2.3.3).

2.1.1 Scattering vs resonances: Quasi-bound states

The linear Helmholtz equation (2.1.14) may be used for two kinds of computations, namely (1)

wave scattering and (2) resonances. As will be discussed in section 2.3.4, scattering computations

are straightforward and consist in computing the response of a given optical system to an incident

excitation. The incident and scattered waves are expanded on a suitable basis of the Helmholtz

equation, and the expansion coefficients of the scattered wave are deduced from the expansion

coefficients of the incident excitation. Thus, wave scattering problems are analogous to solving a

linear system of equations.
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2.2. Optically active media: Steady-state ab initio laser theory

On the other hand, resonance computations are more subtle than scattering computations since

they are analogous to solving a homogeneous linear system, in other words finding the eigenvalues

of a system of equations. The associated solutions of the Helmholtz equation are consequently

termed eigenmodes. Computing the eigenmodes usually implies searching for complex k values

(k = Re[k]+ i Im[k]) satisfying a resonance condition. Complex k values with Im[k] < 0 result in

exponential decay of the total energy of the optical system. According to the harmonic hypothesis

ϕ(r, t ) =ϕ(r)e−iωt , the total electromagnetic energy of the system is proportional to

|ϕ(r, t )|2 = |ϕ(r)|2e−t/τ, (2.1.15)

where |ϕ(r)|2 is the field profile of the eigenmode and τ the characteristic decay time (or half-life)

of the system energy. It is given by

τ=− 1

2c Im[k]
. (2.1.16)

This delay can be readily interpreted as the characteristic residency time of a photon trapped in

an optical resonator. Since these modes are inherently leaky, they are usually called meta-stable or

quasi-bound (QB) states, by opposition to bound states which are characteristic of closed quan-

tum systems. This analogy stems from the similarity between the Schrödinger equation and the

Helmholtz equation [41].

Although useful for modeling active cavities, QB states come with an important shortcoming. This

stems from the fact that the solutions to (2.1.14) are assumed to be stationary inside the cavity,

although resonant wavefunctions of open systems cannot by definition be stationary (their energy

must decay in time) [58]. Since ε(r) is real everywhere, the only way to obtain a decaying energy is

by means of the imaginary part of the eigenfrequency k. However, this imaginary part has the net

effect of introducting an artificial gain in the whole space domain. Consequently, QB states grow

exponentially towards infinity, which is not physically realistic [49, 152]. Strictly speaking, these

states are not even regular functions because of this blow-up behavior [58]. In section 2.2, we

introduce a recently formulated theory that overcomes this shortcoming by taking into account

the active medium ab initio, instead of the a posteriori introduction of gain associated with QB

states [49].

2.2 Optically active media: Steady-state ab initio laser theory

In the previous section, we have derived the scalar Helmholtz equation (2.1.14) for 2D geometries.

The main hypothesis behind the derivation is the linear response of the optical media. In the pres-

ence of an active medium, for instance a pumped laser cavity, the derivation is rather different.

However, as discussed in section 2.1.1, it is still possible to use the linear Helmholtz equation to

model two-dimensional active media using QB states. This description has two main shortcom-

ings, specifically (1) the exponential growth of QB states outside the resonator and (2) the conspic-

uous absence of the gain medium parameters in the linear Helmholtz equation (2.1.14).
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Chapter 2. Methods I: Electromagnetic theory

To improve on these shortcomings, this thesis makes use of a recent formulation called steady-state

ab initio laser theory (SALT). The term ab initio refers to the fact that SALT only requires the distri-

bution of ε(r) of the passive cavity, or resonator, and a number of parameters describing the gain

medium. The theory is stationary, meaning it works in the frequency domain, and is intended to

bridge the gap between the simplified QB states approach described in section 2.1.1 and time-

domain simulations using dynamical theories, for instance the Maxwell-Bloch or Schrödinger-

Bloch theories [49, 58, 152]. Moreover, as described in section 2.3.5, the Lorenz-Mie theory central

to this thesis is mostly compatible with SALT [4].

The goal of this section is to highlight the meaningful features of this theory as well as derive the

main SALT equations from Maxwell’s equations. 3

2.2.1 Basic equations and threshold lasing modes

In this section, we derive the basic equations of SALT using the electromagnetic theory presented

in section 2.1 and the Maxwell-Bloch equations for a two-level atomic system. For convenience,

only the derivation for a TM polarized wave in a 2D geometry is presented here. The first step is to

introduce a non-linear polarization term of the following form

P =χe E+PNL, (2.2.1)

in (2.1.5a), which yields

∇×∇×E+ ε

c2

∂2E

∂t 2 + 1

c2

∂2PNL

∂t 2 = 0. (2.2.2)

We then assume a TM polarized wave, use the notation E ≡ Ez ,P ≡ (PNL)z and suppose a piece-

wise constant refractive index in order for the ∇·E term to drop. Under these assumptions, (2.2.2)

becomes

∇2E − ε

c2

∂2E

∂t 2 − 1

c2

∂2P

∂t 2 = 0. (2.2.3)

Under the rotating wave approximation (RWA), one can expand the electric and polarization fields

in a positive frequency part and a negative frequency part, i.e. E = E++E− and P = P++P−. 4 This

allows to rewrite (2.2.3) only for the positive frequency field component, keeping in mind that the

negative frequency component satisfies a similar equation

∇2E+− ε

c2

∂2E+

∂t 2 − 1

c2

∂2P+

∂t 2 = 0. (2.2.4)

3. The steady-state ab initio laser theory was initially developed by H. Türeci, A. Stone and B. Collier in 2006, and
was originally called ab initio self-consistent laser theory, or AISC [152]. It was this seminal paper that first introduced
the constant-flux (CF) states central to the ab initio approach. Derivations in this section of the thesis are mostly drawn
from the work of L. Ge, who worked on generalizing the theory after it was renamed SALT [48, 49].

4. The RWA consists in only keeping the difference-frequency terms in nonlinear equations, discarding the sum-
frequency parts (for example, a E+P+ term would be dropped from the equations, while a E+P− term would be kept)
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2.2. Optically active media: Steady-state ab initio laser theory

The SALT theory is based on the Maxwell-Bloch equations for a two-level atomic system:

∂P+

∂t
=−(iωa +γ⊥)P++ g 2

i~
E+D, (2.2.5)

∂D

∂t
= γ∥(D0(r)−D)− 2

i~
[E+(P+)∗+P+(E+)∗]. (2.2.6)

This set of equations relates the electric and polarization field with the spatially varying population

inversion D(r) and the pump profile D0(r). The gain central frequencyωa and linewidth (or polar-

ization relaxation rate) γ⊥ appear in (2.2.5). Other constants are the population relaxation rate γ∥
and the dipole matrix element g . For convenience, we renormalize the population inversion in the

following way

D ≡ g 2D

γ⊥~
, (2.2.7)

so that D is dimensionless. This yields the following Maxwell-Bloch equations

∂P+

∂t
=−(iωa +γ⊥)P+− iγ⊥E+D, (2.2.8)

1

γ∥

∂D

∂t
= (D0(r)−D)−κ[E+(P+)∗+P+(E+)∗], (2.2.9)

where the coupling constant κ is defined as 5

κ≡ 2g 2

γ∥γ⊥~2 . (2.2.10)

As shall become clear later, this coupling coefficient governs the strength of the spatial-hole burn-

ing effect, that is interaction between lasing modes above threshold.

The next step in the derivation is to assume a multi-mode Ansatz as presented in Ref. [49]. More

specifically, we suppose the following harmonic expansions of the electric and polarization field

E+ =
∑
µ
ϕµ(r)e−iωµt , (2.2.11a)

P+ =
∑
µ

pµ(r)e−iωµt , (2.2.11b)

where the indices µ label the different lasing modes of the system and ωµ are the (real) lasing fre-

quencies. Substituting this Ansatz in (2.2.4) and (2.2.8) yields the following equations

∇2ϕµ+k2
µ[εϕµ+pµ] = 0, (2.2.12)

pµ =
γ⊥D(r)

ωµ−ωa + iγ⊥
ϕµ. (2.2.13)

where kµ =ωµ/c. Upon inserting (2.2.13) in (2.2.12), one obtains the main equation of SALT{
∇2 +

[
ε(r)+ γaD(r)

k −ka + iγa

]
k2

}
ϕ(r) = 0, (2.2.14)

5. A side note on units: The Heaviside-Lorentz units are dimensionally equivalent to Gaussian units, so that (2.2.8)
has units of electric field over time, (2.2.9) is dimensionless and κ has inverse units of E 2. As a reminder, electric, mag-
netic and polarization fields are dimensionally equivalent in Heaviside-Lorentz and Gaussian units.
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Chapter 2. Methods I: Electromagnetic theory

where we have dropped the µ indices and redefined ka =ωa/c and γa = γ⊥/c. This equation con-

tains all the relevant ab initio information on the lasing system. Indeed, it is analogous to the

linear Helmholtz equation (2.1.14) with a complex effective dielectric function which depends on

the gain medium parameters ka ,γa , as well as on the inversion profile D(r) which in turns depends

nonlinearly on the field ϕ as dictated by (2.2.9).

The only question that remains at this point of the derivation is how to fix the value of D(r). For

conciseness, we shall only summarize the main results and refer the reader to Ref. [48] for a de-

tailed discussion. The main hypothesis that yields a convenient expression for D(r) is the station-

ary inversion approximation, which implies ∂D
∂t = 0. In short, this approximation implies that the

population inversion of the two-level system remains constant in time. This approximation is valid

in the single-mode regime, as well as in the multi-mode regime under the condition γ⊥ À γ∥, in

other words if the characteristic time scale of the inversion dynamics is larger than that of the po-

larization dynamics. Under these conditions, the dependence of D(r) on the set of lasing modes

ϕµ can be worked out from (2.2.9), and one obtains

D(r) = D0F (r)

1+κh(r)
, (2.2.15)

where D0 is the dimensionless pump strength, F (r) is the pump profile and h is the modal interac-

tion term, or spatial hole-burning term, given by [49]

h(r) ≡
∑
ν
Γν|ϕν(r)|2, (2.2.16)

where

Γν =
γ2

a

(kν+ka)2 +γ2
a

. (2.2.17)

In the single-mode regime or when the electromagnetic fields are small with respect to the cou-

pling coefficient κ, the hole-burning effects can be neglected. In that case, the lasing modes are

governed by the following equation

{
∇2 +

[
ε(r)+ γaD0F (r)

k −ka + iγa

]
k2

}
ϕ(r) = 0. (2.2.18)

The eigenmodes governed by this equation are usually called threshold lasing modes (TLMs) since

they paint an accurate picture of the emission profile of the laser at threshold. Unlike the modes

described by (2.2.14), the TLMs only depend on the gain medium parameters ka ,γa , the pump

strength D0 and the spatial pump profile F (r). Moreover in the absence of pumping (F (r) = 0), for

instance outside the laser resonator, the modes satisfy a linear Helmholtz equation (2.1.14) with

real frequency k. This allows a more realistic description of the lasing modes than the QB states

approach since the gain medium is introduced as an effective permittivity instead of an artificial

imaginary part of the wavenumber [49].

The determination of TLMs can be achieved using various numerical schemes including the Lorenz-

Mie approach described in section 2.3 or the finite element method described in [84]. For a given
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2.2. Optically active media: Steady-state ab initio laser theory

combination of ε(r), F (r), ka and γa , the problem consists in finding the value of the lasing fre-

quencies kµ, thresholds Dµ
0 and the field distributions ϕµ. However, for a given choice of exterior

real frequency k, the value of Dµ
0 is in general complex. Consequently, the TLM must satisfy an

additional reality condition on the threshold value, since a complex-valued Dµ
0 does not corre-

spond to a physically realistic lasing mode [49]. In short, one must map the evolution of Dµ
0 as a

function of k, and when the former crosses the real axis at k = kµ, obtain a pair of real numbers

(kµ,Dµ
0 ) defining the TLM lasing frequency and lasing threshold, respectively. The first lasing mode

is therefore the TLM with the smallest threshold Dµ
0 [49].

2.2.2 Constant-flux states

One of the defining features of SALT is the introduction of new eigenstates, such as the TLMs de-

scribed in the previous section. The theory also introduces another kind of eigenstate called a

constant-flux (CF) state [49, 58, 152]. CF states are useful because they are straightforward to com-

pute and can be used as a basis to expand the lasing modes of SALT described by (2.2.14). CF

states are parametrized by real wavenumbers outside the laser resonator, and are thus physically

meaningful. The basis of CF states satisfy the following modified Helmholtz equation

[∇2 +ε(r)K 2(k)]ϕ= 0, r ∈C , (2.2.19a)

[∇2 +ε(r)k2]ϕ= 0, r ∉C , (2.2.19b)

where C is the cavity region, defined as the union of all optically active regions. The eigenvalues K

are complex and depend on the exterior frequency k, which is always real. This formulation ensures

that the total electromagnetic flux outside the cavity is conserved [48].

In the special case of a uniform pumping inside the cavity region, i.e. F (r) = 1 for r ∈C and F (r) = 0

for r ∉ C and a uniform refractive index distribution ε(r) = εc for r ∈ C , the TLMs can be trivially

expanded in the basis of CF states. By comparing (2.2.18) and (2.2.19a), one obtains the relation

γaD0

k −ka + iγa
= εc

(
K 2

k2 −1

)
. (2.2.20)

In other terms, if the active medium is uniformly pumped, one can simply compute the CF states

of the geometry, given the value of εc , and extract the complex values D0 of the associated TLMs

using (2.2.20).

2.2.3 Circular cavity: QB vs CF states

This section wraps up the description of QB and CF states by giving their explicit expressions for

the simplest 2D geometry, a circular cavity. Consider a dielectric circle of refractive index nc =p
εc

and radius r placed in a medium of refractive index n0. We suppose that the cavity is centered on

the origin of a “global” cylindrical coordinate system. Under these conditions, the QB states of the
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circular cavity, solutions of Eq. (2.1.14), are [41]

ϕl (ρ,θ) =
Al Jl (nc kρ), ρ < r,

Bl H (+)
l (n0kρ), ρ > r,

(2.2.21)

where l is the angular quantum number of the solution, Jl is a Bessel function of the first kind and

H (+)
l is a Hankel function of the first kind. Analogously, the CF states of the circular cavity, solutions

of Eq. (2.2.19), are [48, p. 52]

ϕl (ρ,θ) =
Al Jl (nc K (k)ρ), ρ < r,

Bl H (+)
l (n0kρ), ρ > r.

(2.2.22)

One can see the CF eigenvalue K (k) explicitly appearing in the solution for ρ < r .

There exists an infinite set of QB and CF states for any cavity. In the case of the circular cavity,

both types of states can be characterized by a pair of quantum numbers (l , j ), corresponding to

the number of angular and radial lobes of the eigenmode, respectively. Moreover, the expressions

given by Eqs. (2.2.21) and (2.2.22) satisfy an outgoing boundary condition outside the resonator,

sometimes called Sommerfeld radiation condition. This condition ensures a net flow of the elec-

tromagnetic energy of the eigenstate towards infinity, and is mathematically given by

lim
ρ→∞ϕ(ρ,θ) =ϕ(θ)

e i kρ√
kρ

. (2.2.23)

In order to determine the eigenvalues of QB states, one must find non-trivial solutions to a homo-

geneous linear system relating the unknown coefficients Al and Bl . This linear system, obtained

via the application of electromagnetic boundary conditions 6 at ρ = r is given by(
Jl (nc kr ) −H (+)

l (n0kr )

ςnnc J ′l (nc kr ) −ς0n0H (+)′
l (n0kr )

)(
Al

Bl

)
= 0, (2.2.24)

where ςi = 1 (1/n2
i ) for a TM (TE) polarized wave. These factors account for the polarization of the

mode. In short, one must find eigenvalues k = kQB such that the determinant of the coefficient

matrix in Eq. (2.2.24) is zero. Once this is done, the Al and Bl coefficients are readily obtained from

the linear system. A similar system of equations can be obtained for the CF states of the circular

cavity (
Jl (nc K r ) −H (+)

l (n0kr )

ςnnc K J ′l (nc K r ) −ς0n0kH (+)′
l (n0kr )

)(
Al

Bl

)
= 0. (2.2.25)

In that case, one must find eigenvalues K (k) for a fixed exterior frequency k.

For comparison purposes, a QB state of this circular cavity and the associated CF state are plotted

in Fig. 2.1. Both modes are characterized by the pair of quantum numbers (l , j ) = (10,3). Since we

6. These boundary conditions are detailed in section 2.3.3
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chose the exterior frequency of the CF state near the real part of the QB eigenvalue Re[kQB], the field

profile inside the cavity (ρ < r ) is similar for both eigenstates. However, one clearly sees that the

CF state remains bounded outside the cavity, whereas the QB state begins to grow exponentially

roughly beyond ρ = 1.5r . This behavior is consistent with the Sommerfeld radiation condition.

Indeed, if one injects a complex k value in Eq. (2.2.23) with Im[k] < 0, the solution clearly blows up

at infinity. However, CF states are always characterized by real wavenumbers outside the cavity re-

gion, which ensures the solution remains bounded. This example of the circular cavity thus serves

two purposes. First, it shows that QB and CF states can be uniquely mapped one onto another

using the quantum numbers (actually, this mapping is also possible in the case of coupled cavities,

as discussed in chapter 7). It also serves to highlight the unphysical behavior of the usual QB states

at infinity, a behavior which can be corrected using the formulation of CF states.

To conclude this section on SALT, a summary of the main features of the three kinds of eigenstates

(QB states, CF states and TLMs) presented in this chapter is contained in Table 2.1.
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Figure 2.1 – Comparison of the field profile of a QB and a CF state of a circular cavity of refractive index nc = 1.5 embedded in a medium of
refractive index n0 = 1. (TM polarization, arbitrary normalization). The eigenmodes are characterized by the quantum numbers (l , j ) = (10,3).
The QB state eigenvalue is kQB = 13.521−0.442i . The CF state eigenvalue is K = 13.558−0.440i (exterior frequency k = 13.52).

Table 2.1 – Comparison of the three kinds of eigenstates used in this thesis. Outside the cavity region, all eigenstates are governed by the linear
Helmholtz equation (2.1.14). The defining features listed in this table assume that the refractive index distribution ε(r) is a real function.

Name Acronym Governing equation inside cavity region Defining features

Quasi-bound state QB [∇2 +ε(r)k2]ϕ(r) = 0 Grows exponentially at infinity

Constant-flux state CF [∇2 +ε(r)K 2(k)]ϕ(r) = 0 Remains bounded at infinity (Real frequency
outside of the cavity region)

Threshold lasing mode TLM
{
∇2

[
ε(r)+ γaD0F (r)

k −ka + iγa

]
k2

}
ϕ(r) = 0 + Includes a description of the pump and gain

medium
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2.3. 2D Generalized Lorenz-Mie Theory

2.3 2D Generalized Lorenz-Mie Theory

In this section, we describe the theoretical framework which we refer to as 2D Generalized Lorenz-

Mie theory 7. According to Gouesbet and Lock, the expression “generalized Lorenz-Mie theories”

(GLMTs) is used to generically denote a set of light-scattering theories describing the interac-

tion between an illuminating electromagnetic beam and a discrete scattering particle (or array of

particles) provided that the scatterers possess enough symmetry, allowing one to solve the prob-

lem using the method of separation of variables [56]. The framework used here indeed involves

the method of separation of variables, plus the application of Graf’s addition theorem. Since we

are concerned with cylinders, we shall refer to the aforementioned theoretical framework as 2D-

GLMT 8.

The goal of this section is to present our “reference implementation” of the 2D-GLMT and its ap-

plication to electromagnetic modeling of two-dimensional arrays of cylinders. The organization of

this part of the thesis is as follows.

The first sections (§2.3.1 to §2.3.3) are concerned with the basic theoretical treatment of 2D-GLMT.

In section 2.3.1, we state Graf’s addition theorem for cylindrical functions since it is at the heart of

2D-GLMT. Section 2.3.2 is concerned with the basic equations and the main hypothesis of 2D-

GLMT, specifically the expansion of the electromagnetic fields in a basis of cylindrical waves. To

isolate the unknown expansion coefficients, electromagnetic boundary conditions must be en-

forced as described in section 2.3.3.

The next sections (§2.3.4 to §2.3.5) are concerned with two privileged applications of 2D-GLMT

studied in this thesis. These applications are:

1. Scattering computations. As shown in section 2.3.4, 2D-GLMT is an ideal tool to compute

the field scattered by a finite array of cylindrical scatterers. We show how this formalism is

compatible not only with the scattering of plane waves, but also of Gaussian beams. Scatter-

ing computations are central to the research contributions detailed in chapters 4 to 6 of this

thesis.

2. Eigenmode computations. The 2D-GLMT framework can also be used to compute lasing

modes of an array of cylinders, as described in section 2.3.5. More specifically, we are in-

terested in the computation of the usual quasi-bound (QB) states, but also the constant-

7. The derivations are mostly drawn from references [33, 36, 103, 105]. Similar derivations are also found in a variety
of other published works including [4, 99]

8. This theoretical framework based on cylindrical wave expansions has been referred to by a certain number of
names in the past, including “multipole method” or “fast multipole method” in Refs. [4, 158]. On a historical note, it
should be mentioned that neither Ludvig Lorenz nor Gustav Mie were involved in the solution of Maxwell’s equations
in coupled cylinders. The solution of Maxwell’s equations in cylindrical geometries is more often associated to Lord
Rayleigh [88], thus some authors prefer the term “Rayleigh scattering” for cylinders instead of “Lorenz-Mie scattering”
or “Mie scattering” which usually deals with spheres [56]. However, we are not fond of the term “Rayleigh scattering”
because it is most often used to refer to scattering by particles much smaller than the wavelength of the incident light,
which is not a condition used for the framework exposed here.
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flux (CF) states which are central to the SALT theory. An equivalent method for computing

modes of random lasers has been summarily described in Ref. [4] under the name “multi-

pole method”. Eigenmodes computations using 2D-GLMT are central to chapter 7 of this

thesis.

2.3.1 Graf’s addition theorem

We state Graf’s addition theorem [1, Eq. 9.1.79] since it is central to the derivation of the main equa-

tions of 2D-GLMT. This addition formula allows one to displace one cylindrical system of coordi-

nates into another using a Bessel function expansion. Let F denote J ,Y , H (+), H (−) or any linear

combination of these functions. The following identity holds

Fν(W )e iνχ =
∞∑

m=−∞
Fν+m(U )Jm(V )e i mα, (2.3.1)

where |V e±iα| < |U | and
W 2 =U 2 +V 2 −2UV cosα,

U −V cosα=W cosχ,

V sinα=W sinχ.

(2.3.2)

The branches must be chosen such that W →U and χ→ 0 as V → 0. The restriction |V e±iα| < |U |
is unnecessary if F = J because the Bessel function of the first kind and integer order is an entire

function. If U ,V ,W are real numbers, they can be interpreted as edges of a triangle as shown in

Fig. 2.2. The theorem nevertheless holds for complex-valued arguments.

2.3.2 Basic equations

Consider an array of N cylindrical scatterers of radii rn and relative permittivity εn . Let also rn =
(ρn ,θn) be the cylindrical coordinate system local to the nth scatterer, whose center is located at

Rn = (Xn ,Yn). For modeling purposes, we suppose that every cylinder (hole) is infinite along the

Figure 2.2 – Graf’s addition theorem
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axial z direction. We also suppose that cylinders do not overlap. The field outside the cylinders

satisfies the following Helmholtz equation

[∇2 +k2
0]ϕ(x, y) = 0, (2.3.3a)

with k0 =p
ε0k, whereas the field inside the nth scatterer satisfies the following Helmholtz equation

[∇2 +k2
n]ϕ(ρn ,θn) = 0, ρn < rn . (2.3.3b)

For generality, we do not suppose any relation between kn and εn at this point. This will allow the

derivations presented here to be compatible both with passive and active media, as described in

section 2.2.

The central hypothesis of 2D-GLMT is that the field outside the scatterers ϕE can be written as the

superposition of an arbitrary incident beam and the sum of the field scattered by each individual

scatterer. The fields can be expanded in a basis of outgoing cylindrical functions, that is

ϕE (r) =ϕi (r)+ϕs(r), (2.3.4)

with

ϕi (r) =
∞∑

l=−∞
a0

nl Jl (k0ρn)e i lθn , (2.3.5a)

ϕs(r) =
N∑

n=1

∞∑
l ′=−∞

bnl ′ H
(+)
l ′ (k0ρn)e i l ′θn . (2.3.5b)

The coefficients {a0
nl } are the beam-shape coefficients, used to parametrize the incident field in the

frame of reference of the nth scatterer.

Inside the nth scatterer, the field can be written as

ϕI
n(r) =

∞∑
l=−∞

cnl Jl (knρn)e i lθn . (2.3.6)

In order to apply electromagnetic boundary conditions at the interface of the nth scatterer, one

must find an expression for ϕE (r) containing only cylindrical harmonics centered on the nth scat-

terer, that is

ϕE
n (r) =

∞∑
l=−∞

[
anl Jl (k0ρn)+bnl H (+)

l (k0ρn)
]

e i lθn . (2.3.7)

This can be achieved via the application of Graf’s addition theorem for cylindrical functions, which

allows a translation from the frame of reference of scatterer n′ to the frame of reference of scatterer

n. We apply Graf’s addition theorem using the following change of variables (see Fig. 2.2 for the

definition of angles)

U = k0Rnn′ ,

V = k0ρn ,

W = k0ρn′ ,

(2.3.8)
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The theorem states that

H (+)
l ′ (k0ρn′)e i l ′θn′ =

∞∑
l=−∞

e i (l ′−l )φnn′ H (+)
l−l ′(k0Rnn′)Jl (k0ρn)e i lθn , (2.3.9)

where Rnn′ is the center-to-center distance between scatterers n and n′ and φnn′ is the angular

position of scatterer n′ in the frame of reference of scatterer n. Substituting (2.3.9) in (2.3.5) yields

ϕE
n (r) =

∞∑
l=−∞

a0
nl Jl (k0ρn)e i lθn +

∞∑
l=−∞

bnl H (+)
l (k0ρn)e i lθn

+
∞∑

l=−∞

∑
n′ 6=n

∞∑
l ′=−∞

bn′l ′e
i (l ′−l )φnn′ H (+)

l−l ′(k0Rnn′)Jl (k0ρn)e i lθn .

(2.3.10)

The comparison of (2.3.7) with (2.3.10) yields the following relation between the {anl } and {bnl }

coefficients

anl = a0
nl +

∑
n′ 6=n

∞∑
l ′=−∞

e i (l ′−l )φnn′ H (+)
l−l ′(k0Rnn′)bn′l ′ . (2.3.11)

2.3.3 Electromagnetic boundary conditions

The relation (2.3.11) is one of the central results of 2D-GLMT. It accounts for the mutual influence

of all individual scatterers. In order to obtain the {anl }, {bnl } and {cnl } for a given set of beam-shape

coefficients {a0
nl }, one must apply electromagnetic boundary conditions to (2.3.6) and (2.3.7) at

ρn = rn . For a TM polarized wave, the first condition is the continuity of Ez across the cylinder

interface at ρn = rn . The second condition is the continuity of the component of H parallel to the

interface (Hθn component). From (2.1.1c), one obtains

Hθn =− i

k
[∇×E]θn =− i

k

∂Ez

∂ρn
. (2.3.12)

For a TE polarized wave, the first condition is rather the continuity of Hz across the cylinder inter-

face at ρn = rn . Similarly, the second condition is the continuity of the component of E parallel to

the interface (Eθn component). From (2.1.1d), one obtains

Eθn =
i

εk
[∇×H]θn =

i

εk

∂Hz

∂ρn
. (2.3.13)

The two conditions (2.3.12) and (2.3.13) can be rewritten as

ϕI
n(rn) =ϕE

n (rn), (2.3.14a)

ςn
∂ϕI

n

∂ρn

∣∣∣
rn

= ς0
∂ϕE

n

∂ρn

∣∣∣
rn

. (2.3.14b)

Again, the ςi factors account for polarization. Specifically, we have ςi = 1 (1/εi ) for a TM (TE)

polarized wave. Thus, applying this boundary condition to (2.3.6) and (2.3.7), one obtains

cnl Jl (knrn) = anl Jl (k0rn)+bnl H (+)
l (k0rn), (2.3.15a)

cnlςnkn J ′l (knrn) = anlς0k0 J ′l (k0rn)+bnlς0k0H (+)′
l (k0rn). (2.3.15b)
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Eliminating cnl from those equations, we obtain the relation bnl = anl snl , with

snl (k0,kn) =−
J ′l (k0rn)−Γnl Jl (k0rn)

H (+)′
l (k0rn)−Γnl H (+)

l (k0rn)
, (2.3.16)

where

Γnl = ξn0
kn J ′l (knrn)

k0 Jl (knrn)
, (2.3.17)

and

ξi j = 1

(
ε j

εi

)
, (2.3.18)

for a TM (TE) polarized wave.

Substituting bnl = anl snl in (2.3.11) yields

bnl − snl

∑
n′ 6=n

∞∑
l ′=−∞

e i (l ′−l )φnn′ H (+)
l−l ′(k0Rnn′)bn′l ′ = snl a0

nl . (2.3.19)

This relation between the {a0
nl } and {bnl } coefficients can be rewritten in matrix form as

Tb = a0, (2.3.20)

with

Tl l ′
nn′ = δnn′δl l ′ − (1−δnn′)e i (l ′−l )φnn′ H (+)

l−l ′(k0Rnn′)snl , (2.3.21)

and

a0 =
{

snl a0
nl

}
, b =

{
bnl

}
. (2.3.22)

Matrix T is typically constructed by truncating the series expansions to order lmax. It is composed

of N ×N blocks of dimension 2lmax +1, where the truncation order lmax is sufficiently large to en-

sure convergence of the cylindrical function expansions. As a representative example, the transfer

matrix for an array of three identical (εc = 4) coupled dielectric cylinders arranged on the vertices

of an equilateral triangle is shown in Fig. 2.3b. This matrix is clearly composed of 3×3 blocks of

dimension 2lmax +1, where we have used the prescription lmax = 3kr1 to set the truncation order

[33, 36]. More details on this prescription can be found in section 2.3.6.

2.3.4 Scattering of arbitrary beams

The interaction of an arbitrary beam with an array of cylindrical scatterers can be readily mod-

eled using 2D-GLMT. Given a set of beam-shape coefficients {a0
nl }, the scattered coefficients {bnl }

can be directly computed by solving the system of linear equations (2.3.20). In fact, as stated by

Gouesbet and Lock, the main difficulty behind Lorenz-Mie theories is usually the computation

of the beam-shape coefficients [56]. In section 2.3.4.1, we present the analytic derivation of the

beam-shape coefficients for an incident plane wave. In section 2.3.4.2, we show how to compute

the beam-shape coefficients for a focused input beam parametrized by the complex-source beam

(CSB) technique.
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Figure 2.3 – Transfer matrix for three identical coupled cylinders arranged on the vertices of an
equilateral triangle (εc = 4,kr1 = 5.3779). The truncation order of the matrix is chosen as lmax =
ceil[3kr1] = 17.
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2.3.4.1 Beam-shape coefficients for a plane wave

Consider the following incident field (plane wave) on the scatterer array

ϕi (r) =ϕ0e i k·r. (2.3.23)

The incident wavevector k is defined by a modulus k0 = k
p
ε0 and an angle of incidence Θ. The

position vector r is defined with respect to the origin of a global coordinate system. In the frame of

reference of the nth scatterer, one can write

ϕi (ρn ,θn) =ϕ0e i k·(Rn+rn ) =ϕ0e i k·Rn e i k0ρn [cos(θn−Θ)]. (2.3.24)

Using the Jacobi-Anger expansion [163], one can rewrite

e i k0ρn [cos(θn−Θ)] =
∞∑

l=−∞
i l Jl (k0ρn)e i l (θn−Θ). (2.3.25)

The substitution of (2.3.25) in (2.3.24) and comparison with (2.3.5) yields the following beam-shape

coefficients, similar to those found in [33, 103]

a0
nl =ϕ0e i k·Rn i l e−i lΘ. (2.3.26)

2.3.4.2 Beam-shape coefficients for a complex-source beam

The basic form of a two-dimensional Gaussian beam (GB) propagating along the x axis, which

satisfies the paraxial 2D Helmholtz equation, is given by

ϕg (x, y) =
√

2

πk0(x −xR)
exp

{
i k0

(
x + 1

2

y2

x − i xR

)}
. (2.3.27)

The parameter xR is the Rayleigh distance of the GB and is proportional to the coherence length of

the beam. The beam waist is located in the x = 0 plane. The physical appeal and usefulness of the

Gaussian beam is well established. Indeed, it is compatible with semi-analytical approaches such

as ray-transfer (or ABC D) matrices and leads to a closed form solution of the Fresnel-Kirchhoff

integral [127]. A Gaussian beam is also a good approximation of the radiation pattern of the fun-

damental mode of a rectangular waveguide [106, pp. 43–46] or of an optical fiber [93]. However, in

the cases of interest for this thesis, the Gaussian beam solution suffers from two main drawbacks.

First, it is an approximate solution of the Helmholtz equation. Indeed, one must use the paraxial

approximation to obtain (2.3.27) from (2.1.14). Second, computing the beam-shape coefficients

for the canonical Gaussian beam solution is not easily accomplished.

To circumvent these two drawbacks, we shall use the complex-source beam (CSB) solution of the

2D Helmholtz equation as a closed-form incident field. This solution has been proposed in order

to extend the validity of the GB beyond the paraxial zone and exhibits the required cylindrical

symmetry [65]. Using the Green’s function of the inhomogeneous Helmholtz equation for a point
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Figure 2.4 – (Left) Phase fronts and Poynting vectors of the free-space CSB solution described by
Eq. (2.3.28). (Right) Amplitude contours of the CSB solution and comparison with the canonical
Gaussian beam (dashed). The normalized Rayleigh distance is set to k0xR = 9.65, the same value
used in chapter 4.

source located in complex space at coordinates x ′ = i xR and y ′ = 0, one obtains the CSB solution

[91]

ϕi (r) = H (+)
0 (k0rs), (2.3.28)

with

rs ≡ [(y − y ′)2 + (x −x ′)2]1/2 = [y2 + (x − i xR)2]1/2. (2.3.29)

This solution is continuous everywhere in the real plane except across the branch cut connecting

the two singularities at (x, y) = (0, xR) and (x, y) = (0,−xR). The waist plane is thus located in the

branch cut 9. The CSB solution reduces, up to a multiplicative constant, to a canonical Gaussian

beam in the paraxial zone x À y . To show this, one can rewrite rs in the following way

rs =±(x − i xR)

√
1+ y2

(x − i xR)2 , x ≷ 0, (2.3.30)

and use the binomial approximation [65] to write

rs ∼±
[

(x − i xR)+ 1

2

y2

x − i xR

]
, x ≷ 0. (2.3.31)

Moreover, using the asymptotic expansion of Hankel functions for large arguments, one can write

[1]

ϕi (x, y) ∼
√

2

πk0rs
exp i

(
k0rs +

π

4

)
∼

√
2

πk0(x − i xR)
exp

[
i k0

(
x + 1

2

y2

x − i xR

)]
e

iπ
4 ek0xR , x > 0,

(2.3.32a)

9. In order to obtain a regular solution in that plane, one can combine linearly independent CSB solutions as de-
scribed in [91].
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ϕi (x, y) ∼
√

2

πk0(x − i xR)
exp

[
−i k0

(
x + 1

2

y2

x − i xR

)]
e

iπ
4 e−k0xR , x < 0. (2.3.32b)

Eq. (2.3.32) and Fig. 2.4 clearly show the transverse Gaussian profile of the CSB in the paraxial

zone. The next step is to expand the CSB on a basis of cylindrical waves centered on each individual

scatterer to obtain the beam-shape coefficients. To obtain this expansion, one can rewrite (2.3.28)

as

ϕi (ρn ,θn) = H (+)
0 (k0|rn − rsn |), (2.3.33)

where rn = (ρn ,θn) and rsn is the vector pointing from the center of the nth scatterer to the complex

source point. We apply Graf’s addition theorem using the following change of variables

U = k0rsn ,

V = k0ρn ,

W = k0|rn − rsn |,
(2.3.34)

where ρn = |rn | and rsn = |rsn | (geometric norms). In accordance with [105], we write

− rsn = (Xn − i xR)êx +Yn êy , (2.3.35a)

rsn =
√

(Xn − i xR)2 +Y 2
n , (2.3.35b)

thus

rn − rsn = (xn +Xn − i xR)êx + (yn +Yn)êy , (2.3.36a)

|rn − rsn | =
√

(xn +Xn − i xR)2 + (yn +Yn), (2.3.36b)

where (xn , yn) are Cartesian coordinates centered on the nth scatterer. Using (2.3.2), one obtains

cos(αn +π) = cosµn cosθn + sinµn sinθn = cos(θn −µn), (2.3.37)

where

cosµn = Xn − i xR

rsn
, sinµn = Yn

rsn
, (2.3.38a)

cosθn = xn

ρn
, sinθn = yn

ρn
. (2.3.38b)

Using those substitutions, the expansion can be written

ϕi (ρn ,θn) =
∞∑

l=−∞
H (+)

l (k0rsn)Jl (k0ρn)e i lαn , (2.3.39)

and substituting αn = θn −µn −π, one obtains the beam-shape coefficients for a CSB

a0
nl = (−1)l H (+)

l (k0rsn)e−i lµn , (2.3.40)

where rsn is given by (2.3.35b) and µn by (2.3.38a).
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The expansion (2.3.39) is similar to Eq. (3) in reference [105], with the difference that the con-

dition |U e±iαn | < |V | is required in the said reference (because the source is located inside a cir-

cular reflector), whereas our form requires |V e±iαn | < |U |. In accordance with this condition, the

convergence of (2.3.39) is limited to a disk not intersecting or touching the branch cut between

(x, y) = (0, xR) and (x, y) = (0,−xR). In other words, scatterers must not intersect or touch the

branch cut for the expansion to hold.

2.3.5 Eigenmode computations

In the previous section, it was shown that the scattering wavefunctions can be computed by solving

the linear system of equations (2.3.20). Eigenmodes computations rather involve a homogeneous

version of this linear system. Generally, this system is of the form

T(λ)b = 0. (2.3.41)

In short, the computation of lasing states is a non-linear eigenvalue problem. One must compute

the discrete set of (generally complex) eigenvalues λ and eigenvectors b for which det(T) = 0. Since

the eigenvalue is usually a complex frequency or wavenumber, this problem amounts to finding

the resonant frequencies associated to an infinite scattered amplitude in presence of a finite am-

plitude incident wave. Algorithms for solving the non-linear eigenvalue problem are described in

[122, 165].

In this section, we show that (2.3.41) can be readily adapted for the computation of the classical

QB states of an array of cylinders, and of the CF states described in section 2.2.2. The QB states of

an array of dielectric scatterers satisfy the following Helmholtz equation

[∇2 +ε0k2]ϕ(ρn ,θn) = 0, (Outside all cylinders) (2.3.42a)

[∇2 +εnk2]ϕ(ρn ,θn) = 0, ρn < rn . (2.3.42b)

Consequently, the matrix equation describing the quasi-bound modes is simply

T(k)b = 0, (2.3.43)

with the substitution kn ← k
p
εn in (2.3.16).

As stated in section 2.2, QB states cannot accurately describe the steady-state lasing behavior of an

array of active cylinders, even near threshold [49]. This is due to the QB eigen-frequencies being

complex everywhere outside the cylinders, resulting in exponential growth of the electromagnetic

energy at infinity [49]. To enable a more realistic treatment of eigenmodes, we have introduced a

new kind of eigenstate central to SALT, the CF state, in section 2.2.2. One of the appealing features

of CF states is that they are readily computed using the Lorenz-Mie approach described here, un-

der the assumption that the cavity region is composed of a subset of the cylinder array. In other

words, the medium surrounding all cylinders is passive, and some cylinders may also be passive.
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Accordingly, the wavevector is complex only inside active cylinders. The CF states therefore satisfy

[∇2 +ε0k2]ϕ= 0, (Outside all cylinders) (2.3.44a)

[∇2 +εnk2]ϕ= 0, (Inside passive cylinders) (2.3.44b)

[∇2 +εnK (k)2]ϕ= 0, (Inside active cylinders). (2.3.44c)

The matrix equation describing the CF states is

T(K )b = 0, (2.3.45)

with the substitution kn ← K
p
εn in (2.3.16) if the nth cylinder is active, and kn ← k

p
εn otherwise.

Note that, as always, the complex eigenfrequency K associated to the CF states depends on the

value of the exterior frequency k.

In summary, 2D-GLMT can be used to compute the eigenstates of arrays of coupled active cylin-

ders, possibly all different in size and refractive indices. The method works equally well for the

computation of the eigenfunctions and eigenfrequencies of QB states, meta-stable solutions of

the 2D Helmholtz equation, and for the computation of CF states. These “improved” eigenstates

central to the SALT theory are more physically realistic solutions to the Helmholtz equation in the

sense that they remain bounded at infinity, unlike QB states. Using CF states also enables the com-

putation of resonances of photonic complexes in the case where some cylinders are active and

other remain passive. This is incompatible with QB states computations, which amount to an ac-

tive medium extending to the whole spatial domain.

2.3.6 Limitations and extensions of the method

Although the usefulness of 2D-GLMT has been demonstrated in the literature for a wide variety of

applications, two important limitations of the method are noteworthy. The first limitation is that

the size of the transfer matrix described by (2.3.21) scales like N 2, where N is the number of cylin-

ders considered. In this work, we perform computations with arrays ranging from N = 2 (chapter

7) to N = 372 (§5.8). In the latter case, the memory and processor requirements of the method

are kept low by the fact that we consider cylinder dimensions of the order of the operating wave-

length. This allows us to perform fast computations and combine 2D-GLMT with metaheuristics,

optimization algorithms described in chapter 3. Since these algorithms imply a large number of

scattering computations, the speed of 2D-GLMT is a critical issue. However, the method can be-

come time and memory consuming either if we consider cylinders much larger than the operating

wavelength, or a very large number of scatterers as in section 8.3. In that case, alternative meth-

ods might be more practical than 2D-GLMT, for instance the finite element method discussed in

section 8.2 [39, 84].

A second limitation of the 2D-GLMT approach presented in this chapter is that the underlying

matrix equation (2.3.20) cannot be truncated at an arbitrary order to provide convergence [99, 143].
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This can be demonstrated by using the asymptotic form of cylindrical functions for large positive

order [1, p. 365]

lim
l→∞

Jl (z) = 1p
2πl

(ez

2l

)l
, (2.3.46a)

lim
l→∞

H (+)
l (z) = lim

l→∞
i Yl (z) =−i

√
2

πl

(
2l

ez

)l

. (2.3.46b)

In other terms, Bessel functions of the first kind decay exponentially for large orders, while Hankel

functions of the first kind grow exponentially in similar situations. Combining these results with

(2.3.21), one obtains the following asymptotic forms for large values of l ′

lim
|l ′|→∞

Tl l ′
nn′ = δnn′δl l ′ − (1−δnn′)e i (l ′−l )φnn′ snl lim

|l ′|→∞
H (+)

−l ′ (k0Rnn′). (2.3.47)

The limit can be computed using (2.3.46b)

lim
|l ′|→∞

H (+)
−l ′ (k0Rnn′) =


i (−1)l ′+1

√
2

πl ′

(
2l ′

ek0Rnn′

)l ′

, l ′ > 0,

−i

√
2

π|l ′|

(
2|l ′|

ek0Rnn′

)|l ′|
, l ′ < 0.

(2.3.48)

This result means that for large values of |l ′|, the elements of the off-diagonal blocks of Tl l ′
nn′ grow

exponentially. As for large values of l , one can readily compute the following asymptotic depen-

dence

lim
|l |→∞

snl ∼
(

1

2|l |

)2|l |
. (2.3.49)

Overall, this results in an exponential decay of the matrix elements with respect to l , specifically

lim
|l |→∞

Tl l ′
nn′ ∼

(
1

2|l |

)|l |
. (2.3.50)

The net result is that, for small values of |l − l ′|, the elements of the off-diagonal blocks remain

bounded, as the exponential growth with respect to |l ′| is compensated by the exponential decay

with respect to |l |. On the other hand, for large values of |l − l ′|, the matrix elements quickly blow

up. This exponential growth can be clearly seen in Fig. 2.3c for off-diagonal elements.

The consequences are important, since it is theoretically not possible to minimize the error of

2D-GLMT by solving arbitrarily large matrices because it would require storing arbitrarily large

numbers in memory. In this work, we attempted to avoid numerical instabilities by applying the

usual rule of using “not too large” truncation orders. For a given cylinder array, the prescription we

use to choose the truncation order lmax is usually [33, 36]

lmax ∼ 3krmax, (2.3.51)

where rmax is the radius of the largest cylinder comprised in the array. Using this rule, we did not

encounter any numerical instabilities in the computations presented in chapters 4 to 7.
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Despite the fact that we were satisfied with the arbitrary prescription described above, we recently

became aware of a method that can guarantee the convergence of the matrix equations to an ar-

bitrary truncation order. The main idea is to re-normalize the beam shape coefficients a0
nl and the

unknowns bnl using the formulas [99]

a0
nl = â0

nl Jl (k0rn),

bnl = b̂nl Jl (k0rn),
(2.3.52)

and solve the linear system for the new unknowns b̂nl . Substituting this form in (2.3.19) yields

b̂nl − snl

∑
n′ 6=n

∞∑
l ′=−∞

e i (l ′−l )φnn′ H (+)
l−l ′(k0Rnn′)

Jl ′(k0rn′)

Jl (k0rn)
b̂n′l ′ = snl â0

nl . (2.3.53)

The modified matrix equation is therefore

T̂b̂ = â0, (2.3.54)

with

T̂l l ′
nn′ = δnn′δl l ′ − (1−δnn′)e i (l ′−l )φnn′ H (+)

l−l ′(k0Rnn′)
Jl ′(k0rn′)

Jl (k0rn)
snl . (2.3.55)

The net effect of this re-normalization is that, for large |l ′|, the additional factor exponentially de-

cays and compensates the exponential growth of the Hankel function with respect to that index.

Conversely, for large |l |, the additional factor exponentially grows and compensates the exponen-

tial decay with respect to that index. After this rescaling, it can be shown from the Fredholm theo-

rem of operator analysis that a truncated version of (2.3.54) converges to the exact solution of the

scattering/eigenmode problem for lmax → ∞ [99]. This was not the case for the original system

(2.3.20).

A final remark on this re-normalization approach is to be made. Although convergence of the trun-

cated matrix equation is guaranteed, the computation of matrix elements using (2.3.55) implies

computing the product of an exponentially large cylindrical function with an exponentially small

one, which can imply some numerical difficulties. Nevertheless, this more robust re-normalization

approach should be useful in the case of problems requiring a great precision on the scattering

wavefunctions or eigenfrequencies 10. An example problem is the computation of modes of ran-

dom lasers, which is the topic of section 8.3.

10. We have recently been successful in the implementation of this renormalization technique for the computation of
eigenmodes of photonic crystal lasers. This will be the object of a future publication.

35





Chapter 3

Methods II: Metaheuristics for

combinatorial optimization in photonics

Premature optimization is the root

of all evil.

D. E. Knuth [75]

This chapter is chiefly concerned with a discussion of metaheuristics, algorithms used in this the-

sis for beam shaping computations. Metaheuristics are broadly defined as optimization algo-

rithms allowing the exploration of large solution spaces using empirical rules. The key objective of

metaheuristics is to obtain acceptable solutions to “hard” optimization problems in a reasonable

amount of time. As a trade-off, metaheuristics imply no guarantee of finding the global optimum

of a given problem, unlike exact methods [149]. The goal of this chapter is not to give an exhaustive

lecture about metaheuristics, but rather to review in a “hands-on” way the basic concepts that will

be of use in subsequent chapters, which deal with optical engineering 11.

This chapter begins with a general description of the optimization problems tackled in this thesis

(§3.1). These problems are almost exclusively combinatorial in nature, meaning that they have a

countable (albeit large) number of solutions. After discussing “hard” combinatorial optimization

problems, we proceed with a general description of metaheuristics (§3.2). We then review the dif-

ference between algorithms based on iterating a single solution (type S) and algorithms based on

iterating populations or ensembles of solutions (type P). Once this distinction is made, we pro-

ceed to a more specific description of the two algorithms used in this thesis, namely the canonical

genetic algorithm (§3.2.2) and the parallel tabu search (§3.2.1).

Most of the discussion in this chapter is dedicated to the optimization of a single objective func-

tion. However, multiobjective optimization is also an important part of this thesis. For instance,

11. The main references used in this section are Talbi’s book on metaheuristics in general [149], Glover’s book on Tabu
search [53] and Whitley’s tutorial on the canonical genetic algorithm [164].
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one might want to optimize the profile of the beam emitted by an optical device while maintain-

ing its degree of polarization, as we seek to achieve in chapter 6. There are additional subtleties

associated with the optimization of multiple non-independent objective functions. In that case,

the optimized solution is not a single one but rather a set of possible compromises between the

two (or more) optimization objectives. Consequently, multiobjective optimization is discussed in

section 3.3.

3.1 Combinatorial optimization

The range of optimization problems approached in this thesis can be formalized as follows. Sup-

pose a solution space corresponding to a set of N optimization (or decision) variables υi defining,

for instance, geometric parameters of an optical system. This ensemble of variables can be repre-

sented using a vector of length N , where each component is a discrete or continuous variable

υ= {
υ1,υ2, · · · ,υN }

. (3.1.1)

The domain of υ ∈Υ is called solution space, and contains all possible values of υ. An optimization

problem consists in assigning a value to every decision variable υi in order to fulfill one or more

predefined optimization targets. These targets can be mathematically expressed using a set of M

objective functions , for instance

G(υ) = {
g1(υ), g2(υ), · · · , gM (υ)

}
. (3.1.2)

If M = 1, the optimization problem can be termed monoobjective. The case M ≥ 2, further dis-

cussed in section 3.3, corresponds to multiobjective optimization [32]. Without loss of generality a

single objective function, i.e. G(υ) = g1(υ), is assumed in the following two sections.

In most cases of interest, G(υ) depends nonlinearly on υ, which implies that it is not possible to

isolate the effect of every independent variable υi [164]. This excludes approaching the problem

using exact optimization algorithms such as linear programming [149]. A key issue for the design of

an optimization algorithm is the estimation of the computational cost associated to one evaluation

of G(υ). This is especially important if the size of the solution space of a problem is large, meaning

that solving the optimization problem implies a large number of evaluations of G(υ).

This thesis mainly deals with combinatorial problems. More specifically, in beam shaping prob-

lems, a single decision variable denotes the presence or the absence of a single cylindrical scatterer

part of a larger design. A consequence of this binary nature of the optimization variables is that so-

lutions can be directly encoded using vectors of binary variables [149, 164]. For instance, a possible

solution to a “model” binary problem with N = 8 could be encoded using the following represen-

tation

υ= {
01011001

}
. (3.1.3)

Since it is assumed that the effect of the individual binary variables cannot be isolated, the size of

the search space of this model problem is 2N and forms a N−dimensional hypercube [164]. This
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Metaheuristic
algorithm Black box

υ

G(υ)

Figure 3.1 – Black box interpretation of metaheuristics [149]

model problem therefore belongs to the NP (non-polynomial) complexity class, since its complex-

ity is exponential 12. This means no polynomial-time algorithm can solve it [149]. In the worst case

scenario, G(υ) must be computed for every possible value of υ ∈ Υ. Since the size of Υ grows ex-

ponentially with N , the time needed to carry out this brute-force procedure also increases with N .

Accordingly, problems belonging to this NP complexity class are often termed intractable, or hard

optimization problems.

3.2 Metaheuristics

Optimization problems belonging to the NP complexity class are often approached using meta-

heuristics. According to Glover’s definition, a metaheuristic is defined as “a master strategy that

guides and modifies other heuristics to produce solutions beyond those which are normally gen-

erated in a quest for local optimality” [53, p. 17]. In other terms, metaheuristics can be broadly

defined as optimization algorithms which do not depend on the specific problem to be solved.

This independence can be interpreted using the “black box” picture seen in Fig. 3.1. Metaheuris-

tics only require the knowledge of the solution space υ and a “black box” to compute values of

G(υ). The box can represent a more or less costly simulation, the details of which are not available

to the metaheuristic [149]. Moreover, metaheuristics are contrasted with algorithms oriented to-

wards local optimality, in that most of the former implement some mechanism allowing to escape

from local optima in the search space.

As seen in Fig. 3.2, metaheuristics are a sub-category of approximate algorithms, in other words

algorithms which do not guarantee convergence to the global optimum (if it exists) of an opti-

mization problem. Since there is no guarantee to find an optimal solution, metaheuristics basi-

cally search for acceptable solutions until a user-specified stopping criterion is met. Two popular

criteria typically used when implementing metaheuristics are:

1. Static stopping criterion: Achieving a predetermined number of iterations. One might only

have a small computation time available to perform the optimization, so the number of ob-

jective function evaluations is be set to a predetermined value. This is the simplest criterion

[149].

2. Dynamic stopping criterion: Achieving a given value of G(υ). This requires an estimation

of what is considered an “acceptable” solution. The optimization is then stopped when this

12. Using the “big-oh” notation, one would say the complexity of this model problem is O
(
2N )

.
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Optimization algorithms

Exact algorithms Approximate algorithms

Problem-dependent heuristics Metaheuristics

Singe-solution based Population-based

Figure 3.2 – A possible taxonomy of metaheuristics [149].

threshold is met [149]. However, since the convergence of metaheuristics is never guaran-

teed, it is impossible to know in advance the number of iterations required to achieve this

threshold, if it is ever met. As a safeguard against possible infinite loops, an additional cri-

terion normally used is the achievement of a predetermined number of iterations without

improving the best encountered objective function value [149].

There are many possible ways to classify the different metaheuristics available in the literature.

In this work, we choose to use the number of solutions carried over from iteration to iteration as

a distinguishing feature [53]. This allows to make a distinction between metaheuristics based on

iterating a single-solution (type S) and those based on the evolution of populations of solutions

(type P). This taxonomy is shown in Fig. 3.2.

The general template of type S metaheuristics is show in algorithm 3.2.1. Type S algorithms work

by generating an ensemble containing number of candidate solutions C (υt ) using the current so-

lution υt . A choice is then made for υt+1 using some predetermined rules. They can be viewed

as “walks”, or trajectories covering the search space using some empirical rules [149]. The exact

method for generating C (υt ) and then moving to the next iteration is what distinguishes one type

S algorithm from another. Some well known S-metaheuristics include the widely used simulated

annealing based on stochastic methods for generating C (υt ) [115, 149]. Other methods include

variable neighborhood search and tabu search, an algorithm which is the topic of section 3.2.1.

Algorithm 3.2.1 : High-level template for single-solution-based metaheuristics (type S) [149]

Initial solution υ0

t := 0;
while No stopping criterion met do

Generate candidate solutions C (υt );
Choose a solution υt+1 among all candidate solutions C (υt );
t := t +1;

end
Output : Final solution υt
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Algorithm 3.2.2 : High-level template for population-based metaheuristics (type P) [149]

Initial population P0 = {υn}
t := 0;
while No stopping criterion met do

Generate new population Pt+1;
Choose a new population from members of (Pt ∪Pt+1);
t := t +1;

end
Output : Final population Pt

In contrast with S-metaheuristics, P-metaheuristics are based on ensembles of solutions which are

called “populations”. P-metaheuristics can be viewed as procedures that allow iterative improve-

ment of a population. As shown in algorithm 3.2.2, this improvement begins with a generation

phase, during which a new population of candidate solutions is generated. Then follows a re-

placement phase, during which the individuals (another word for solutions) that are to “survive”

in the next generation are selected. Well-known P-metaheuristics include evolutionary algorithms

such as the genetic algorithm, which is the topic of section 3.2.2. Other popular nature-inspired

P-metaheuristics include particle swarm optimization and ant colonies [149].

In designing and implementing a metaheuristic for a given optimization problem, two desirable

features must be taken into account, namely diversification and intensification [149]. Diversifica-

tion is the capability of the metaheuristic to explore wide regions of the solution space Υ, while

intensification is the capability to exploit promising regions (i.e. regions with interesting values of

G(υ)) of the solution space. Diversification is a global process, whereas intensification acts locally.

Since these features are somewhat contradictory, a good metaheuristic will usually offer a compro-

mise between the two. Keeping these requirements in mind, we now proceed to the description of

the two metaheuristics used in this thesis, namely tabu search (§3.2.1) and the standard genetic

algorithm (§3.2.2).

3.2.1 Tabu search

Tabu search (TS) is a type S metaheuristic first proposed by F. Glover in the late 1980s 13. The

defining feature of TS is that it uses an adaptive memory – called the tabu list – to escape from

local minima in the solution space [53, 149]. TS is a deterministic local search algorithm, meaning

that it “walks” through the solution space using systematic rules.

Before going into the specifics of tabu search, we begin by giving a definition of the distance be-

tween solutions. Let υi and υ j be two solutions comprised in the solution space Υ of an optimiza-

tion problem. The distance d(υi ,υ j ) between these solutions is defined as the minimal number

of applications of a “move” operator needed to obtain one of the solutions starting from the other

13. On a historical note, the term “meta-heuristic” was coined by F. Glover in the same article that introduced the “tabu
search” terminology [53, p. 17].
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[149]. In the case of a binary problem, the move operator works by flipping individual bits, and the

distance d(υi ,υ j ) is simply the number of non-equal bits between υi and υ j .

As shown in algorithm 3.2.1, an iteration of a S-metaheuristic begins with the generation of a set

of candidate solutions C (υt ) from the current solution υt . In the simplest case C (υt ) is composed

of the nearest neighbors of υt , i.e. all solutions located at a distance d = 1 from the current solu-

tion. In the case of a binary encoding of solutions, each of the N bits of the solution are flipped

in an subsequently independent way to generate N neighbors. Going back to the example of the

following binary chain (N = 8)

υ= (01011001), (3.2.1)

the first degree neighborhood of υ is composed of the following solutions

C (υ) =



11011001

00011001

01111001

01001001

01010001

01011101

01011011

01011000


. (3.2.2)

Once this neighborhood is generated, the objective function G is evaluated for every member of

C (υ). The last step of a tabu search iteration is then a move to the best possible solution found

in C (υ). However, to prevent cyclic trajectories in the search space, a number of past moves are

kept in a short-term memory. These moves remain forbidden for a certain number of iterations

L, called the tabu tenure [149]. This short-term memory is called the tabu list, since the moves it

contains are tabu (forbidden). The choice of the tabu list length L is crucial to the convergence

of the algorithm. Indeed, if the tabu list is rotated with the last L moves, cycles in the solution

space of length at most L are prevented. The value of L may be kept fixed for all iterations, or

dynamically changed. The iteration continue until a user-defined stopping criterion is met. A

high-level template of TS corresponding to this description is shown in Fig. 3.3.

Despite these general rules, additional precautions must be taken in order to avoid missing good

solutions [53]. For instance, the algorithm should accept tabu moves if they result in a better value

of G(υ) than all other solutions considered during the search. This important condition is called

an aspiration criterion [149]. Other possible refinements of TS include considering medium and

long-term memories, as well as multiple tabu lists [149].

In this thesis, we use a simple version of TS that is characterized by a static list length and a single

tabu list corresponding to the last L moves applied to the current solution. However, in order to

improve the quality of optimized solutions, we use a multi-threaded version of TS which we call

parallel tabu search, or PTS [23, 53]. This procedure allows to consider broader areas of the search
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Begin

Generate
initial solution υ0

Generate
neighbor solutions C (υt )

Objective function
computation

Check tabu list
Choose υt+1

End

Figure 3.3 – High-level template of tabu search [149].

space and, for a given number of iterations, may be more effective than a sequential search using

a single processor [149]. Therefore, using a parallel computer, better and more diverse solutions to

a combinatorial optimization problem can be obtained than using a single-thread computer run-

ning for the same amount of time. As noted by Glover, if there is no communication between each

thread, this approach is equivalent to restarting the search after a stopping criterion is met, each

time using a different initial solution, thereby introducing diversity in the final solutions found.

The main idea behind the parallel implementation we use in this thesis is to launch multiple TS

instances each working in a different area of the solution space, as shown in Fig. 3.4. In order to

cover the solution space efficiently, we use a procedure called sequential diversification [149]. In

the case of a binary problem, this procedure works as follows. Let {υ0} be the set of initial solutions,

initially composed of only one randomly generated bit sequence. Every new solution added to {υ0}

must be located at a minimal distance d = dmin of all members of {υ0}. In this work, we choose to

fix this number using the following rule

dmin = ceil(0.3N ), (3.2.3)

where N is the number of binary variables considered, and ceil(z) is the ceiling function, returning
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Shared memory

Thread 1 Thread 2 Thread 3

Parallel processor

(a) Multi-threaded approach

Thread 2

Thread 1

Thread 3

(b) Worker threads in solution spaceΥ

Figure 3.4 – Schematic representation of the multiple threads of a parallel tabu search process.
Inspired by [149].

the smallest integer larger or equal to z. In other terms, to ensure that the cloud of initial solutions

is well scattered in the solution space (see Fig. 3.4b), every initial solution must be characterized

by at least dmin bits differing from every other initial solution.

In summary, TS is a local search metaheuristic well suited for intensification – concentrating the

search in the neighborhood of the best solutions found – and retains a mechanism to escape from

local minima, the tabu list. As stated earlier, a metaheuristic should ideally combine search inten-

sification and diversification. The parallel implementation of TS presented in this section (PTS)

adds this diversification dimension by considering different regions of the search space simulta-

neously.

3.2.2 Genetic algorithm

In this section, we briefly discuss one of the best known metaheuristics, the genetic algorithm

(GA). The goal of this section is to present the canonical implementation of the GA that is used in

chapter 4. For reasons that shall become clear later, the use of the GA was progressively abandoned

during this research project in favor of the PTS algorithm described earlier (§3.2.1). Moreover, since

the application of evolutionary techniques to optical engineering problems has been exhaustively

documented in previous studies [35, 40, 79, 94, 130, 158], we shall only present a brief description

of the GA here and refer the reader to Refs. [149, 164] for more details.

The GA is part of a broader class of P-metaheuristics called evolutionary algorithms. Evolutionary

algorithms are mostly stochastic techniques inspired by biological evolution. Solutions to opti-

mization problems are often called “individuals” in the metaphor of evolutionary techniques, and

the objective function G(υ) is used to assign a “fitness” value to each individual. For instance, if

we wish to maximize G(υ), the fitness value F (υ) can be simply assigned as F (υ) = G(υ). If G(υ) is
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to be minimized, one can use the choices F (υ) = 1/G(υ) or F (υ) =−G(υ). Populations of individu-

als are then generated and evolved using nature-inspired operators such as mutations and natural

selection.

The term “genetic algorithm” usually denotes a specialization of evolutionary techniques based on

probabilistic natural selection rules and using a binary encoding of solutions. We specifically use

the canonical GA, the template of which corresponds to algorithm 3.2.3. After generating an initial

population using the sequential diversification procedure described in section 3.2.1, this popu-

lation is evolved (iterated) using sequential applications of four operators: selection, crossover,

mutation and elitism. While most implementations of the GA follow this template, there are many

ways to define each of these operators. Consequently, we shall give details about each of the four

in this section.

Algorithm 3.2.3 : High-level template for the canonical genetic algorithm [164]

Input : Initial population P0 = {υi }
t = 0;
while No stopping criterion met do

P ′ := Selection (Pt ) ; // Apply selection operator using F (υ) values
P ′ := Crossover (P ′) ; // Apply crossover operator
P ′ := Mutation (P ′) ; // Apply mutation operator
Pt+1 := Elitism (Pt ,P ′) ; // Keep elite(s) in subsequent generation

end
Output : Final population Pt

3.2.2.1 Selection

The selection operation in evolutionary algorithms is based on the principle of “survival of the

fittest”. The higher the fitness of an individual member of the population, the better is his chance

of being propagated in subsequent generation. The flavor of selection operator we use in this work

is called “stochastic universal sampling”. Let Pt = {υi } be a population containing n individuals. A

selection probability pi can be assigned to every member of the population using the fitness values

of the individuals F (υi )

pi =
F (υi )∑n

j=1 F (υ j )
. (3.2.4)

Stochastic universal sampling can be viewed as laying down a pie chart with n sectors proportional

to the probabilities pi . A “roulette wheel” with n equally spaced pointers is then spun using a single

random number generation, and the pointers directly select which individuals are to survive in the

subsequent population [149, pp. 206–207].

3.2.2.2 Crossover

Once the selection operator has been applied to the current population Pt , the intermediate popu-

lation P ′ contains a number of “parent” individuals, which are used to generate “offspring” individ-
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uals. The goal of this step is to propagate desirable characteristics of the parents to the offsprings.

More specifically, we use uniform crossover (or recombination), which consists in randomly as-

signing bits of the children from those of the parents. Going back to the example of binary chains

of length N = 8, consider the following two parents(
υ1

υ2

)
=

(
01011001

01000111

)
. (3.2.5)

Assuming an equal probability of inheriting characteristics of υ1 and υ2, the following two children

are a possible realization of a single application of the uniform crossover operator(
υ′1
υ′2

)
=

(
01010011

01001101

)
. (3.2.6)

Notice that bits that are equal for both parents (e.g the first three and the last one) are necessarily

propagated in the encoding of the children. This uniform crossover operator is applied on ran-

domly chosen pairs of parents with a crossover probability pc , which we keep static during the

optimization procedure 14. The most commonly used crossover probabilities are in the interval

pc ∈ [0.45,0.95], which means that crossover is roughly applied to more than half the individu-

als of the population. The parents that are chosen are then replaced by their children in the next

intermediate generation, a procedure called generational replacement.

3.2.2.3 Mutation

Mutation operators are stochastic operators acting on single individuals. The main objective of a

mutation operator is to introduce diversity in the population [63]. In the case of a binary encoding

of solutions, the definition of the mutation operator is straightforward. First, a small mutation

probability pm is defined, typically betwen 10−3 and 10−2. Then, for every bit of every individual, a

pseudo-random number in the interval [0,1] is generated. If the pseudo-random number is smaller

than pm , the bit is flipped. This means that roughly one in 1000 bits will be changed if pm = 10−3.

3.2.2.4 Elitism

Elitism is an operator which ensures that the best solution found is always part of the next genera-

tion in order not to lose any ground during the search. In this work, we use an implementation that

chooses a random solution from P ′ and replaces it by the current elite individual, in other words

the best solution found to this point in the search.

3.2.3 Concluding remarks

In general, the performance of a metaheuristic algorithm is strongly dependent on the landscape

of the objective functions considered [149, p. 179]. Consequently, the question “which metaheuris-

tic algorithm should be used for a given problem?” does not have a definitive answer. In chapter

14. As discussed in Ref. [145] adaptive probabilities are also possible.
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4, we “solved” the problem of amplitude-only beam shaping using the GA. However, by the time

we decided to tackle the coherent beam shaping problem (amplitude and phase shaping), the ex-

istence of TS was brought to our attention. Using the amplitude-only problem, we compared the

performance of GA and PTS, and found that PTS yielded better results on average than the GA for

a similar computational time (see §5.2). We subsequently turned to PTS for the remainder of the

optimization runs performed in this thesis.

There is one possible way to explain this improvement. As described earlier, the GA is a stochastic

algorithm with a strong emphasis on using crossover and random mutations to introduce diver-

sity in the populations. While the population-based nature of the GA makes it inherently good for

diversification, it tends to spend a lot of time sampling useless solutions because of its stochas-

tic nature. By contrast, TS is a local method dedicated to the intensification of solutions, and is

conceptually simpler since one does not need to manage the probabilities pm and pc associated

with the GA. Since parallel computers are nowadays more available, using a multi-threaded imple-

mentation (PTS) allows us to combine the intensification and diversification dimensions in a more

straightforward, deterministic algorithm.

While PTS fares better than the GA for our combinatorial optimization problems, these findings do

not mean that the GA is necessarily to be avoided. Indeed, it is possible to introduce intensification

into the GA by means of local search methods, yielding a hybrid metaheuristic [149]. Moreover, the

cost of evaluating the objective functions considered in this dissertation is quite low. Combined

with the fact that the neighborhood sizes N considered are between 50 and 100, this makes the

use of TS appealing. However, because TS systematically searches the neighborhood of promising

solutions, problems characterized by very large neighborhoods can become time-consuming. On

the other hand, the GA does not sample the whole neighborhood at every iteration, because of its

limited population size. This may be appealing when considering very large neighborhoods.

3.3 Multiobjective optimization

Many real-world design problems are multiobjective in nature. For instance, in chapter 6, we are

concerned with generating polarized Gaussian beams. We are thus faced with optimizing an ob-

jective function related to the beam profile, and another related to its degree of polarization at the

same time. Compared to a monoobjective one, a multiobjective optimization problem (MOP) is

inherently more difficult to solve since every solution to a monoobjective problem is a necessary

solution of the associated n-objective problem. Moreover, there is no commonly accepted defi-

nition of the “global” optimum of a MOP, which means characterization of the solutions must be

done a posteriori by the decision-maker in order to choose which solutions to retain as “optimal”.

In this section, we begin by introducing the concept of Pareto dominance, which allows one to

order the solutions of a MOP. The solution of a multiobjective problem is not a single solution, but

rather a set of solutions which form the Pareto set of the problem. The location of this ensemble
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of solutions, called Pareto front, must be determined using metaheuristic algorithms. This can be

achieved using various methods, the simpler of which is the aggregation method.

Before defining the Pareto set, the concept of Pareto dominance must be defined [149, p. 311].

Without loss of generality, suppose a multiobjective minimization problem. Let G = {g1, . . . , gn}

and H = {h1, . . . ,hn} be two objective function vectors. G is said to dominate H (denoted by G ≺ H)

if and only if no component of H is smaller than the corresponding component of G , and at least

one component of G is strictly smaller. In other words, G dominates H if it corresponds to equal

or better values of the objective functions. Pareto optimality stems directly from the concept of

Pareto dominance. Suppose a set of solutions to a MOP, which we denote {υ1, . . .υm}. A solution υi

is said to be Pareto optimal if

∀i 6= j : G(υ j )⊀G(υi ), (3.3.1)

where G is the vector containing the values of all objective functions. In other words, a solution

can be termed Pareto optimal if its corresponding objective function vector is not dominated by

that of any other solution. Another way to state this is that, for a Pareto optimal solution, it is not

possible to improve the value of an objective function gi without deteriorating at least one other.

While searching for the solution to a monoobjective optimization problem, one usually retains the

solution characterized by the smallest value of G(υ). However, in the case of a multiobjective prob-

lem, all Pareto optimal solutions are possible solutions and form the Pareto set of the problem. The

location of this set of solutions in the objective function space is called Pareto front. An example

Pareto front for a biobjective minimization problem is shown in Fig. 3.5. This typical shape shows

that the two objective functions g1 and g2 are not independent, which means that improving one

of the two is usually detrimental to the other.

In short, a multiobjective optimization algorithm samples the location of the Pareto front via a

combination of monoobjective problems, each using an appropriate objective function. The sim-

plest way to construct this objective function is the aggregation, or weighted sum method [32, 149].

In short, one defines the following aggregate objective function

min
υ∈Υ

n∑
i=1

αi fi (υ), (3.3.2)

where fi = gi /g max
i and g max

i is a heuristic upper bound. This normalization aims to ensure that all

objective functions are commensurate. Once this function is defined, the problem is reduced to a

monoobjective problem which can be tackled using the metaheuristics described in this chapter,

for instance PTS or GA. Multiple monoobjective problems can be solved in parallel using differ-

ent values of the weights αi . Varying the relative weights enables to explore different sections of

the Pareto front, although the same Pareto optimal solution may be generated by using different

weights.

We conclude this section with a remark about multiobjective optimization. Most of the time, the

multiple objective functions associated to a MOP represent different physical dimensions of the
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g1

g 2

Sub-optimal solutions

Pareto set

Figure 3.5 – Typical Pareto front of a biobjective optimization problem. Black dots indicated dom-
inated solutions, as for each of these solutions, there exists a solution characterized by a better
value of both g1 and g2. Real data taken from Fig. 5.11.

problem. Thus, it is not possible for the decision maker to determine a priori the exact required

compromise between the multiple objectives. In other terms, it is not generally possible to decide

which values of the αi will give an aggregate objective function representing this compromise. In

this thesis, we use an a posteriori approach. We use a limited knowledge of the MOP (for instance

the results of an associated monoobjective problem) to establish a set of values for the weights αi ,

then sample the location of the Pareto front. The obtained values of gi are then examined, and

if needed optimization is performed again using other values of αi to reach more Pareto optimal

solutions. In summary, solving a MOP amounts to obtaining the best possible sampling of the

Pareto front of the problem in order to provide the decision maker a wider variety of “optimal”

solutions to choose from.
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4.1. Introduction

Résumé

Nous proposons l’utilisation de cristaux photoniques bidimensionnels possédant des défauts op-

timisés comme méthode de manipulation de faisceaux. Cette méthode permet la transfromation

d’un faisceau d’entrée focalisé en un faisceau de sortie de profil arbitraire. Le développement en

harmoniques cylindriques de faisceaux de type « source complexe » est présenté et utilisé pour

calculer la fonction d’onde diffusée d’un cristal 2D fini à l’aide d’un algorithme de diffusion mul-

tiple. Le problème de manipulation de faisceaux est ensuite solutionné au moyen d’un algorithme

génétique. Nous illustrons cette procédure via la génération de deux différents faisceaux de profil

Hermite-Gauss. Les pertes et la robustesse des configurations obtenues aux variations des para-

mètres du faisceau d’entrée sont finalement caractérisées.

Abstract

We propose the use of two-dimensional photonic crystals with engineered defects for the genera-

tion of an arbitrary-profile beam from a focused input beam. The cylindrical harmonics expansion

of complex-source beams is derived and used to compute the scattered wavefunction of a 2D pho-

tonic crystal via the multiple scattering method 15. The beam shaping problem is then solved using

a genetic algorithm. We illustrate our procedure by generating different orders of Hermite-Gauss

profiles, while maintaining reasonable losses and tolerance to variations in the input beam and the

slab refractive index.

4.1 Introduction

Laser beam shaping, defined as redistributing the irradiance and phase of a beam, is of great in-

terest for many applications such as image processing and holography [30], atom guiding [97],

materials processing [31] and controlling random laser emission [10]. Shaping can be achieved

using various optical apparatus, such as binary holograms [17], conical lenses [31, 62], solid state

lasers [78], and spatial light modulators [10]. Beam shaping using anisotropic photonic crystals

has also been reported [134, 119, 135]. Moreover, the generation of self-healing, limited-diffraction

Bessel-Gauss beams by 2D axicon-shaped photonic crystals has recently been demonstrated by

Kurt and Turduev [76, 77]. These promising results highlight the potential of photonic crystal en-

gineering for the generation of beams of arbitrary profiles. However, few solutions are available

for robust integration of optical elements dedicated to beam shaping on planar lightwave circuits.

One of those is the use of a heterogeneous refractive index maps to convert a Gaussian beam to a

Bessel-Gauss profile [128]. Nevertheless, planar-waveguide based photonic crystal slabs, consist-

ing of air holes in a high index core, retain immense potential for fabrication of integrated optical

elements [9, 27, 38, 114].

15. The name “multiple scattering” was used in this article as we were not yet settled on the name “2D-GLMT”.
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The aim of this paper is to show that two-dimensional photonic crystals (PhC) can be engineered to

achieve any specific beam profile required for a given application, while maintaining relatively low

scattering losses. Theoretical PhC engineering involves selecting a number of adjustable geomet-

ric parameters and performing parametric optimization of a cost function related to the irradiance

distribution of the scattered beam. Since the use of more adjustable parameters (usually) results

in more diverse output profiles, a fast and accurate numerical method is needed to compute the

field scattered by the PhC device. The speed of the method is critical since a large number of con-

figurations must be tested. Consequently, resource-heavy finite-difference time-domain (FDTD)

computations [77] are not suited for our purpose. We rather use the typically faster multiple scat-

tering computations [33, 103]. The first part of this paper is concerned with a description of the

scattering approach. We present a derivation of the cylindrical harmonics expansion of focused

beams used to parametrize the wave incident on the PhC. This expansion is required by the multi-

ple scattering formalism.

In the latter part of this paper, we detail the proposed PhC devices and the optimization scheme

used. Like Vukovic et al. [158], we choose a basic photonic lattice configuration and allow individ-

ual scatterers to be present or absent as the only adjustable parameters, thereby enabling a binary

encoding of the configuration space and the use of the standard genetic algorithm (GA) to find the

configuration best suited to our purpose [35, 139]. Our results show that the optimization strate-

gies presented in [158] can be advantageously used to design an integrated beam shaping device.

To illustrate this, we present engineered configurations allowing the generation of two different

Hermite-Gauss beam profiles with great accuracy, and discuss the power conversion efficiency of

the proposed devices.

4.2 Scattering of complex-source beams by PhCs

This section establishes the theoretical framework used to compute the field scattered by a finite

PhC slab. A generic two-dimensional PhC consists of an array of air holes in a planar dielectric

waveguide, with a lattice constant of the order of the operation wavelength [9, 140]. Since our goal

is to engineer the geometric properties of the PhC to achieve a given beam profile, we only consider

finite-size slabs. For modeling purposes, we suppose that every cylinder (hole) is infinite along the

axial z direction. The field scattered by the cylinder array is then given by the solution of the 2D

Helmholtz equation

[∇2 +k2(x, y)]ϕ(x, y) = 0, (4.2.1)

where a harmonic time dependence exp(−iωt ) is assumed and k = k0n(x, y), where n is the refrac-

tive index. Both TM (ϕ≡ Ez ) and TE (ϕ≡ Hz ) polarized waves can be considered. The wavefunc-

tion outside the scatterers can be written as a superposition of an incident and a scattered wave,

ϕ(x, y) = ϕi (x, y)+ϕs(x, y). We then seek the scattered wavefunction ϕs(x, y) in the case where

ϕi (x, y) is a focused beam with a Gaussian shape in the paraxial zone. For this purpose, the incident
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wavefunction is represented by a complex-source beam (CSB). This solution has been proposed in

order to extend the validity of the Gaussian beam (GB) beyond the paraxial zone [37, 65].

Using the Green’s function of the inhomogeneous Helmholtz equation for a point source located

in the complex plane at coordinates x ′ = i xR and y ′ = 0, one obtains the CSB solution

ϕi (x, y) = H (1)
0 (krs), (4.2.2)

where H (1)
0 is a Hankel function of the first kind. The complex distance rs is given by

rs ≡ [(y − y ′)2 + (x −x ′)2]1/2 = [y2 + (x − i xR)2]1/2. (4.2.3)

The complex point-source yields a directional field radiating away from the beam waist (x = 0).

The CSB is continuous everywhere in the real plane except across the branch cut connecting the

two singularities at (x, y) = (0, xR) and (x, y) = (0,−xR). For the purposes of this paper, we shall

restrict our attention to scatterers located in the positive x plane, referring the reader to [91] for

regularization strategies in the waist plane. Since the H (1)
0 function converges rapidly to a complex

exponential, one can readily show that, for x > 0,

ϕi (x, y) ∼ϕg (x, y)exp(kxR + iπ/4) , (4.2.4)

where

ϕg (x, y) =
√

2

πk(x − i xR)
exp

{
i k

(
x + 1

2

y2

x − i xR

)}
. (4.2.5)

In other words, the CSB reduces to a GB of Rayleigh distance xR propagating along the x axis in

the paraxial zone. Moreover, since the CSB is an analytical solution of the Helmholtz equation

exhibiting the cylindrical symmetry characteristic of the multiple scattering method, it is the ideal

parametrization of a focused non-paraxial GB incident on an array of cylindrical scatterers.

4.2.1 Expansion of complex-source beams in cylindrical harmonics

To compute the scattered wavefunction via the multiple scattering method, one needs to expand

the incident field on a basis of cylindrical waves centered on each individual scatterer. This section

is dedicated to the analytic expansion of the aforementioned CSB into cylindrical harmonics. Let

(ρn ,θn) be the cylindrical coordinate system local to the nth scatterer, whose center is located at

(Xn ,Yn). We seek a series expansion to rewrite the incident beam in the following fashion

ϕi (ρn ,θn) =
∞∑

l=−∞
a0

nl Jl (kρn)e i lθn . (4.2.6)

On can rewrite eq. (4.2.2) as

ϕi (ρn ,θn) = H (1)
0 (k|r n − r sn |), (4.2.7)

where r n = (ρn ,θn) and r sn is the vector pointing from the center of the nth scatterer to the com-

plex source point at coordinates (x, y) = (i xR,0). To uncouple r n and r sn in the argument of Bessel
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functions, we apply Graf’s addition theorem [1]. This leads to the following expansion coefficients,

similar to those found in [105]

a0
nl = (−1)l Hl (krsn)e−i lµ, (4.2.8)

where

rsn =
√

(Xn − i xR)2 +Y 2
n , (4.2.9)

cosµ= Xn − i xR

rsn
. (4.2.10)

For comparison, the expansion coefficients for a plane wave (PW) incident from the −x axis are

given by

a0
nl = i l e i k Xn . (4.2.11)

The sole knowledge of the a0
nl expansion coefficients of the incident beam allows the use of the

multiple scattering method. In a nutshell, one writes the scattered field as a sum of cylindrical

waves centered on each individual scatterer

ϕs(x, y) =
∑
n

∑
l

bnl H (1)
l (kρn)e i lθn . (4.2.12)

The matrix equation connecting the expansion coefficients can be written as snl a0
nl = T l l ′

nn′bn′l ′ ,

with

T l l ′
nn′ = δnn′δl l ′ − (1−δnn′)e i (l ′−l )φnn′ H (1)

l−l ′(kRnn′)snl , (4.2.13)

where Rnn′ is the center-to-center distance between scatterers n and n′, φnn′ is the angular posi-

tion of scatterer n′ in the frame of reference of scatterer n and snl is a constant resulting from the

application of electromagnetic boundary conditions. Further details are given in [33, 103].

Remarkably, except for the computation of a cylindrical function, no supplementary numerical

cost is involved in computing the scattered wavefunction in the case of an incident CSB rather

than an incident PW. Indeed, the core operation of the multiple scattering method involves com-

puting the bnl coefficients via a matrix inversion, whose computation scales as the square of the

number of scatterers N , regardless of the shape of the incident beam. However, a simple analysis

shows that the convergence of (4.2.8) is limited to a disk not intersecting or touching the branch

cut between (x, y) = (0, xR) and (x, y) = (0,−xR). In other words, scatterers must not intersect or

touch the branch cut for the expansion to be used in scattering computations. This restriction is

not present in the case of an incident PW. It does not restrict the scope of our computations since

we position all scatterers in the +x half plane.

4.3 Beam shaping computations

4.3.1 Problem definition

The objective is to find a PhC configuration which, when illuminated with a CSB, produces a scat-

tered wavefunction that matches a desired irradiance profile in a given plane. Let ϕ̄(x, y) be the
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Input beam Output beam

Target plane

y

x

Λ

Figure 4.1 – Basic photonic lattice configuration (N = 104). To generate a desired beam profile,
defects can be present or absent. We impose a vertical mirror symmetry, resulting in 256 possible
configurations. The dotted line indicates the plane used for the computation of the desired beam
profile.
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Figure 4.2 – Band structure for a square lattice of air holes of radius r = 0.3Λ in a dielectric medium
with refractive index 2.76. The location of the partial bandgap is shaded. Eigenmodes were com-
puted using the MIT PHOTONIC BANDS software package [73].
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desired output wavefunction. The beam shaping problem can be formulated as the minimization

of the following integral

g1(x0) =
∫ ||ϕ(x0, y)|2 −|ϕ̄(x0, y)|2|d y∫ |ϕ̄(x0, y)|2d y

, (4.3.1)

where x0 is the location of the target plane. This is equivalent to minimizing the root sum of squares

(RSS) of irradiance variations at a set of points of the target plane [30]. It is worth noting that we do

not take into account the phase of the output beam, only the amplitude. This increases the number

of “acceptable” configurations in the problem space, at the cost of losing information about the

collimation of the output beam in the optimization process. Large variations in the output phase

front may result in large output beam divergences, although this is not critical for applications such

as materials processing [30, 31]. Moreover, since backscattering losses are mostly unavoidable

in PhC devices, imposing a peak irradiance value is too severe a condition for the optimization

algorithm. We rather seek a normalized irradiance profile, and evaluate backscattering losses a

posteriori.

The basic scatterer geometry (Fig. 4.1) is a variation of that presented in [158, 169], i.e. part of a

square lattice of air holes embedded in a medium of index n = 2.76. The radius of all holes is set to

r = 0.3Λ, whereΛ is the lattice constant. The infinite counterpart of this photonic lattice exhibits a

partial photonic bandgap for both polarizations in the Γ−X direction (see Fig. 4.2). Although the

strong confinement associated with a full photonic bandgap is exploited in the case of waveguide

design [169], it is not mandatory for beam shaping purposes. Indeed, the purpose of the finite

PhC slab is not to act as a Bragg reflector, but rather to redistribute the incident beam irradiance

via multiple scattering. We shall therefore concentrate on operating wavelengths near the partial

bandgap to ensure relatively strong scattering.

For definiteness, we prescribe our incident beam as a TM-polarized CSB given by (4.2.2) with a

half-width w0 = 2.5Λ and a wavenumber k0 = 1.76/Λ for a Rayleigh distance xR = k0w2
0/2 = 5.48Λ.

Although the desired output beam and target plane can be arbitrary, for illustrative purposes we

have chosen to generate Hermite-Gauss beam profiles of half-width w at the device output, that is

|ϕ̄m(x0, y)|2 = [Hm (ξ)]2 exp
(−ξ2) , (4.3.2)

where ξ=
p

2y/w and Hm(ξ) is a Hermite polynomial. The first two orders are

H1(ξ) = 2ξ,

H2(ξ) = 4ξ2 −2,
(4.3.3)

while H0(ξ) = 1. For simplicity, we require further that the half-width w of the desired beam profile

be identical to w0.

We use a genetic algorithm (GA) to find the configuration best suited to the generation of a given

beam profile [35, 158]. The problem encoding is binary, with each configuration being assigned a

“genotype” of length equal to the number of available scatterer sites. For the purpose of demon-

stration, we have targeted symmetric beam shapes and have explicitly imposed mirror symmetry
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Figure 4.3 – Convergence of the standard GA used to find the configuration shown on Fig. 4.4. The
fitness value reached is 1/g1 ∼ 47.6.

of the scatterers about the y-axis. This effectively reduces the problem space dimension, but the

method is equally efficient for asymmetric beam shapes. Each trial configuration is assigned a

fitness value inversely proportional to g1. Populations of 200 individuals are generated and evolu-

tion takes place until an optimum is reached, typically within a few thousand generations (see Fig.

4.3). We use the standard GA evolutionary operators: roulette wheel sampling, mutation probabil-

ity pm = 0.002, uniform crossover with probability pc = 0.2 and elitism. It is noteworthy that the

computation of the fitness function, which implies a matrix inversion and field evaluation via the

multiple scattering method, takes only a few seconds for one generation (200 configurations).

4.3.2 Generation of beam profiles and tolerance of configurations

In this section, we present the best configurations found for order 1 and 2 Hermite-Gauss beam

profiles, exhibiting a zero and a maximum on the propagation axis, respectively. Results shown on

Figs. 4.4 and 4.5 highlight the possibility to generate order 1 and 2 Hermite-Gauss beam profiles

with great accuracy (g1 < 0.05) and are representative of a number of calculations that we have

performed. For comparison, the error on the amplitude profile for the PhC device reported in Ref.

[119] is around 10 %, while the error of the integrated device proposed in Ref. [128] is around 5

%. This shows that our designs perform equally well or better than recently proposed integrated

beam shaping solutions with respect to the profile accuracy. We also stress that the method used is

not limited to a single lattice nor to a specific output beam profile. For example, we have obtained

profiles with similar accuracy using a triangular lattice with the same refractive index.

Since our primary goal is to obtain an accurate normalized profile via GA optimization, the best

configurations found do not necessarily exhibit low backscattering losses. To quantify these losses,

we compute the efficiency η of the best designs by evaluating the ratio between the electromag-
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Figure 4.4 – Generation of order 1 Hermite-Gauss beam. (a) Optimized configuration and field
profile (N = 41). The target plane is indicated by a dashed line. (b) Comparison of computed
irradiance along target plane and desired profile (arbitrary units). This design is characterized by
g1 = 0.021,η= 0.705.

netic power transmitted in the target plane and the total incident power; that is

η=
∫ ∞
−∞〈Sx (x0, y)〉d y∫ ∞
−∞〈Sx (xin, y)〉d y

, (4.3.4)

where xin is the location of the input plane and 〈Sx〉 is the x component of the time-averaged

Poynting vector [103]. The computation of η is achieved via numerical quadrature. As our compu-

tations show, efficiencies of optimized configurations typically fall between 70 % and 80 %. These

numbers are only 10-20 % smaller than proposed integrated beam shaping devices specifically tai-

lored for high efficiencies: Refs. [119, 128] report efficiencies of ∼ 90 %. It is therefore quite reward-

ing that our final configurations not only provide a high profile accuracy, but also a low loss design.

Of course, if a higher efficiency is critical to a given application, it is always possible to alter the

fitness function of the GA to optimize for efficiency as well.

It is instructive to examine the tolerance of optimized PhC configurations to variations of the de-

sign parameters. In experimental situations, the Rayleigh distance may vary if the input beam

focusing is more or less controlled. On the other hand, the slab refractive index may be fixed using

the effective index approximation [116]. To assess the tolerance to variations of these two param-

eters, we have computed the RSS integral g1 for various values of xR/Λ and n around the design

values, while maintaining all others parameters fixed (Fig. 4.6). Results show that varying the value
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Figure 4.5 – Generation of order 2 Hermite-Gauss beam. (a) Optimized configuration and field
profile (N = 28). The target plane is indicated by a dashed line. (b) Comparison of computed
irradiance along target plane and desired profile (arbitrary units). This design is characterized by
g1 = 0.044,η= 0.785.

of xR/Λ by ±1, one full lattice spacing, preserves the low value of g1 (under 0.10), especially in the

case of the order 1 Hermite-Gauss beam profile. The PhC configurations presented are also robust

with respect to the parameter n. It is possible to draw two observations from these computations.

First, it is not necessary to run a GA search over a wide range of parameters to keep the fitness

of the PhC designs within acceptable limits of performance even if some parameters are only ap-

proximately known in experimental applications. Second, the results show that the fabrication of

a PhC based integrated beam shaper operating in the infrared (λ0 ∼ 1500 nm, Λ∼ 500 nm) is well

within reach of current fabrication techniques. Indeed, devices operating in that regime have been

successfully fabricated in silicon-on-insulator material using UV lithography [9, 27, 38, 114].

4.4 Conclusion

In this paper, we have presented a general design method based on a genetic algorithm for beam

shaping using integrated two-dimensional photonic crystals. Parametrization of the incident Gaus-

sian-like beam was achieved using the CSB solution of the Helmholtz equation. The cylindrical

harmonics expansion of the incident CSB allows for the use of the multiple scattering method to

compute the field scattered by the PhC slab. This method enables fast computation of the ampli-
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Figure 4.6 – Tolerance of PhC lattice configurations to (a) variations of the Rayleigh distance of the
input beam and (b) group refractive index of the slab. The design values are indicated by a dotted
line.

tude profile of the beam scattered by individual photonic lattice configurations.

Using this design method, we have tailored photonic crystal devices for the conversion of a CSB to

order 1 and 2 Hermite-Gauss beam profiles. The associated beam shaping error (< 5%) compares

advantageously to other known integrated solutions. We also found that over 70 % of the input

beam power was channeled to the output beam. Although we have used a square lattice and re-

quired a Hermite-Gauss profile, different lattices and output beam profiles can be accommodated

at will.

We have also evaluated the sensitivity of the output beam to variations in the depth of focus of

the input beam and the slab refractive index. Our results show that integrated amplitude beam

shapers may very well be fabricated using current technology.
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4.5 Authors’ contributions

DG designed the study, carried out the analysis, wrote the numerical codes, performed the compu-
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4.6 Supplement: Excerpts of supplemental material

This section gives more details on the data presented in the article, including parameter sweeps

of the correlation coefficient and the efficiency. The Pearson correlation coefficient is another way

of evaluating the “goodness” of a configuration. Let U and V be two real vectors of length n. The

correlation coefficient between the two vectors is given by

Corr(U ,V ) =
∑n

i=1(Ui −Ū )(Vi − V̄ )√∑n
i=1(Ui −Ū )2

√∑n
i=1(Vi − V̄ )2

. (4.6.1)

In the present case, we shall use U = |ϕ(x, y)|2 and V = |ϕ̄(x, y)|2. Although there is no mapping

from g1 to Corr(|ϕ|2, |ϕ̄)|2, the minimal value g1 = 0 necessarily implies Corr(|ϕ|2, |ϕ̄|2) = 1.

In the companion piece, we evaluated the robustness of two “optimal” configurations. In short, we

plotted the variation in the value of g1 to variations of the Rayleigh distance of the input beam and

group refractive index of the slab. We chose those two plots as the most relevant. The remaining

plots are presented in Fig. 4.7. We considered η and Corr(|ϕ|2, |ϕ̄|2) as additional “dependent”

variables, as well as k0 as an additional “independent” variable.

The study of tolerance to variations in the scatterers’ geometry (fabrication imperfections) is fur-

ther detailed in section 5.9.
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5.1. Introduction

Résumé

Nous proposons l’utilisation de la recherche tabou parallèle pour la solution de problèmes inverses

combinatoires en optique-photonique. Afin d’évaluer le potentiel de cet algorithme, nous consi-

dérons le problème de manipulation de faisceaux au moyen d’un arrangement bidimensionnel de

diffuseurs diélectriques. La performance de la recherche tabou parallèle est comparée à celle de

l’algorithme génétique, une des méthodes d’optimisation les plus usitées en optique-photonique.

La recherche tabou parallèle produit des solutions optimisées comparables ou supérieures à l’al-

gorithme génétique, tout en nécessitant moins de temps de calcul et un plus petit nombre de para-

mètres ajustables. En utilisant le problème cohérent de manipulation de faisceaux comme étalon,

nous montrons comment la recherche tabou parallèle permet de solutionner efficacement des

problèmes d’optimisation à plusieurs objectifs. Cet algorithme représente ainsi une alternative ro-

buste à l’algorithme génétique dans le cas de problèmes en optique-photonique.

Abstract

We propose the use of the parallel tabu search algorithm (PTS) to solve combinatorial inverse de-

sign problems in integrated photonics. To assess the potential of this algorithm, we consider the

problem of beam shaping using a two-dimensional arrangement of dielectric scatterers. The per-

formance of PTS is compared to one of the most widely used optimization algorithms in photonics

design, the genetic algorithm (GA). We find that PTS can produce comparable or better solutions

than the GA, while requiring less computation time and fewer adjustable parameters. For the co-

herent beam shaping problem as a case study, we demonstrate how PTS can tackle multiobjective

optimization problems and represent a robust and efficient alternative to GA.

5.1 Introduction

Silicon integrated optical chips offer enormous potential for practical applications. The capability

to design and manufacture various planar integrated photonics components such as waveguides

[38], beam-splitters [114] and slow-light devices [9] has increased considerably in recent years.

This broad spectrum of functionalities is enabled by the interplay of in-plane reflection and inter-

ference processes caused by the presence of scattering elements such as an arrangement of holes

in a two-dimensional pattern. The arrangements can range from periodic – for instance in 2D

photonic crystals – to aperiodic [25, 155] or even completely disordered [167]. A frequently aris-

ing design issue in integrated photonics is to determine the scatterers’ configuration required to

achieved a given functionality. This class of NP-hard inverse design problems is often approached

using metaheuristics, optimization algorithms based on empirical rules for exploring large solution

spaces [149].

The genetic algorithm (GA), a nature-inspired evolutionary method, is perhaps the most widely
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used metaheuristic in the field of optics and photonics [14, 94, 129, 130, 158, 162]. Some defining

features of the canonical GA are that it uses stochastic transition rules, not deterministic ones, and

has no memory of past solutions [52]. The escape from local minima is then achieved using the

application of a random mutation operator. For large-scale optimization problems in integrated

photonics (for instance a large number of parameters, or the simultaneous optimization of multi-

ple objective functions), this results in many instances in slow convergence. Common approaches

for speeding up convergence include breaking the solution space in several pieces [158], or using

a combination of GA and local search algorithms [52].

The aim of this letter is to show that purely deterministic metaheuristics can very well be applied

to large-scale photonics design problems. The optimization algorithm chosen is the parallel tabu

search (PTS), a deterministic algorithm which involves fewer adjustable parameters than the GA.

The performance of PTS is compared to the standard GA for a case study, namely the inverse prob-

lem of beam shaping using a two-dimensional arrangement of dielectric scatterers [44]. As a fur-

ther illustration, we show that this algorithm is also well suited to inverse problems involving the

simultaneous optimization of more than one attribute. More specifically, we apply PTS to the co-

herent beam shaping problem, in other words the generation of a beam of controlled phase and

amplitude profile.

We will address a model inverse problem, namely beam shaping using a photonic crystal lattice.

Consider a finite-size arrangement of air holes in a high-index dielectric core. The problem con-

sists in finding a lattice configuration which, when illuminated with an arbitrary input beam, pro-

duces a scattered field that matches a desired profile in a given plane. In two dimensions, the beam

shaping problem can be formulated as the minimization of the following objective function [30]

g1 =
∫ ||ϕ(x0, y)|2 −|ϕ̄(x0, y)|2|d y∫ |ϕ̄(x0, y)|2d y

, (5.1.1)

where x0 is the location of the target plane, ϕ(x0, y) is the computed EM field on the target plane,

ϕ̄(x0, y) is the desired beam at the device output (the x−axis is the beam propagation axis). The

parameters to optimize can be defined as the geometry of the scatterers’ arrangement. A given

combination of scatterers is termed a solution, or a configuration. For a given configuration, the

resulting beam ϕ(x0, y) can be computed using a generalized Lorenz-Mie theory [103]. For def-

initeness, we set a basic lattice geometry and only allow the scatterers to be present or absent.

Consequently, the optimization problem is a combinatorial one. This means individual solutions

can be encoded via vectors of bits, the length of each vector being equal to the number of available

scattering sites [130, 158].

This beam shaping problem was recently tackled using a standard implementation of the GA [44].

In this previous work, the basic geometry is a 13×8 square grid of scatterers with mirror symmetry,

resulting in 256 possible configurations (see fig. 5.1). While the GA is successful in finding very

acceptable solutions to this inverse problem, the minimization of g1 does not take into account

the phase profile of the beam, only the amplitude, or irradiance distribution. As a result, the opti-
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Figure 5.1 – Basic photonic lattice configuration for the beam shaping problem. The dotted line
indicates the plane used for the computation of the desired beam profile.

mized beams sometimes exhibit large transverse phase fluctuations, which in turn result in a poor

field depth. This is a major impediment to applications such as atom guiding [97] and microscopy

[107], where beams with large field depths (low divergence) are needed. In order to achieve coher-

ent beam shaping, we must define another objective function related to phase fluctuations of the

transverse profile. Consider the following integral

g2 =
∫ |Im[ϕ(x0, y)e−iφ(x0,0)]|2d y∫ |ϕ̄(x0, y)|2d y

, (5.1.2)

where tanφ(x, y) = Im[ϕ(x, y)]/Re[ϕ(x, y)]. The value of g2 is zero for a collimated beam (plane

phase front), and increases with the number of oscillations in the phase front. The set of attributes

g1 and g2 constitutes a multiobjective optimization problem (MOP), which must be solved by sam-

pling the set of optimal solutions, commonly known as the Pareto set [149].

The main computational difficulty associated with MOPs lies in the fact that all Pareto solutions of

a p−objective problem are necessarily solutions of the same problem with a larger number of ob-

jectives [149]. Consequently, the number of objective function evaluations needed to solve a MOP

is significantly greater than in the single-objective case. Because of that higher computation cost,

it is beneficial to use a metaheuristic algorithm that yields better solutions than the GA for a given

number of objective function evaluations. However, one would want to preserve the innate ability

of the GA to sample broad areas of the solution space. In light of this observation, we propose the

use of the parallel tabu search (PTS) consisting in an ensemble of individual tabu search processes

exploring the solution space in a parallel fashion [23].

69



Chapter 5. Multiobjective optimization in integrated photonics design

5.2 Performance assessment of PTS

The tabu search is a deterministic local search algorithm first proposed by Glover in the late 1980s

[51, 149]. One iteration of a tabu search process begins with the evaluation of the objective function

in the neighborhood of the current solution. The algorithm then proceeds to the best possible

neighbor (best possible value of the objective function) that is not prohibited by the tabu list. This

list of forbidden moves constitutes the short-term memory of the algorithm and prevents a cyclic

search in the solution space. Its length L may be kept constant or dynamically adjusted as the

algorithm progresses. In our parallel implementation of the tabu method, we begin by generating

a diverse “population” of solutions using a method known as simple sequential inhibition [149]. An

individual tabu search process then begins working on a member of the initial “population” until a

stopping criterion is met (typically a fixed number of iterations). Since each process acts in a local

and deterministic way, the goal of the parallel implementation is to provide a broad sampling of

the solution space, as does the GA.

To compare the performance of PTS versus the GA, we apply both algorithms to the incoherent

beam shaping problem mentioned earlier. We only optimize for g1 (see eq. 5.1.1) using the basic

scatterer geometry shown in Fig. 5.1. The radius of all air holes holes is set to r = 0.3Λ, where Λ

is the lattice constant. We use an effective index n = 2.76, corresponding to a thin silicon slab at

λ∼ 1.5 µm [22]. Although the input and output beams may be arbitrary, we prescribe our incident

beam as a TM-polarized non-paraxial Gaussian beam with a half-width w0 = 2.5Λ and a wavenum-

ber k0 = 1.76/Λ. Moreover, a mirror symmetry across the x axis is taken into account, resulting in

256 possible solutions, or ∼ 7× 1016. The generalized Lorenz-Mie method used to compute the

scattered field ϕ(x, y) is detailed in Refs. [44, 103].

The parameters of the canonical GA are set following the guidelines of Vukovic et al. [158]. More

specifically, we use roulette wheel sampling, random mutations with probability pm = 0.002, uni-

form crossover with probability pc = 0.2, and elitism. The generation size is set to 200 individuals.

On the other hand, the only PTS parameter to be specified by the user is the tabu list length L. In

this work, we use a fixed length of L = 2.5
p

Nn , where Nn is the number of neighbors of a given

solution. In this case, Nn is also equal to the number of available scattering sites. We launched

100 GA processes and 100 parallel tabu search processes, each for 5000 iterations (or generations).

Since PTS is deterministic, each iteration implies no more than Nn = 56 objective function evalua-

tions, whereas we found that each generation of the GA implied an average of 60 objective function

evaluations (we keep the values for the best solution in memory). This means that the run-time of

each algorithm is similar given our choice of parameters. The minimal values of g1 for each op-

timization algorithm are presented in Fig. 5.2. The results show that the solutions found by PTS

are more optimal on average for an equivalent computation time. Moreover, some solutions found

by PTS were inaccessible to the GA. Therefore, for combinatorial optimization in integrated pho-

tonics, PTS may be a better choice. This is similar to the performance gain of tabu search when

applied to timetable scheduling problems [21]. PTS is also appealing because it involves very few
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Figure 5.2 – Comparison of the GA and PTS algorithms applied to the incoherent beam shaping
problem. Each simulation represents 5000 generations/iterations, with a similar computational
cost. 100 simulations are shown for each algorithm.

adjustable parameters and its implementation is more straightforward than that of the GA.

Furthermore, and remarkably, the configurations computed via PTS exhibit a power conversion

efficiency ranging from 70 % to 80 %, similar to those obtained with the GA, and merely 10–20

% lower than arrangements specifically designed for high efficiency. Additional discussion and

comparison to other integrated devices can be found in Ref. [44] (chapter 4 of this dissertation).
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( f1 = 0.0167, f2 = 0.1019). (c) Best possible trade-off between the two objectives ( f1 = 0.0255, f2 = 0.0833). Since the phase is controlled, the
Hermite-Gauss profile shape is preserved over a greater propagation distance. This can be seen in the number of ridges in the transverse profile
(arbitrary intensity units). The lattice configurations producing these beams are made of N = 56 (b) and N = 52 (c) scattering sites whose explicit
positions can be found in [45] (and in supplement 5.6).
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5.3 Multiobjective results and discussion

Having assessed the potential of the PTS optimization algorithm, we now center our attention on

the solution of the MOP described by the two objective functions g1 and g2. The solution to a MOP

is not a single solution, but rather a set of solutions called Pareto optimal. A solution is Pareto op-

timal if it is not possible to improve a given objective without deteriorating at least another [32].

MOPs arise in various areas of engineering and science, such as microprocessor design [133], med-

ical physics [68], chaotic systems [150] and accelerator physics [67]. The simplest way to solve a

MOP is the weighted-sum method (or aggregation method). Basically, one recasts a p−objective

problem into a single-objective one in the following way [32]

min
υ∈Υ

p∑
i=1

αi fi (υ), (5.3.1)

where υ is a solution, Υ is the solution space, and fi = gi /g max
i . Objective functions must be nor-

malized with respect to a heuristic upper bound g max
i to ensure that all objectives are commensu-

rate. The Pareto front (location of the set of optimal solutions) is then sampled by solving several

different single-objective problems using different values of the weights αi . This has the effect of

increasing or decreasing the relative importance of each objective, thereby steering the search to-

wards different regions of the Pareto front [32, 149]. In our case, this implies running several PTS

processes using different values of the relative weights αi .

Using the weighted-sum method, we perform the simultaneous optimization of the amplitude and

the phase of a order 2 Hermite-Gauss beam. The geometry used is the same as described above,

except that the square lattice is somewhat larger, 13×10 scatterers, for a total of 130 possible scat-

tering sites. Accounting for symmetry, this results in 270 possible solutions, or ∼ 1021. We set the

values g max
1 = 1, g max

2 = 10 and the restriction α1 +α2 = 1. The sampling of the Pareto front is

performed using 7 different values ofα2 ∈ [0.0,0.425]. For each of those values, 48 tabu search pro-

cesses are performed in parallel. This set of search processes yields a number of final solutions,

out of which we extract the Pareto optimal set (i.e. those solutions for which there is no solution

found that is characterized by a lower value of both g1 and g2). The resulting Pareto front is shown

in Fig. 5.3a.

Once the Pareto front is sampled, the “optimality” of the solutions is to be evaluated a posteriori

depending on the preferred application. In other words, it is up to the end-user, or decision maker,

to determine what is the best trade-off between the predefined objectives. In our case, we are in-

terested in generating beams with a large field depth. As illustration, the configuration in Fig. 5.3b

offers the most accurate reproduction of a Hermite-Gauss beam profile (smallest obtained value

of f1). However, the non-uniformity of the phase front results in a poor field depth. On the other

hand, the configuration in Fig. 5.3c exhibits a better field depth, keeping a Hermite-Gaussian pro-

file over a greater distance. This solution would likely have been “missed” in the single-objective

case. This last point is crucial in the optimization problem. In selecting a multi-objective versus a
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single-objective calculation, one must keep in mind that the former offers a much greater diversity

and density of solutions. For instance, we found that replacing the integrand of the single-objective

function g1 by |ϕ(x0, y)− ϕ̄(x0, y)|2 for the coherent problem, we could only reach a much smaller

and less optimal subset of solutions.

5.4 Conclusion

In summary, we propose the use of the PTS algorithm for combinatorial optimization problems in

integrated photonics. We show that PTS finds some optimal solutions faster than the standard GA

for the specific problem of beam shaping using a 2D photonic lattice. Moreover, the tabu method

involves fewer adjustable parameters, allowing for a straightforward implementation. Using this

improved algorithm, we have reported the possibility to control the coherent profile (amplitude

and phase) of the output beam. Our results show that multiobjective optimization in integrated

photonics design is within reach and that a PTS algorithm offers an efficient alternative to the

standard GA.

5.5 Authors’ contributions

DG designed the study, carried out the analysis, wrote the numerical codes, performed the compu-

tations and wrote the first version of the manuscript. All authors have contributed to the analysis

and have been instrumental in bringing the original manuscript to a publishable research contri-

bution.
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5.6. Supplement I: Lattice configurations
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Figure 5.4 – Generation of coherent order 2 Hermite-Gauss beam. The target plane is indicated
by a dashed line. Arbitrary intensity units. (Top) Optimized configuration characterized by ( f1 =
0.0167, f2 = 0.1019,η = 0.836, N = 56). (Bottom) Optimized configuration characterized by ( f1 =
0.0255, f2 = 0.0833,η= 0.842, N = 52).

5.6 Supplement I: Lattice configurations

In the companion piece, only the output beam profiles were given in Fig. 5.3 because of space

constraints. For convenience, the configurations and full amplitude profiles are reproduced in Fig.

5.4.
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5.7 Supplement II: Multiobjective optimization with wider beams

This supplement contains additional results concerning multiobjective optimization using pho-

tonic lattices. Specifically, additional computations are carried out in the same wavelength regime

as the main contribution, but for less divergent input and target beams. The main goal is to use

more realistic beams in the computations, since the largely non-paraxial beams used in the main

contribution may be hard to produce in the laboratory 16.

5.7.1 New geometry and input beam

The angle of divergence θ of a GB is related to its wavelength λ and waist diameter w0 by the

following relation

θ = λ

πw0
. (5.7.1)

The consequence of this definition is that, in order to reduce the beam divergence at a given wave-

length, its waist diameter, or width, must be increased. In the following supplement, we attempt

to reduce this divergence angle by doubling the width of the incident beam, as well as requiring a

similarly wide target beam. The angle of divergence of a GB is also related to its Rayleigh distance

xR by [127]

θ =
√

2

kxR
. (5.7.2)

Consequently, in 2D-GLMT computations, reducing the divergence angle by a factor 2 amounts

to quadrupling the Rayleigh range of the incident complex-source beam (CSB). In order to accom-

modate the increased beam width, we use a somewhat larger grid in our computations. Figure 5.5a

shows the geometry used for multiobjective computations in the main contribution. The grid used

in this supplement is shown in Fig. 5.5b. Taking a mirror symmetry into account, the size of the

solution space accordingly increases from 270 to 290 possible solutions.

Before performing the usual multiobjective optimization procedure, we assess the performance

of PTS when applied to this larger space by performing single-objective optimization. Figure 5.6

shows that PTS needs more iterations to explore this rather large solution space, on the order of

60 000 iterations. In comparison, the “small grid” only required about 20 000 iterations to con-

verge to acceptable values of (g1, g2). The objective function distribution of a set of 48 parallel tabu

processes after 65 000 iterations is shown on Fig. 5.7.

Having assessed the performance of PTS, we now center our attention on generating beams with

larger field depths. We perform multiobjective optimization, requiring a Hermite-Gauss beam

profile of order 2 with twice the width used in the main contribution (w0 = 5Λ). To improve the

overall quality of solutions, the configurations found after 45 000 monoobjective tabu iterations

(amplitude-only) are used as starting points for multiobjective runs. Four different values of the

16. However, the possibility to generate beams characterized by very small beam waists using a cleaved integrated
waveguide is discussed in section 5.9.
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(a) N = 130

(b) N = 170

Figure 5.5 – Basic photonic lattice configurations used for beam shaping computations. (a) Con-
figuration used in our previous work for multiobjective optimization in the main contribution. (b)
Configuration used in this supplement to accommodate the wider incident beam.
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Figure 5.6 – Assessment of the convergence of a set of 48 PTS processes, using the wider grid (Fig.
5.5b). For this specific problem, the computational cost is about 18 hours (860 CPU hours) per 10
000 iterations.
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Figure 5.7 – Distribution of the final value of g1 for a set of 48 PTS processes after 65 000 iterations,
using the wider grid (Fig. 5.5b).
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Figure 5.8 – Sampling of the Pareto front of the multiobjective problem for the wider grid (Fig.
5.5b).
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relative weights are used in PTS runs involving 48 parallel processes. This represents about 9000

CPU hours (∼ 1 core-year). The resulting Pareto front is shown in Fig. 5.8. The number of solutions

found is similar to that composing the Pareto front shown in Fig. 5.3. However, the final values of

f2 are higher by a factor of 2 in the case of the wider input beam.

The output beams generated by the configurations forming the Pareto front are plotted in Fig. 5.9.

The higher values of f2 translate into oscillations in the phase front. This results in substantial de-

terioration of the transverse profile as the beam propagates, as compared to the main contribution.

This can be seen in the large number of ridges appearing in the transverse profile after propagation

over a few units of Λ. The appearance of an effective “focal point” can also be seen in the output

profiles. An attempt is made to explain this focusing effect in the next section (§5.7.2).
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Figure 5.9 – Beam profiles corresponding to all configurations found on the sampled Pareto set for the wider grid (Fig. 5.8). Axis are in units of
lattice constantΛ.
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5.7.2 Self-collimation effect in photonic crystals

Photonic crystals are known to exhibit a phenomenon of self-collimation [146]. This collimation

results from the periodic modulation of the refractive index in the direction perpendicular to the

beam propagation axis, and can be exploited to create PhC lenses [92, 94]. To sum up, the focusing

regime occurs at frequencies (or wavenumbers) between the corner of the first Brillouin zone ωBZ

and the so-called self-collimation frequency ωSC. At this frequency, waves propagate in the pho-

tonic crystal in a diffraction-less way. Supposing a propagation along the x axis, the diffraction can

be related to the second derivative of the band curves in the following way [124, 146]

D = d 2ω

dk2
x

, (5.7.3)

where kx is the x component of the wavevector k. Focusing occurs in the anomalous diffraction

regime (D > 0). This corresponds to a situation where the wavefronts of the beam exiting the PhC

are concave, thus leading to a focal point located behind the PhC. In the normal diffraction regime

(D < 0), the wavefronts are convex and no focusing is expected. Consequently, the self-collimation

frequency can be identified as an inflection point in the transmission bands (D = 0). In short,

if the diffraction D is of opposite signs at both edges of a transmission band, there must be an

inflection point somewhere in between where self-collimation occurs, and there should exist a

focusing regime, that is a frequency range for which D < 0.

5.7.3 Focal points in beam shaping computations

Let us investigate further the band structure (Fig. 5.10a) of the PhC geometry used in chapters

4 and 5. Let us also concentrate on wavevectors comprised between the Γ and X points, that is

0 < kx < k0. This corresponds to propagation along the x axis. Looking at a snapshot of the second

TM band, one can see that (D < 0) at the Γ point and (D > 0) at the X point. As expected, there

exists an inflection point in between at a normalized frequency k0Λ = 1.727 (Fig. 5.10b). This is

the self-collimation frequency. One can expect focusing for normalized frequencies in the range

1.727 < k0Λ < 2.361. Somewhat coincidentally, all computations performed in chapters 4 and 5

used k0Λ = 1.76 which falls in the focusing regime. This may explain the appearance of effective

“focal points” in the output profiles shown in Fig. 5.9.

In order to mitigate the effect of the focusing effect on beam shaping computations, we performed

another multiobjective run using the same basic geometry and beam widths, but a normalized

frequency k0Λ = 1.25, outside the focusing regime. Results are shown in Figs. 5.11 and 5.12. The

output profiles can be found to be somewhat smoother in that case (smaller values of f1), but at

this point we do not find a guarantee that focal spots can be eliminated by getting out of the self-

collimation regime. Of course, the Bloch modes expansion does not hold in the case of the irregular

configurations optimized via metaheuristics algorithms, but this picture seems to give a qualitative

guideline to get smoother output profiles and mitigate the presence of focal spots.
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(a) Band structure along high symmetry points of the first Bril-
louin zone. The location of a partial bandgap in theΓ–X direction
is shaded. The band structure is identical to that of Fig. 4.2.
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Figure 5.10 – Band structure for a square lattice of air holes of radius r = 0.3Λ in a dielectric medium
with refractive index n = 2.76. Eigenmodes were computed using the MIT PHOTONIC BANDS soft-
ware package [73].
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Figure 5.11 – Sampling of the Pareto front of the multiobjective problem for the wider grid with
k0Λ= 1.25.

It is also unclear why we get smoother profiles in the case of smaller beam widths, as found in

chapters 4 and 5. We can speculate that this is partly due to the fact that a larger basic lattice has to

be used for larger beams. This means the final lattice configurations are closer to a regular lattice,

thus giving rise to long-range order effects, such as self-collimation. Nevertheless, those results

highlight the importance of sampling many possible “optimal” solutions of the optimization prob-

lem before making a final decision on which output profile is the best for a given purpose.
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Figure 5.12 – Beam profiles corresponding to all configurations found on the sampled Pareto set with k0Λ= 1.25 (Fig. 5.11). Axis are in units of
lattice constantΛ.
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5.8 Supplement III: Lensing using a finite rods-in-air type photonic

crystals

In section 5.7.2 of this supplement, we described the phenomenon of self-collimation in PhCs.

Self-collimation was subsequently deemed to be potentially detrimental to beam shaping devices

in section 5.7.3. However, this effect could be beneficial if we consider applications other than

beam shaping, for instance lensing. To illustrate this, this section numerically demonstrates the

possibility of designing a convergent lens using a finite-sized PhC.

In order to obtain a focused TM-polarized beam, we use a rods-in-air photonic crystal. The re-

fractive index of the rods is set to n = 2, and their radius is set to r = 0.3Λ. The band structure

of this PhC geometry is shown in Fig. 5.13. According to the previous analysis (§5.7.2), one can

expect focusing for normalized frequencies in the range 3.39 < k0Λ < 4.18. To verify this hypoth-

esis, we performed 2D-GLMT computations at different normalized frequencies using a 31× 12

(N = 372) finite crystal illuminated by a GB. The width of the incident GB was kept at a constant

value of w0 = 3Λ. The consequence of this is that the Rayleigh distance of the GB varies with the

normalized frequency (compare Eqs. 5.7.1 and 5.7.2).

It should be noted that the output beam can not be expected to have a purely Gaussian shape.

Therefore, we can only define arbitrary criteria for what constitutes focusing behavior. In the case

of our computations, we define focusing as occurring if a waist plane can be observed after the out-

put plane of the finite crystal. Specifically, we define the waist as the plane of maximal irradiance

located after the output plane. If this plane coincides with the output plane, this means the out-

put beam is divergent and no focusing occurs. The scattering computation shown in Fig. 5.14a is

performed in the normal diffraction regime (D > 0). As expected, no waist plane can be observed.

At higher values of the normalized beam frequency, a waist plane can be observed as the output

beam changes from divergent to convergent (see Fig. 5.14b). However, it should be noted that the

first occurrence of self-collimation, or focusing, does not coincide exactly with the inflection point

(D = 0) shown in Fig. 5.13b. A similar observation was made in a recent publication [124]. The

authors of this paper state that “there seems to be a trade-off between operating at the inflection

point and as far away from the band edge as possible”. In other words, the presence of an inflection

point in a transmission band should not be seen as providing an exact prediction of the frequency

range corresponding to the focusing regime, but rather as providing a design rule for PhC lenses.
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(a) Band structure along high symmetry points of the first Bril-
louin zone. The location of a bandgap between the first two TM
propagation bands is shaded.
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Figure 5.13 – Band structure for a square lattice of rods in air of radius r = 0.3Λ and refractive index
n = 2.00. Eigenmodes were computed using the MIT PHOTONIC BANDS software package [73].
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Figure 5.14 – Transformation of a Gaussian beam by a rods-in-air type lattice in the second trans-
mission band. Axis are in units of lattice constant Λ. The vertical line indicates the location of the
transmitted beam waist plane.
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5.9 Supplement IV: Remarks on the experimental realization of beam

shaping devices

Electron-beam lithography [94] and deep UV lithography [161] and are two of the most commonly

used microfabrication techniques for silicon-on-insulator optical devices. These techniques typi-

cally exhibit experimental deviations smaller than 10 nm. [94, 161]. Since these deviations are not

taken into account in the optimization procedures used in this thesis, the goal of this supplement is

to assess their impact on the functionality of the proposed devices. In other words, we examine the

tolerance of optimized photonic lattice configurations to the limitations of fabrication processes.

To quantify this tolerance, we consider random variations in the position and radius of the individ-

ual scatterers of configurations found via metaheuristic algorithms. Let xi be a length parameter

describing a scatterer (for instance its position or diameter). We suppose Gaussian deviations from

the mean geometric parameters, that is x ′
i = xi +δxi , where is δxi is a normally distributed random

variable. The probability density function of δxi is given by

f (δxi ;µi ,σi ) = 1

σi
p

2π
exp

[
(δxi −µi )2

2σ2
i

]
. (5.9.1)

For the purpose of this study, we will center our attention the basic geometry shown in Fig. 5.5a,

that is a 13×10 square grid of scatterers with mirror symmetry, resulting in 270 possible configura-

tions [46]. The geometric parameters of the grid as well as the incident beam are detailed in Table

5.1.

Consider the optimized configuration shown in Fig. 5.15a, obtained via PTS. To assess the tol-

erance of this configuration to fabrication imperfections, we compute the value of the objective

function g1 for various test configurations (an example is shown in Fig. 5.15b). First, we suppose

Gaussian deviations from the mean position of every scatterer, with average values µi = 0, while

keeping the scatterers radii unchanged. We then consider a similar deviation of the radius of every

scatterer, but keeping their positions unchanged. Every scatterer is randomly affected indepen-

dently of each other, and all scatterers are affected in every test configuration. The result of those

computations is shown in Fig. 5.16. One can see the increasing average values and standard devi-

ations of g1 as a function of the standard deviations σi used in computations.

It is possible to compare the results of those computations to typical experimental variations found

in the literature 17. For instance, the fabrication of corrugated Bragg gratings in a silicon ridge

waveguide was recently reported, with typical deviations of the corrugation width on the order of

10 nm [161]. In this work, deep UV lithography is used to fabricate the devices [161]. Moreover,

the fabrication of silicon integrated photonic lenses based on holes in a waveguide core was re-

cently reported [94], with primitive hole matrices similar to those used in this thesis. In this work,

electron-beam lithography was used to engrave the holes [94]. The experimental deviation from

17. For definiteness, we use the real-world values found in the last column of Table 5.1.
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the mean of the holes radii was reported to be between 1 and 5 nm [94]. Based on those reports,

we shall suppose a deviation from the mean between 1 and 10 nm for the holes positions, and 1

and 5 nm for the holes radii. Those ranges are indicated by shaded regions in Fig. 5.16. These

results show that optimized designs are moderately tolerant to fabrication imperfections. Indeed,

the maximal reported experimental deviations imply an increase of the objective function g1 by a

factor between 2 and 5.

Table 5.1 – Geometric and wave parameters used in beam shaping computations

Parameter Value Value at λ= 1.55 µm

Lattice constant Λ 0.434 µm

Lattice depth 10Λ 4.342 µm

Lattice height 13Λ 5.644 µm

Wavelength λ= 2πΛ/1.76 1.55 µm

Holes radius r = 0.3Λ 0.130 µm

Width of incident beam w0 = 2.5Λ 1.085 µm

Effective index of waveguide core n 2.76

It should be noted that the beam shaping elements proposed in this dissertation do not necessarily

imply freely propagating input and output beams. Indeed, it is possible to create beams with a very

small waist size using integrated input and output waveguides, as demonstrated experimentally by

Xu et al. [171]. Moreover, the field emitted by a cleaved waveguide can be modeled by a Gaussian

beam as proposed by Okamoto [106, p. 41]. In this reference, it is stated that the radiation pattern

of an integrated waveguide with a width of 1.5 µm, refractive index n = 3.5 operating at λ= 1.55 µm

can be approximated by a Gaussian beam with a width of w0 = 800 nm [106, p. 46]. This is on the

order of the input beam width given in Table 5.1. Consequently, the relatively small beam widths

used in our computations could be viewed as being created by integrated waveguides and not as

propagating in free space, save for a very short distance from the device input.

89



Chapter 5. Multiobjective optimization in integrated photonics design

(a) Optimized configuration (N = 56) (b) Test configuration with perturbations

(c) Resulting profile (g1 ' 2%) (d) Resulting profile, with perturbations (g1 ' 30%)

Figure 5.15 – Test configuration for tolerance assessment. (a) Lattice configuration optimized for
the generation of a order 2 Hermite-Gauss beam profile. (b) Example test configuration with Gaus-
sian deviations from the meanσX ,Y =σr = 3×10−2Λ. (c–d) Resulting beam profiles and associated
g1 values.
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Figure 5.16 – Tolerance of the configuration shown in Fig. 5.15a to fabrication imperfections. (a)
The positions (Xi ,Yi ) of individual scatterers are varied while their radii are kept unchanged. The
shaded region corresponds to an experimental deviation between 1 and 10 nm for the holes posi-
tions, based on [161]. (b) The radii ri of individual scatterers are varied while their positions are
kept unchanged. Each data point represents a sample of 1000 randomized test configurations.
The shaded region corresponds to an experimental deviation between 1 and 5 nm for the holes
radii, based on [94]. The parameters of the lattice are drawn from Table 5.1, assuming an operating
wavelength of 1.55 µm.
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6.1. Introduction

Résumé

Cette étude porte sur la conception de filtres de polarisation intégrés basés sur des cristaux photo-

niques bidimensionnels possédant des défauts optimisés. En utilisant une grille de piliers diélec-

triques placés dans l’air pour la réalisation d’un filtre TE et une grille d’inclusions dans un substrat

diélectrique pour la réalisation d’un filtre TM, nous sommes en mesure de maximiser le degré de

polarisation du faisceau de sortie jusqu’à 98 %, tout en maintenant une efficacité de transmis-

sion supérieure à 75 %. Les designs proposés constituent non seulement des filtres logiques de

polarisation, mais peuvent également être optimisés afin d’émettre un faisceau de sortie de profil

arbitraire. Les filtres sont optimisés au moyen d’un algorithme d’optimisation récemment proposé

(PTS) pour la conception d’éléments optiques intégrés.

Abstract

This study reports on the design of small footprint, integrated polarization filters based on engi-

neered photonic lattices. Using a rods-in-air lattice as a basis for a TE filter and a holes-in-slab

lattice for the analogous TM filter, we are able to maximize the degree of polarization of the output

beams up to 98 % with a transmission efficiency greater than 75 %. The proposed designs allow

not only for logical polarization filtering, but can also be tailored to output an arbitrary transverse

beam profile. The lattice configurations are found using a recently proposed parallel tabu search

(PTS) algorithm for combinatorial optimization problems in integrated photonics.

6.1 Introduction

Polarization is a physical dimension of light that can be exploited to increase the rate of transmis-

sion of information in optical communications [168]. For instance, polarization beam-splitters

based on modal birefringence in integrated waveguides may enable transmission rates up to 400

Gbps in optical networks [113]. Integrated polarization manipulation is also critical to accelerat-

ing electrons using dielectric structures [16]. These examples are but a small sample of important

applications that have moved the design of integrated elements dedicated to polarization manage-

ment to the forefront of photonics research. Some existing solutions for tailoring the polarization

of light at the microscale level include subwavelength gratings [20, 100], chains of coupled opti-

cal microspheres [26], Raman processes [170], metasurfaces [8] and photonic crystals [27, 114].

In parallel to these developments, various photonic crystal (PhC) inspired devices have also been

proposed, such as near-field beam shapers [44, 46, 158], lenses [94, 130], waveguide bends [169]

and waveguide couplers [3]. The design process of these nanophotonic devices is almost always

based on the optimization of a primitive PhC lattice – or grid of scatterers – using metaheuristics,

optimization algorithms based on empirical rules for exploring large solution spaces [149].

The aim of this Letter is to optimize small footprint integrated devices combining two function-
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Λ

Figure 6.1 – Schematic representation of the basic photonic lattice configuration and the polariza-
tion optimization problem. In this example, the Ey component of the incident beam is filtered out,
resulting in a TM polarized beam. For a TE polarized beam, replace (Ez ,Ey ) by (Hz , Hy ). The final
optimized design will consist of occupied or empty scattering sites.

alities: beam shaping and polarization filtering. We show that two basic scatterer grids can be

used for this purpose, namely a rods-in-air (RIA) lattice for TE polarization filtering and a holes-

in-slab (HIS) lattice for TM polarization filtering. This choice is motivated by the band structure of

each basic photonic lattice. Moreover, the polarization filters proposed are experimentally feasible

as RIA lattices can be fabricated routinely using electron beam lithography of amorphous silicon

films [171], and HIS lattices can be produced by etching inclusions in a high refractive index mem-

brane of semiconductor material [27].

Although polarization selective beam-splitters based on PhC bandgaps have been demonstrated in

the past [114], our designs allow not only for logical polarization filtering, but are also specifically

tailored to preserve the beam shape or to transform it to specification at the device output. Our

approach consists in using a metaheuristic algorithm, parallel tabu search (PTS), to optimize a

basic photonic lattice in order to achieve the required functionality [46], a polarized beam with a

definite shape at the device output. This will be demonstrated by the generation of quasi-Gaussian

polarized beams at the near-field of the device.

6.2 Configuration space and optimization problem

Before proceeding with the optimization problem, it is critical to choose an adequate configuration

space, in other words a basic photonic lattice. In this Letter, we use a 10 × 13 lattice as shown

in Fig. 6.1. This geometry defines two privileged directions, namely the direction parallel to the

scatterers’ axis (the z-axis) and the beam propagation axis (the x-axis). The configuration space is

specified by the fact that we only allow individual scattering sites to be occupied or empty in the
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final design, resulting in 270 possible solutions taking a mirror symmetry into account. This basic

lattice geometry was successfully used in a previous optimization study, for the conversion of a

Gaussian beam to coherent Hermite-Gauss type beams [46].

To obtain a TM polarized output beam (Ey = 0), we choose the HIS design, whereas to obtain a

TE polarized beam we adopt the RIA design. These choices are motivated by the band structure

of both photonic lattices. As can be seen from Fig. 6.2, the HIS lattice exhibits a wider directional

bandgap for the TE polarization in the Γ−X direction. This implies that the TE component of the

beam (Ey ) is more strongly scattered, making the HIS lattice suitable for filtering this polarization

out and favoring the TM polarization. For the device to operate near that bandgap, the radius of

all air holes is set to r = 0.3Λ, where Λ is the lattice constant. We use an effective refractive index

n = 2.76, corresponding to a thin silicon slab at λ∼ 1.5 µm [22]. In contrast, we choose a RIA lattice

for the TE polarizer with the rods refractive index set to n = 3.3. Similarly, this lattice exhibits a

bandgap for the TM polarization, meaning that it strongly scatters the TM component of the beam

(Hy ). The incident beam wavenumber is set to k0 = 1.76/Λ, with a half-width w0 = 2.5Λ. Such

a beam could in principle be generated using an integrated waveguide [171]. The value of k0 is

chosen to fall near the bandgap of both HIS and RIA lattices. Although the Bloch modes expansion

yielding the band diagrams does not strictly hold for our final optimized configurations (as they are

neither periodic nor infinite), this approach provides a useful design tool for polarization filters.

Moreover, integrated polarization selective beam splitters based on PhCs have been reported to

exhibit an effective bandgap despite only three rows of scatterers being present in the final design

[27, 114].

Once the solution space has been defined, the next step is to formulate the optimization objectives.

The problem consists in finding a lattice configuration which, when illuminated with a Gaussian

input beam, produces a polarized beam that also matches a specific Gaussian profile in a given tar-

get plane, although in principle both the input and output profiles can be arbitrary [44, 46]. In two

dimensions, this beam shaping problem can be formulated as the minimization of the following

objective function [30, 44]

g1 =
∫ ||ϕz (x0, y)|2 −|ϕ̄z (x0, y)|2|d y∫ |ϕ̄z (x0, y)|2d y

, (6.2.1)

where x0 is the location of the target plane, ϕz (x0, y) is the computed EM field on the target plane

(either Ez for a TM polarizer or Hz for a TE polarizer) and ϕ̄z (x0, y) is the required beam profile at

the device output. For a given configuration, the resulting beam profileϕz (x0, y) can be computed

using a two-dimensional generalized Lorenz-Mie theory (2D-GLMT). This computation method –

the speed of which is crucial to the optimization procedure – is detailed in Refs. [33, 44, 103].

To obtain a polarized output beam, another objective function related to the degree of polarization

P of the output beam must be optimized. We use the following definition [2]

P =
∫ 〈Sx (x0, y)〉z d y∫ 〈Sx (x0, y)〉z d y +∫ 〈Sx (x0, y)〉y d y

= Pz

Ptot
, (6.2.2)
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Figure 6.2 – Band structure for two different square lattices of cylinders (radius r = 0.3Λ). (Top)
HIS configuration with refractive index of slab n = 2.76. (Bottom) RIA configuration with rods of
refractive index n = 3.3 embedded in air. Eigenmodes were computed using the MIT PHOTONIC

BANDS software package [73].

where 〈Sx〉z,y is the x component of the time-averaged Poynting vector, i. e. the power transmitted

through the target plane (x = x0). The (z, y) subscripts represent the contribution of each orthog-

onal polarization to the Poynting vector. The ratio P is therefore equal to the power carried by the

polarized portion of the beam Pz divided by the total power contained in both polarizations Ptot.

To obtain a perfectly TM (TE) polarized beam, the contribution of the Ez (Hz ) component must be

maximized at the target plane (maximum possible value of P = 1). Since the device geometry does

not mix polarizations, we suppose an equal incident power in both orthogonal field components,

and attempt to maximize Pz . The flexibility of the 2D-GLMT approach makes the computation of

the Poynting vector components a simple matter [103]. On a side note, since real structures ei-

ther based on pillars or embedded in waveguides are not infinite in the z−direction, the modes are

more accurately labeled as “quasi-TM” or “quasi-TE” because polarization mixing, however small,

can indeed take place [27]. For the purpose of this work, we shall consider that no mixing occurs.

Another way of characterizing the polarization filters is by means of the ratio between the total

power transmitted by the ϕz component of the field and the total power transmitted by the ϕy

component. This ratio is computed from the Poynting vector components in the following way

R =
∫ 〈Sx (x0, y)〉z d y∫ 〈Sx (x0, y)〉y d y

= Pz

Py
. (6.2.3)

Finally, another quantity of interest is the power transmission efficiency η, simply defined as the

ratio between the power incident in the ϕz component on the polarization filter and the output
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power in the same field component [44]

η=
∫ 〈Sx (x0, y)〉z d y∫ 〈Sx (xin, y)〉z d y

, (6.2.4)

where xin is the location of the input plane. Both R and η are useful indicators to measure the

performance of the final optimized configurations.

To sum up, the optimization problem consists in minimizing the objective function g1 while si-

multaneously maximizing the degree of polarization P over a 70 dimensional binary search space.

This set of objectives constitutes a combinatorial multiobjective optimization problem. These

problems are often tackled using metaheuristics, general optimization techniques which aim to

provide well conditioned solutions in a reasonable amount of time [149]. Metaheuristics are some-

times called global optimization algorithms. Notable instances in photonics design include genetic

algorithms (GAs) [44, 46, 94, 130, 158], differential evolution [79] and harmony search [3]. In a

recent contribution, we have proposed the use of an alternative metaheuristic for combinatorial

multiobjective optimization problems in photonics called parallel tabu search (PTS) [46]. The main

feature of tabu search is that it uses an adaptive memory to escape from local minima in the solu-

tion space [53, 149]. Besides, it involves fewer adjustable parameters and relies less on stochastic

operators than the more commonly used GA. The net benefit is to increase the convergence speed

for the sort of optimization problems considered here [46].

6.3 Results and discussion

Using PTS, we have performed the optimization of the objectives functions (g1,P ) in order to find

lattice configurations suited for polarization filtering, i.e. the conversion of an non-polarized Gaus-

sian beam to a polarized one. Since both objectives are not independent, the solution to this mul-

tiobjective problem is not a single configuration, but rather a set of compromises between the two

objectives, the Pareto set of the problem [46, 149]. For demonstrative purposes, a Gaussian beam

with a half-width w0 = 2.5Λ is required at the device output. However, the beam shaping proce-

dure just described could allow for the generation of arbitrary shaped polarized beams. To obtain

polarization filters exhibiting high profile accuracy and high transmission efficiency, we have only

retained the Pareto solutions with g1 ≤ 0.05, that is an error on the output beam profile inferior to

5 %.

The two best lattice configurations found (in terms of P ) satisfying this condition are shown in

Figs. 6.3 and 6.4. In both cases we are able to maximize the degree of polarization to values exceed-

ing P = 0.980. Alternatively, both configurations are characterized by R ≥ 48, which means that the

transmission of the preferred field component is at least 48 times higher than the filtered out com-

ponent. Additionally the near-field beam shapes deviate from a Gaussian amplitude profile by less

than 4.4 % and both configurations exhibit power transmission efficiencies above η= 0.75. For the

TM polarization, we also found a configuration (not shown) characterized by η= 0.81, but in that
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Figure 6.3 – Generation of a TM polarized Gaussian beam. (a) Optimized HIS configuration (57
scatterers) and |Ez | field profile (arbitrary units). The target plane coincides with the upper limit
of the x axis. (b) Comparison of orthogonal polarization components along target plane. This
solution is characterized by P = 0.983, R = 59.8, g = 0.044,η= 0.759.

case the output beams is slightly less polarized (P = 0.978 and R ' 43.9). We have also performed

optimization using triangular primitive lattices, but we found that this procedure resulted in lower

values of P . This may be related to the fact that square grids allows for nearly complete rows to

be present in the design (see Figs. 6.3a and 6.4a), allowing the effective bandgap effect described

earlier to take place.

In summary, we have proposed small footprint integrated designs allowing for simultaneous po-

larization filtering and amplitude beam shaping. The designs are based on two-dimensional pho-

tonic lattices exhibiting partial bandgaps, which facilitates the filtering behavior. Using an op-

timization procedure based on the tabu search algorithm, we are able to maximize the average

degree of polarization of the output beam up to 98 % with a transmission efficiency over 75 % for

the TM polarizer and 80 % for the TE polarizer. While the designs we presented allow for the gen-

eration of a Gaussian amplitude profile at the device near-field, the optimization procedure can be

used for the generation of arbitrary shape beams, as shown in previous studies [44, 46, 158].

Future work includes the application of the algorithm to different beam shapes as well as a gen-

eralization to three dimensional lattices, thereby allowing for an integrated solution to generate,

for instance, radially polarized beams. Noteworthy is the fact that we were not able to obtain TE
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Figure 6.4 – Generation of a TE polarized Gaussian beam. (a) Optimized RIA configuration (58
scatterers) and |Hz | field profile (arbitrary units). The target plane coincides with the upper limit
of the x axis. (b) Comparison of orthogonal polarization components along target plane. This
solution is characterized by P = 0.980, R = 48.0, g = 0.028,η= 0.890.

polarized beams using the HIS design and TM beams using the RIA configuration. This confirms

the usefulness of the bandgap analysis as a design guide. Nevertheless, using high-order bands

(where there is no bandgap) to generate polarized beams may be possible. In fact, interesting ef-

fects in high-order transmission bands of PhCs, e.g. lensing, have recently been observed [92]. This

could also be beneficial from an experimental standpoint, as the resulting polarization filters could

accommodate wider beams.

6.4 Authors’ contributions

DG designed the study, carried out the analysis, wrote the numerical codes, performed the com-

putations and wrote the first version of the manuscript. JD suggested the definition of P used in

the study. All authors have contributed to the analysis and have been instrumental in bringing the

original manuscript to a publishable research contribution.
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6.5 Supplement: Excerpts of supplemental material

6.5.1 Detailed Pareto fronts: optimization of efficiency

This appendix contains supplemental details about the multiobjective computations discussed in

the accompanying article. The additional results are:

1. The Pareto fronts of the (g1,P ) multiobjective optimization problem presented in the article.

2. The Pareto fronts of (g1,η) and (η,P ) optimization problems. Indeed, computing the degree

of polarization requires computing the Poynting vector components, as does the efficiency.

It is therefore straightforward to add the power transmission efficiency η as an additional

objective function, although we did not do so in the main contribution.

3. The fully three-dimensional Pareto front of the (g1,P ,η) beam shaping problem.

4. More beam profiles (Hermite-Gauss beams of order 1 and 2), both for the TE and TM polar-

ization.

In short, we are faced with a three-objective problem that consists in minimizing the error on the

output beam profile g1 while maximizing the degree of polarization P and the transmission effi-

ciency η simultaneously. To this end, we use the following objective function in PTS computations

f (υ) = 1

g1(υ)
+α1P (υ)+α2η(υ), (6.5.1)

and proceed to solve multiple instances of the following problem

max
υ∈Υ

f (υ), (6.5.2)

using different values of the relative weights αi . The case α2 = 0 corresponds to the objective func-

tion used in the main contribution. Since the solution space υ is composed of 270 solutions, a sig-

nificant computation time is required to achieve a good sampling of the Pareto front of the beam

shaping problem. The basic scatterer grids used in this section are also those of the main contri-

bution, that is a holes-in-slab (HIS) configuration for the generation of TM-polarized beams and a

rods-in-air (RIA) configuration for TE computations.

6.5.1.1 TM polarization

In this section, we present the detailed Pareto fronts of the optimization problem consisting in

the generation of TM-polarized beams. Optimization runs for the generation of Gaussian and

Hermite-Gauss beams of order 1 and 2 were performed. The resulting (g1,η), (g1,P ) and (η,P )

are shown in Fig. 6.5, while the (g1,P ,η) is presented in Fig. 6.6. It can be seen from these two

figures that Pareto solutions of the two-objective problems are necessarily Pareto solutions of the

three-objective problem, although the opposite is seldom true.

As a side note, these computations were obtained using a slightly different definition of P than

that in the main contribution. This different version is [2]

Q = 1

2y0

∫ y0

−y0

〈Sx (x, y)〉z −〈Sx (x, y)〉y

〈Sx (x, y)〉z +〈Sx (x, y)〉y
d y, (6.5.3)
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where ±y0 are arbitrarily chosen integration bounds. For the simulations shown in Fig. 6.5 and

6.6, we used the value of Q to guide the optimization computations, but post-characterization of

the solutions is done using the value of P . The reason for this is that Q was the initial choice of

objective function, but it was found that P produced better results since it prevented the beam

profiles from exhibiting unpolarized side-lobes. Since the computations are time-consuming and

there is a good correlation between Q and P , we did not repeat all of them using P . Nevertheless,

the results in the main contribution and in the next section (§6.5.1.2) were carried out later using

P .

Two representative configurations located on the sampled Pareto front are detailed in Fig. 6.7. We

have selected the Pareto solutions characterized by g1 ≤ 0.1 and the best possible value of P . We

find that values of P > 0.9 can be achieved for the TM polarization. Although these values are

slightly smaller than those characterizing the polarized Gaussian profiles presented in the main

contribution, these results show that it is in principle possible to create polarization filters adapted

for the generation of arbitrary profile beams, while maintaining a high transmission efficiency (η>
0.85).

6.5.1.2 TE polarization

In this section, we present the detailed Pareto fronts of the optimization problem consisting in the

generation of TE-polarized beams (Figs. 6.8 and 6.9). The method used to sample the Pareto fronts

is similar to that described in section 6.5.1.1, except that the objective function P used in the main

contribution is used here as well.

Two representative configurations are also shown in Fig. 6.10. Interestingly, the configuration

shown in the bottom panel of this figure (generation of a TE-polarized Hermite-Gauss beam of

order 2) stands apart from the others in the (g1,P ) Pareto front, as it is the only one characterized

by a value of g1 < 0.1, although the degree of polarization is also smaller.
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Figure 6.5 – Detailed Pareto fronts of three multiobjective beam shaping problems (TM polariza-
tion). (Top row) The output beam is set to a Gaussian beam profile. The configuration of Fig. 6.3 is
marked by a star. (Middle row) The output beam is set to a Hermite-Gauss beam profile of order 1.
The configuration of Fig. 6.7 is marked by a star. (Bottom row) The output beam is set to a Hermite-
Gauss beam profile of order 2. The configuration of Fig. 6.7 is marked by a star. Color codes for the
sampled Pareto fronts are as follows: Yellow (g1,η), blue (g1,P ), red (η,P ). Black markers indicate
non-Pareto solutions.
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Figure 6.6 – Detailed Pareto fronts of the three-objective shaping problems (TM polarization). Each
panel shows a projection of the three-dimensional front in a two-objective plane. (Top row) The
output beam is set to a Gaussian beam profile. The configuration of Fig. 6.3 is marked by a star.
(Middle row) The output beam is set to a Hermite-Gauss beam profile of order 1. The configuration
of Fig. 6.7 is marked by a star. (Bottom row) The output beam is set to a Hermite-Gauss beam
profile of order 2. The configuration of Fig. 6.7 is marked by a star.
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Figure 6.7 – Generation of TM polarized Hermite-Gauss beams of order 1 (Top row) and order 2
(Bottom row). (a) Optimized configurations and |Ez | field profile (arbitrary units). The target plane
coincides with the upper limit of the x axis. (b) Comparison of polarization components along
target plane. The target profile is indicated by a dotted black line. Solution characteristics are: (Top
row) P = 0.928,R = 12.89, g1 = 0.028,η= 0.853, N = 43 and (Bottom row) P = 0.935,R = 14.47, g1 =
0.089,η= 0.860, N = 60.
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Figure 6.8 – Detailed Pareto fronts of three multiobjective beam shaping problems (TE polariza-
tion). (Top row) The output beam is set to a Gaussian beam profile. The configuration of Fig. 6.4
is marked by a star. (Middle row) The output beam is set to a Hermite-Gauss beam profile of order
1. The configuration of Fig. 6.10 is marked by a star. (Bottom row) The output beam is set to a
Hermite-Gauss beam profile of order 2. The configuration of Fig. 6.10 is marked by a star. Color
codes for the sampled Pareto fronts are as follows: Yellow (g1,η), blue (g1,P ), red (η,P ). Black
markers indicate non-Pareto solutions.
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Figure 6.9 – Detailed Pareto fronts of the three-objective shaping problems (TE polarization). Each
panel shows a projection of the three-dimensional front in a two-objective plane. (Top row) The
output beam is set to a Gaussian beam profile. The configuration of Fig. 6.4 is marked by a star.
(Middle row) The output beam is set to a Hermite-Gauss beam profile of order 1. The configuration
of Fig. 6.10 is marked by a star. (Bottom row) The output beam is set to a Hermite-Gauss beam
profile of order 2. The configuration of Fig. 6.10 is marked by a star.
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Figure 6.10 – Generation of TE polarized Hermite-Gauss beams of order 1 (Top row) and order
2 (Bottom row). (a) Optimized configurations and |Hz | field profile (arbitrary units). The target
plane coincides with the upper limit of the x axis. (b) Comparison of polarization components
along target plane. The target profile is indicated by a dotted black line. Solution characteristics
are: (Top row) P = 0.985,R = 63.54, g1 = 0.085,η = 0.899, N = 64 and (Bottom row) P = 0.765,R =
3.25, g1 = 0.0759,η= 0.791, N = 65.
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7.1. Introduction

Résumé

Cette publication présente une investigation des seuils lasers d’une molécule photonique typique

composée de deux cylindres actifs couplés. Plus précisément, nous utilisons une récente théorie

stationnaire du laser (SALT) afin d’évaluer la dépendence des seuils et des fréquences laser sur

les paramètres du milieu de gain formant la molécule. La principale conclusion de cette étude est

que l’ordre dans lequel les différents modes laser s’allument peut être modifié en choisissant une

combinaison appropriée des paramètres du milieu de gain, soit sa largeur et sa fréquence centrale.

Ce résultat est hors d’atteinte de l’approche traditionnelle des états quasi-liés. Nous quantifions

également l’effet de la fréquence centrale de la transition laser sur les fréquences de résonances,

un phénomène communément appelé « frequency pulling ».

Abstract

We investigate lasing thresholds in a representative photonic molecule composed of two coupled

active cylinders of slightly different radii. Specifically, we use the recently formulated steady-state

ab initio laser theory (SALT) to assess the effect of the underlying gain transition on lasing fre-

quencies and thresholds. We find that the order in which modes lase can be modified by choosing

suitable combinations of the gain center frequency and linewidth, a result that cannot be obtained

using the conventional approach of quasi-bound modes. The impact of the gain transition center

on the lasing frequencies, the frequency pulling effect, is also quantified.

7.1 Introduction

The study of light-matter interactions in photonic molecules (PMs), formed by coupling several

optically active microcavities (atoms), has been the object of much work in recent years [13, 118].

Applications of microresonators and photonic molecules include optical communications [57],

sensing [12, 112, 157, 159], quantum computing [69] and metrology [28]. Photonic atoms [54] and

molecules [98] are also well suited for the fabrication of microlasers owing to their high quality fac-

tor, or photon recycling rate. These coupled systems also provide a test bed for a panoply of fun-

damental phenomena including optical bistability [70], coupled-resonator induced transparency

[13], non-reciprocal light transmission [111] and exceptional points (EPs) [84, 126]. EPs are ubiqui-

tous in parameter-dependent eigenvalue problems and can lead to surprising physical effects [60].

For instance, coupled edge-emitting lasers may turn off even as the pump power increases above

threshold. This counter-intuitive behavior is achieved by pumping the cavities non-uniformly near

an EP [84].

The lasing characteristics of microresonators are often obtained from the calculation of the cold-

cavity (passive) modes. An alternative approach consists in introducing the threshold material

gain in the laser eigenvalue problem [141, 142, 143]. This approach allows assessment of the effect
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of the resonator geometry on lasing thresholds and emission directionality. However, to take into

account the spectral properties of a given laser transition, for instance its position and linewidth,

formulations such as the Maxwell-Bloch or Schrödinger-Bloch (for 2D systems) theory must be

used [58, 147]. This is especially important in the case of nearly degenerate lasing frequencies, for

instance near EPs. As we show in this work, the conventional wisdom of cold-cavity modes may

not be sufficient in this case.

We will use the steady-state ab initio laser theory (SALT) [49, 152] to assess the effect of gain transi-

tion parameters on lasing frequencies and thresholds of a simple two-dimensional PM composed

of two coupled active cylinders in the vicinity of a geometric EP. The term ab initio refers to the fact

that this theory involves the solution of a set of self-consistent equations that explicitly take the

gain medium parameters into account. In other words, SALT allows one to determine the steady-

state solutions of the Schrödinger-Bloch equations [48, 58, 152]. The near-threshold behavior of

the PM can be obtained by computing the threshold lasing modes (TLMs) as described in [49].

This choice of basis states permits to study the effect of the Lorentzian gain transition on thresh-

olds when there are several modes competing for efficient gain extraction.

This paper is organized as follows. In Section 2, we describe the theoretical background behind

our computations, including the main equations of SALT and the method used to compute the

lasing states for an arbitrary number of cylinders. In Section 3, we compute the lasing states of a

diatomic photonic molecule as a representative example. Our results show that the thresholds of

closely spaced modes exhibit a non-trivial dependence on the parameters of the gain transition,

specifically the gain center frequency and its linewidth. We also investigate how the lasing modes

are subject to the frequency pulling effect, i.e. the effect of the gain center frequency on the spec-

trum of the PM laser. We summarize our findings in Section 4 and mention a number of possible

improvements and extensions.

7.2 Theoretical background

The investigation of the lasing behavior of 2D cavities usually implies the computation of the eigen-

states of the passive cavity. These states are governed by the Helmholtz equation

[∇2 +ε(r)k2]ϕ(r) = 0, (7.2.1)

where an harmonic time dependence exp(−iωt ) is assumed and ε(r) is the passive spatially varying

refractive index. Both TM (ϕ≡ Ez ) and TE (ϕ≡ Hz ) polarized waves can be considered. By applying

the usual Sommerfeld radiation condition, i.e. an outgoing wave component only, we obtain a set

of leaky, or quasi-bound (QB) states characterized by complex eigenfrequencies kQB = k ′+ i k ′′ 18.

Since the radiation condition implies k ′′ < 0, QB states are non-orthogonal and exhibit exponential

growth towards infinity [48, 152]. Despite this unrealistic behavior, QB states provide a useful mea-

sure of the photon lifetime in the cavity by means of the quality factor Q = |k ′/2k ′′|. The Q-factor

18. Since ω= ck, we will refer generically to both quantities as eigenfrequencies.
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gives a qualitative indication of which cavity modes will lase first. Considering a gain transition

with center located at frequency ka , one will usually infer that the modes with eigenfrequencies

close to ka and sufficiently high Q-factor will lase first [138, 147].

7.2.1 Steady-state ab initio laser theory

Although the QB states are widely used, they can not describe the lasing behavior of microcavities

or PMs in a completely accurate way since the gain medium parameters have no influence on

the QB states described by (7.2.1). Dynamical theories, for instance the Schrödinger-Bloch model,

have been used in the past decade to improved the treatment of lasing modes [58, 147]. In this

respect, the recently developed SALT offers an alternative formulation as a stationary version of

the Schrödinger-Bloch model. Since we are precisely interested in the steady-state lasing behavior

of PMs, we shall use SALT in the remainder of this work.

The most important feature of SALT is the introduction of a new kind of eigenstate called a constant-

flux (CF) state [48, 49, 58, 152]. The CF states satisfy the following equation

[∇2 +ε(r)K 2(k)]ϕ(r) = 0, r ∈C , (7.2.2a)

[∇2 +ε(r)k2]ϕ(r) = 0, r ∉C , (7.2.2b)

where C is the cavity region, defined as the union of all optically active regions. CF states are char-

acterized by complex eigenfrequencies K inside C , but real frequencies k outside this region. Thus,

they exhibit no exponential growth and are physically meaningful, contrary to the QB states [58].

The laser modes can be expanded in the basis of CF states to take into account effects such as

non-linear coupling between modes (spatial hole-burning) and non-uniform pump profiles [49,

84]. For the purpose of this work, we restrict ourselves to the case of near-threshold behavior and

spatially uniform pumping inside all cylinders composing of the PM. Under those conditions, the

threshold lasing modes (TLMs) of the PM satisfy the following equation

{
∇2 +

[
ε(r)+ γaD0F (r)

k −ka + iγa

]
k2

}
ϕ(r) = 0, (7.2.3)

where ka is the gain center frequency, γa is the gain width and D0 is associated to the “pump

strength”. Since we suppose uniform pumping of all cylinders forming the PM, F (r) = 1 for r ∈ C

and F (r) = 0 for r ∉ C (the cavity region and the cylinders coincide). The TLMs must satisfy an

additional reality condition on D0 [49]. For a given choice of exterior real frequency k, the value

of D0 is in general complex, but when it crosses the real axis at k = kµ, we obtain a pair of real

numbers (kµ,Dµ
0 ) defining the TLM lasing frequency and lasing threshold, respectively. The first

lasing mode is therefore the TLM with the smallest threshold Dµ
0 [49].

In the case of uniform pumping and a uniform dielectric constant ε(r) = εc inside all cylinders,

each TLM can be associated with a single CF state. By comparing (7.2.2a) and (7.2.3), one obtains
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the relation
γaD0

k −ka + iγa
= εc

(
K 2

k2 −1

)
. (7.2.4)

Simply stated, for a given combination of gain parameters (ka ,γa), each TLM of eigenvalue kµ

corresponds to a CF state of eigenvalue Kµ for which D0 is purely real, according to (7.2.4).

7.2.2 2D Generalized Lorenz-Mie theory

While SALT allows for arbitrary pump profiles, we restrict our discussion to uniformly pumped

dielectric cylinders. This pump uniformity permits the use of the 2D Generalized Lorenz-Mie the-

ory (2D-GLMT) 19 – also called multipole method – to compute the eigenstates of the PM [4, 131].

This kind of theory can be used provided the cylinders composing the PM possess enough sym-

metry to use the method of separation of variables [56]. It can also be used for the computation

of the scattering of arbitrary beams by a complex arrangement of dielectric cylinders [33, 44, 46].

Multipole-based methods can also be used for modal analysis of quantum dots [117]. For the sake

of completeness, we review briefly the main equations of the application of 2D-GLMT for the com-

putation of lasing states.

Consider an array of N cylindrical scatterers of radii un and relative permittivity εn . Let also rn =
(ρn ,θn) be the cylindrical coordinate system local to the nth scatterer. For modeling purposes,

we suppose that every cylinder is infinite along the axial z direction. The central hypothesis of

2D-GLMT is that the total field outside the scatterers can be expanded in a basis of cylindrical

functions centered on each individual scatterer, that is

ϕE (r) =
N∑

n=1

∞∑
l ′=−∞

bnl ′ H
(+)
l ′ (k0ρn)e i l ′θn , (7.2.5)

where H (+)
l is a Hankel function of the first kind. Inside the nth scatterer, the field can be written as

ϕI
n(r) =

∞∑
l=−∞

cnl Jl (knρn)e i lθn , (7.2.6)

where Jl is a Bessel function of the first kind.

In order to apply electromagnetic boundary conditions at the interface of the nth scatterer, one

must find an expression forϕE (r) outside the scatterers containing only cylindrical harmonics cen-

tered on the nth scatterer, that is

ϕE
n (r) =

∞∑
l=−∞

[
anl Jl (k0ρn)+bnl H (+)

l (k0ρn)
]

e i lθn . (7.2.7)

19. We use the denomination GLMT in accordance with [56] to mean “theories dealing with the interaction between
electromagnetic arbitrary shaped beams and a regular particle, allowing one to solve the problem by using the method of
separation of variables”. However, as a matter of historical precision, it could be argued that a theory, dealing specifically
with the scattering by many cylinders, should be called “generalized Rayleigh theory” in honour of the first calculation
of scattering by one single cylinder by Rayleigh [87].
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This can be achieved via the application of Graf’s addition theorem for cylindrical functions, allow-

ing a translation from the frame of reference of scatterer n′ to the frame of reference of scatterer n

[1]. The theorem states that

H (+)
l ′ (k0ρn′)e i l ′θn′ =

∞∑
l=−∞

e i (l ′−l )φnn′ H (+)
l−l ′(k0Rnn′)Jl (k0ρn)e i lθn , (7.2.8)

where Rnn′ is the center-to-center distance between scatterers n and n′ and φnn′ is the angular

position of scatterer n′ in the frame of reference of scatterer n. Substituting (7.2.8) in (7.2.5) yields

ϕE
n (r) =

∞∑
l=−∞

bnl H (+)
l (k0ρn)e i lθn +

∞∑
l=−∞

∑
n′ 6=n

∞∑
l ′=−∞

bn′l ′e
i (l ′−l )φnn′ H (+)

l−l ′(k0Rnn′)Jl (k0ρn)e i lθn . (7.2.9)

The comparison of (7.2.7) with (7.2.9) then yields the following relation between the {anl } and {bnl }

coefficients

anl =
∑

n′ 6=n

∞∑
l ′=−∞

e i (l ′−l )φnn′ H (+)
l−l ′(k0Rnn′)bn′l ′ . (7.2.10)

A further relation between the {anl } and {bnl } coefficients is obtained by applying electromagnetic

boundary conditions to (7.2.6) and (7.2.7) at ρn = un . This finally leads to the homogeneous equa-

tion for the coefficient vector b, T(kn ,k0)b = 0, whose non-trivial solutions are given by the condi-

tion

det[T(kn ,k0)] = 0, (7.2.11)

where kn is the frequency inside the nth cylinder and k0 is the exterior frequency (both can be

complex). One immediately recognizes the transfer matrix T as the inverse of the usual scattering

matrix. T has a well defined structure; it is composed of blocks containing coupling coefficients

between cylindrical harmonics centered on each circular scatterer. Its elements are given by

Tnn′
l l ′ (kn ,k0) = δnn′δl l ′ − (1−δnn′)e i (l ′−l )φnn′ H (+)

l−l ′(k0Rnn′)snl (kn ,k0). (7.2.12)

The snl factor results from the application of electromagnetic boundary conditions and is given by

snl (kn ,k0) =−
J ′l (k0un)−Γnl Jl (k0un)

H (+)′
l (k0un)−Γnl H (+)

l (k0un)
, (7.2.13)

where

Γnl = ξn0
kn J ′l (knun)

k0 Jl (knun)
, (7.2.14)

and ξi j = 1
(
ε j /εi

)
for TM (TE) polarization. Prime symbols indicate differentiation with respect

to the whole argument. In a typical implementation, T is composed of N ×N blocks of dimension

2lmax +1, where lmax is chosen sufficiently large to ensure convergence of the cylindrical function

expansions 20. Its value is usually fixed by lmax ≥ 3k maxn{un}. In the case of a diatomic photonic

20. A further technical aspect of the implementation should be noted. Although we have not encountered any in-
stabilities in our calculations, it should be acknowledged that for high accuracy work, Eqns. (12) and (13) are not well

suited (exponential decay or growth of Tnn′
l l ′ with the indices l and l ′). This difficulty has been recognized before [143]

and solved generally in [99].
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u1 u2

R12

Figure 7.1 – Geometry of the diatomic photonic molecule used in this work. The cylinders radii
are u1 and u2, with u2 = 0.8908 u1. The center-to-center distance is R12 = 2.448 u1 and the relative
permittivity of the cylinders is εc = 4. This geometry is also used in Ref. [126].

molecule (N = 2), the matrix is of the form

T =
[

T11 T12

T21 T22

]
, (7.2.15)

with the diagonal blocks equal to identity matrices and dense off-diagonal blocks, consistent with

(7.2.12). More details on the Lorenz-Mie method can be found in [4, 33, 44, 56, 99, 103, 131].

The QB states of a PM can be computed by substituting kn → k
p
εn and k0 → k

p
ε0 in (7.2.11) and

looking for solutions in the complex k-plane. As for the CF states, the appropriate substitution is

kn → K
p
εn if the nth cylinder is part of the cavity region C and kn → k

p
εn otherwise, with real k.

The solutions are in this case located in the complex K -plane. We note that a countably infinite set

of CF states can be computed for each different value of the real exterior frequency k.

7.3 Lasing states of a simple photonic molecule

As a proof of concept, we consider a diatomic PM composed of two coupled cylinders, and re-

strict the discussion to TM-polarized modes. More specifically, we consider the asymmetric PM as

proposed in Ref. [126], shown in Fig. 7.1. The motivation behind this choice is two-fold. First,

it allows us to calibrate the combination of 2D-GLMT and SALT against a previous calculation

method, in this case the boundary element method [126]. Moreover, the proposed geometry ex-

hibits an avoided crossing of QB states, resulting from the proximity of a EP of geometrical nature.

EPs are generically defined as specific parametric combinations for which the eigenvalues of the

non-Hermitian operator describing a coupled system coalesce [60, 84]. In the case of the asym-

metric PM, the EP can be parametrically encircled by varying the inter-disk distance and the ratio

between disk radii [126]. Therefore, this choice of geometry is also motivated by the interesting

physics of EPs.

The PM is composed of two cylinders of radii u1 and u2, with u2 = 0.8908 u1. The center-to-center

distance is R12 = 2.448 u1 and the relative permittivity of the cylinders is εc = 4 (see Fig. 7.1). The

y axis is perpendicular to the line connecting the two cylinders, while the x axis is taken along R12.

The near-coalescent states located near k ′u1 = 5.4 are shown in Fig. 7.2, and the evolution of the

associated complex eigenfrequencies is shown in Fig. 7.3a. The states are split in two symmetry
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7.3. Lasing states of a simple photonic molecule

(a) M1 (b) M2

(c) M3 (d) M4

Figure 7.2 – Profile of four TM-polarized QB states of a diatomic photonic molecule composed of
two cylinders of different diameters, as shown in Fig. 7.1. The z-coordinate is proportional to the
intensity (arbitrary units).

classes with respect to the x axis, odd modes (M1 and M4) and even modes (M2 and M3). They

result from the coupling between whispering-gallery modes of slightly different angular momenta

of the uncoupled cylinders, creating doublet states [13, 136]. As a result of the proximity of the ge-

ometrical EP, the four QB states located near k ′u1 = 5.4 have closely spaced resonance frequencies

[126]. Moreover, the Q-factors are all similar (Q ∼ 200) and the four states compete for gain. The

order in which the modes will lase is not obvious, especially if we consider a gain center with a

frequency higher than that of M4. In other words, the conventional approach of considering only

Q-factors does not allow a quantitative determination of the lowest threshold mode for nearly-

degenerate states. Despite this close spacing of modes, we assume that the stationary inversion

approximation – which is central to SALT – still holds for this geometry. Typical atomic relaxation

rates for semi-conductor lasers show that this is indeed the case [50].
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Figure 7.3 – (a) Map of log |det[T]| in the complex k plane for each of the four QB states of the photonic molecule. Eigenvalues correspond to the
zeros of the function (dark spots) and are located at [M1: kQBu1 = 5.3830− i 0.0122, M2: kQBu1 = 5.3958− i 0.01756, M3: kQBu1 = 5.3993− i 0.0154,
M4: kQBu1 = 5.4078− i 0.0133]. (b-c) Map of log |det[T]| in the complex K plane for two different values of the exterior frequency k (purely real).
Each QB state can be associated to a unique CF state, allowing the use of the same labels for QB and CF states.
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7.3. Lasing states of a simple photonic molecule

(a) M1, ku1 = 5.4 (b) M1, ku1 = 5.55

(c) M4, ku1 = 5.4 (d) M4, ku1 = 5.55

Figure 7.4 – Profile of two TM-polarized CF states of a diatomic photonic molecule, counterparts
to the QB states M1 and M4 shown in Fig. 7.2. These profiles are computed for the same values of
the exterior frequency used in Figs. 7.3b and 7.3c. The z-coordinate is proportional to the intensity
(arbitrary units).

7.3.1 Influence of gain medium parameters

As stated previously, the computation of QB states cannot account for the influence of the gain

center frequency and width on the lasing characteristics of a PM. However, if the exterior frequency

k is chosen to be close to the frequency Re[kQB] = k ′ of a QB state, then this state can be associated

to a single CF state and their intensity profiles look similar inside the active medium [48]. This

correspondence can be seen by comparing the symmetries of the amplitude profiles between Figs.

7.2 and 7.4. For other values of the exterior frequency k, the intensity profiles may look somewhat

different, but the one-to-one correspondence with the QB states still holds (see for instance Figs.

7.3 and 7.4).

Since we restrict ourselves to the case of uniform pumping, each QB state shown in Fig. 7.2 is also

associated to a TLM, making it possible to keep the same labels and compute the associated TLMs

to assess the influence of the gain medium parameters. To achieve this goal, one can devise the

following procedure for computing the TLM associated to a single QB state

1. Compute the complex eigenfrequency kQB = k ′+ i k ′′ of the QB state.

2. Compute the complex eigenfrequency K (k ′) of the corresponding CF state, using the fact

that K (k ′) and kQB are usually close [48, 152], as seen in Figs. 7.3a and 7.3b for instance.

3. Compute the values of K (k) in the real neighborhood of k ′.

4. Using (7.2.4), map the values of K (k) to values of D0(k). The TLM is characterized by the pair

of values (kµ,Dµ
0 ) for which D0 becomes purely real. An example of this behavior is shown in

Fig. 7.5.
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Figure 7.5 – Evolution of complex D0 values of the four CF states shown in Fig. 7.3 for different
values of the gain transition central frequency ka . The threshold for each mode is given by Dµ

0
when Im[Dµ

0 ] = 0, indicated by circles on the curves. Note the reversal of M1 and M4 as the first
lasing mode when kau1 is increased.

Once the values of K (k) are computed using (7.2.11), it is not necessary to repeat steps 1–3 when

varying the values of ka and γa in step 4 as long as the cavity geometry and pump profile are un-

changed.

Using this straightforward approach, the dependence of the lasing thresholds and lasing frequen-

cies on the gain medium parameters can be readily investigated for each of the four modes de-

picted in Fig. 7.2. We find that the lowest thresholds modes are always M1 and M4 owing to their

higher quality factor. Therefore, we restrict our discussion to these two modes. The dependence

of the lasing thresholds D1
0 and D4

0 on ka and γa is shown in Figs. 7.5–7.7. As expected, M1 is the

first lasing mode when the gain center frequency ka is smaller than the value of k ′ for that mode.

However, as the value of ka is increased, M1 can still lase first even if ka is greater than the position

of mode M4 (see Fig. 7.7). This is especially true for a large gain width γa as mode M1 is able to ex-

tract energy more efficiently from the gain transition in that case, while for a narrow gain transition

M4 is favored.
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Figure 7.6 – Evolution of complex D0 values of the four CF states shown in Fig. 7.3 for different
values of the gain transition width γa . The threshold for each mode is given by Dµ

0 when Im[Dµ
0 ] =

0, indicated by circles on the curves.

Interestingly, at the intersection of the two surfaces shown in Fig. 7.7, both modes have exactly

the same threshold and lase concurrently. Although this lasing behavior is qualitatively consistent

with the fact that M1 corresponds to the highest Q cold-cavity mode, the use of SALT is needed to

obtain quantitative predictions of its dependence on ka and γa .

It is also instructive to examine the evolution of lasing thresholds when the gain transition center

frequency is far from the QB eigenfrequencies. The dependence of Dµ
0 on the value of γa for a

gain transition for large values of |k −ka | is shown in Fig. 7.6. Our numerical results show that the

thresholds of modes approximately quadruple when the value ofγa is reduced by half. Accordingly,

one can derive the following expression for Re[D0] from (7.2.4), under the conditions Im[D0] = 0

and |k −ka |À γa

D0 '−2εc Re[K ]Im[K ]
(k −ka)2

γ2
ak2

. (7.3.1)

This behavior (D0 ∼ γ−2
a ) is consistent with the observation that modes extract energy more effi-

ciently from a broad lasing transition.
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Figure 7.7 – Evolution of lasing thresholds of modes M1 and M4 as a function of the gain center
frequency ka and gain width γa . The thresholds of modes M2 and M3 are higher for this range of
parameters (not shown).
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Figure 7.8 – Frequency pulling effect in a simple photonic molecule for γau1 = 5.4×10−2. (a) Evo-
lution of the lasing frequency of each TLM as a function of the gain center frequency ka . (b) Mag-
nitude of the line-pulling effect.
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Next, we assess the influence of the gain center frequency ka on the lasing frequencies of individ-

ual modes. The exact lasing frequency of a mode is always shifted by a small amount from the

cold-cavity resonance frequency towards the gain center frequency, an effect known as frequency

pulling [49, 138]. Since the studied PM geometry exhibits closely spaced lasing modes, this small

shift may be of the order of magnitude of the mode spacing. As shown in Fig. 7.8a, the order of

the lasing frequencies kµ can be altered by changing the gain center frequency. For instance, for

kau1 ' 5.4, the lasing frequencies are in the order of the QB eigenfrequencies (1,2,3,4), whereas

for kau1 ' 6.0, the order is (4,3,1,2). This can be explained by the fact that lower Q modes are

pulled more strongly. As seen in Fig. 7.8b, mode M2 is generally the most strongly pulled mode.

However, for large values of ka , mode M1 is also subject to strong pulling since it is the mode lo-

cated further away from the gain center frequency. This result shows that in the case where there

are closely spaced cold cavity modes of similar Q-factor, for instance in the vicinity of an EP, the

spectral characteristics of the PM laser may be strongly affected by the gain transition parameters.

7.4 Summary and outlook

In summary, we have used the threshold lasing modes of SALT to obtain accurate quantitative pre-

dictions of the lasing thresholds and frequencies of a simple diatomic PM composed of two cou-

pled cylinders. These predictions were obtained from the computation of threshold lasing modes

using 2D-GLMT. This combination of SALT and 2D-GLMT is general and not limited to diatomic

photonic molecules. For instance, it can readily be applied to the computation of modes of random

lasers for an arbitrary number of active scattering centers [4].

We found that the lasing thresholds of closely spaced modes of the diatomic PM are strongly influ-

enced by the gain center frequency ka and its linewidth γa . More specifically the order in which

modes lase can be changed by a suitable combination of those gain medium parameters. We

also highlighted the frequency pulling effect, and found that lower Q modes are usually subject

to stronger pulling. These results show the importance of using ab initio theories to take the gain

medium characteristics into account in microcavities research. Future work includes an extension

to non-uniformly pumped PMs, which precludes however the use of the generalized Lorenz-Mie

approach. Although this kind of computations may be achieved via a finite-element method [84],

we have recently developed a versatile scattering approach [108] that also allows for inhomoge-

neous pumping and arbitrary 2D geometries. The generalization to 3D geometries is more chal-

lenging, although approaches based on solving the underlying differential equations directly have

recently been proposed [34]. By combining these various numerical schemes with SALT, the path

is laid out to investigate, engineer and harness the lasing properties of PMs for ultra-low threshold

and directional single-mode emission.
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7.6 Supplement I: Far-field emission profiles

In the main contribution, we have used SALT to highlight the fact that the lasing thresholds of

PM lasers may be strongly affected by the underlying gain medium parameters, specifically the

gain transition frequency and linewidth. In this supplement, we address a related issue, that is the

importance of using SALT to characterize the emission directionality of PMs. Specifically, we illus-

trate how the emission profile of CF states of PMs can differ from that of QB states. Characterizing

far-field emission is an important topic, as directionally emitting microresonators have been the

subject of intense research in the last decade [54, 58, 61, 74, 81, 110, 125, 126, 144, 160].

The far-field emission profile of the QB/CF states of a PM can be readily computed using 2D-GLMT.

According to the Sommerfeld radiation condition, the field at ρ→∞ satisfies

lim
ρ→∞ϕ

E (ρ,θ) =ϕE (θ)
e i k0ρ√

k0ρ
, (7.6.1)

where ϕE (θ) is the far-field distribution, independent of ρ. Applying the asymptotic expansion of

cylindrical functions to (7.2.5), one obtains the following expression (derived in supplement A.1.4)

ϕE (θ) =
√

2

π
e iπ/4

∑
n

∞∑
l ,l ′=−∞

bnl ′ Jl−l ′(k0Rn)exp
[

i l
(
θ− π

2

)
+ i (l ′− l )φn

]
, (7.6.2)

where (Rn ,φn) is the location of scatterer n in the “global” frame of reference.

As a representative example, we consider a triangular PM composed of three circular photonic

atoms of identical relative permittivity ε= 4 and radii r1 arranged on the vertices of an equilateral

triangle of side R12 = 2.5r1 (see Fig. 7.9). The signature of four QB states of this geometry, as well

as the associated CF states, is shown in Fig. 7.10. The QB states are located in the frequency range

5.36 ≤ k ′r1 ≤ 5.42. For a value of the real exterior frequency k = 5.5, the eigenfrequencies of the

CF states (in the complex K plane) are shifted towards lower frequencies as well, as can be seen

from Fig. 7.10b. This situation where the real exterior frequency k is shifted from k ′ can occur if

the central frequency of the gain transition is shifted as well.

In the main contribution, we have shown how shifts in the exterior frequency may affect the lasing

thresholds and frequencies of the PM. It was found that the computation of the CF states – a central

feature of SALT – is necessary to precisely determine which of the modes will lase first. Another

important characteristic of PM lasers which can be affected by such a shift is the emission profile.
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7.6. Supplement I: Far-field emission profiles

To illustrate this, we single out the eigenmode indicated by a white circle in Fig. 7.10. As can be seen

in Fig. 7.11, the near-field profile of both the corresponding QB and CF states is rather similar, with

the exception that the field of the CF state does not grow exponentially outside the PM. However,

the strongest far-field emission direction of CF states does not correspond to that of the QB states.

Indeed, the privileged directions are aligned with the triangle vertices in the case of the QB state,

whereas they are aligned with the triangle edges in the case of the CF states. Moreover, the CF state

far-field profile exhibits three sharper peaks, while there are six peaks in the QB state profile.

This numerical example shows the importance of using SALT for adequate characterization of di-

rectional emission. It also hints at using the gain medium as an additional control parameter to

harness the emission directionality of microcavities. Pump shape engineering was also proposed

as a control knob for directional emission; this is further discussed in section 8.3.
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Figure 7.9 – Three identical coupled cylinders arranged on the vertices of an equilateral triangle (εc = 4,R12 = 2.5r1). This geometry is used to
demonstrate the different emission profiles that can be obtained using SALT.
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Figure 7.10 – Map of log |det[T]| in the complex k plane (QB states, left panel) and the complex K (k) plane (CF states, right panel). The signature
of four eigenmodes of the triatomic PM can be seen as zeros of the determinant of the transfer matrix.
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Figure 7.11 – Emission profiles of a photonic molecule. (a) Amplitude profile of a QB state of a
triangular PM. (b) Profile of the corresponding CF state. The position of this eigenstate is indicated
by a white circle in Fig. 7.10 (c-d) Comparison of the far-field profile |ϕE (θ)| for each of the two
kind of eigenstates. Arbitrary intensity units.
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7.7 Supplement II: Numerical computation of the eigenmodes

This supplement contains a summary of the numerical method used to compute the eigenmodes

(QB and CF states) of an array of coupled cylinders. As stated in the main contribution, the com-

putation of eigenmodes is a non-linear eigenvalue problem of the following form

T(k)b = 0, (7.7.1)

where T is a square complex matrix. A non-linear eigenvalue problem consists in finding the eigen-

values k and eigenvectors b satisfying this equation. The theory of linear systems prescribes that

non-trivial solutions to this matrix equation exist if and only if

det[T(k)] = 0. (7.7.2)

This class of problems is termed “non-linear” since T depends non-linearly on k. The usual linear

problem is a special case of the non-linear one if one defines [122]

T(k) = A−kI, (7.7.3)

where I is the identity matrix and A is a constant matrix. Nonlinear eigenvalue problems frequently

arise in the computation of cavity resonances using various numerical schemes, for instance the

well-established boundary element method [41, 59, 165].

While solvers are readily available for linear eigenvalue problems, algorithms for solving the non-

linear eigenvalue problem are more complicated. It is possible to solve the non-linear eigenvalue

problem either using Newton’s method, or using linearization methods that reduce the problem to

a sequence of linear ones, as described in [59, 122].

In this work, we use Newton’s method to find the eigenmodes, as described in [41, 122]. The goal is

to find roots of (7.7.2) numerically. One iteration of Newton’s method can be written as

kn+1 = kn − det[T(kn)]

det[T(kn)]′
, (7.7.4)

where k0 is an initial guess for the eigenvalue (complex wavenumber) and prime symbols indicate

the derivative with respect to k. The derivative can be computed using Jacobi’s identity [90]

det[T]′ = det[T]Tr
[
T−1T′] , (7.7.5)

where T′ is the element-wise derivative of T with respect to k. This allows one to rewrite one step

of Newton’s method as

kn+1 = kn − 1

Tr[T−1(kn)T′(kn)]
. (7.7.6)

The procedure corresponding to this Newton’s method is detailed in algorithm 7.7.1. Newton’s

method is known to converge quadratically to the roots of the determinant if one is located suf-

ficiently close to the said roots. To ensure convergence, the initial guesses for the eigenvalues k0
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must be chosen carefully. In this work, we obtain those initial guesses by evaluating the value of

det[T(k)] in a region of interest of the complex k plane on a rectangular grid (see for instance Figs.

7.3 and 7.10). Points of this grid corresponding to a change in sign of the function are subsequently

used as initial guesses for Newton’s method.

Once the roots of (7.7.2) have been found using this algorithm, one simply uses a singular value

decomposition routine to obtain the null eigenvector b, which can be used to reconstruct the elec-

tromagnetic field profile of the eigenmode using Eq. (7.2.5). This method is general for QB and

CF states and is not limited to 2D-GLMT computations. Indeed, it can also be used in conjunction

with other methods using transfer matrices, for instance the boundary element method for cavity

resonances [41, 59, 165].

Algorithm 7.7.1 : Newton-Raphson procedure for finding roots of det |T|
Input : Initial guess k0, step δk, tolerance ε, maximum number of iterations
nmax

k := k0 ;
n := 0 ;
while n < nmax do

// Compute one Newton-Raphson step
T0 := T(k) ;
T1 := T(k +δk) ; // T1 and T2 are used to compute numerical derivative
T2 := T(k + iδk) ;

∆T := T1−i T2+(i−1)T0
2δk ; // Numerical derivative

∆k :=−Tr[T−1
0 ∆T]−1 ; // Newton-Raphson step

// Check if error tolerance is reached
if ∆k < ε then

break;
else

continue;
end
// Apply Newton-Raphson step
k := k +∆k ;
n := n +1 ;

end
Output : Final value k

131





Chapter 8

Conclusion and outlooks

In recent years, several advances in optics and photonics have involved complex photonic media

such as photonic crystals [27], metamaterials [24] and cavity resonators [153]. In this thesis, we

have presented the 2D Generalized-Mie theory (2D-GLMT), a method of choice for the modeling

of photonic complexes based on coupled cylinders. We have privileged two applications of the the-

ory, namely the design of integrated beam shapers and the modeling of coupled resonators. This

has resulted in several research contributions which are summarized in section 8.1. Although they

were not necessary to our work, alternative numerical methods that can deal with 3D, asymmetric

and inhomogeneous photonic complexes are discussed in section 8.2 We conclude in section 8.3

with a brief discussion of random lasers, another potential application of 2D-GLMT and optimiza-

tion algorithms.

8.1 Summary of contributions

In chapter 2, we have presented the electromagnetic theory behind 2D-GLMT, which is targeted

at computing wave scattering by arrays of coupled cylinders. Specifically, we have considered fo-

cused Gaussian beams incident on the arrays and have shown how to compute the scattered wave-

function using 2D-GLMT. Throughout this dissertation, various arrangements of coupled cylinders

have been used, up to hundreds of them in beam shaping computations.

Eigenmode computations are an another important application of 2D-GLMT discussed in chap-

ter 2. Furthermore, we have described the recently formulated steady-state ab initio laser theory

(SALT) in section 2.2. SALT is a stationary formulation of the Maxwell-Bloch equations that allows

to model complex active geometries such as coupled resonators and random lasers. Although most

of our research contributions have been centered on passive optical media, SALT was thoroughly

used for the modeling of active media in chapter 7.

In chapter 3, we have presented metaheuristics, optimization algorithms which are central to the

beam shaping computations carried out in this thesis. The reason is that these computations in-
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volve solving a combinatorial optimization problem, for which there exists a finite (albeit large)

number of solutions. The goal of this chapter is to give guidelines concerning two kinds of meta-

heuristics that can be useful for combinatorial optimization in optics and photonics. One of those

is the canonical genetic algorithm (GA), a stochastic, population-based algorithm which is com-

monly used in the photonics research community. The other algorithm, tabu search (TS) is less

usual and consists in exploring the solution space of an optimization problem using deterministic

rules and a memory of past visited configurations.

Chapters 4 to 6 of this thesis have been concerned with designing integrated optical elements us-

ing 2D-GLMT in conjunction with metaheuristic algorithms. Our first publication using this com-

bination of numerical tools has been presented in chapter 4. Its objective was the design of an

integrated optical element dedicated to laser beam shaping, the conversion of an input beam into

an output beam of predefined amplitude profile. To achieve this goal, we have proposed the use of

a 2D photonic lattice engineered using a canonical GA. We have presented lattice configurations

tailored for the generation of Hermite-Gauss beams of order 1 and 2. The tolerance of the configu-

rations to variations in parameters of the input beam, more specifically its depth of field and wave-

length, were also quantified. Overall, this contribution shows the potential of engineered photonic

crystal lattices for the design of small footprint optical elements dedicated to beam shaping.

In chapter 5, we have extended the approach presented in chapter 4 by considering the generation

of beams of controlled amplitude and phase profile. The control of the phase profile allows the

generation of beams with a larger field depth, in other words exhibiting a better collimation. Once

again, the proposed beam shapers are based on an optimized 2D photonic lattice. Whereas the

amplitude-only beam shaping problem has been tackled using the GA, the amplitude and phase

beam shaping problem is a multiobjective one. Since multiobjective optimization requires a more

exhaustive search, we have proposed to use a parallel implementation of tabu search (PTS) in-

stead of the canonical GA. After assessing the performance of PTS, we have shown that the algo-

rithm is suited not only to the handling of multiple objective functions, but also to larger solution

spaces. In summary, this contribution shows that PTS represents a robust alternative to the canon-

ical GA for combinatorial and multiobjective optimization problem in photonics design. This has

been achieved using the incoherent beam shaping problem as a benchmark. The study has subse-

quently been extended to coherent beam shaping using this improved performance.

A third contribution on beam shaping has been presented in chapter 6. In this study, we once

again have considered a multiobjective beam shaping problem, as in chapter 5. However, we have

replaced the objective function related to the phase front of the output beam by an objective func-

tion related to its degree of polarization. Using PTS optimization, we have shown that it is possible

to use a basic lattice configuration consisting of holes in a waveguide core to filter out the TE polar-

ization component of the incident beam. Similarly, we have found that a rods-in-air configuration

is more suited to filtering out the TM polarization. This contribution shows the possibility to create

integrated polarization filters using the structures studied in chapters 4 and 5. Since polarization
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is a physical dimension of light that can be used to carry information, the proposed devices could

find applications in the field of optical communications.

The final contribution presented in chapter 7 differs slightly from the beam shaping computations

of the preceding chapters. In this work, we have presented a study of the lasing thresholds of a

photonic molecule (PM) composed of two coupled active cylinders. More specifically, we have

used the 2D-GLMT approach combined with SALT for the computation of the resonances of this

very simple cylinder array. The goal of this contribution is to show that the lasing thresholds, spec-

tral characteristics and emission profile of coupled resonators exhibit a non-trivial dependence on

the parameters of the underlying laser transition, a conclusion that can not be obtained using the

more usual approach of quasi-bound modes. This conclusion was reached via the computation of

the threshold lasing modes (TLMs) of the PM, a new kind of eigenstate central to the SALT theory.

8.2 Alternative numerical schemes

Numerical schemes for the solution of Maxwell’s equations can be classified in two broad cate-

gories. The first category of methods are based on the expansion of the electromagnetic field in a

basis of functions suited to the problem geometry. In other words, these methods exploit a physi-

cal symmetry of the problem. The second category of methods are based on some kind of spatial

and temporal discretization of the problem, necessary in the absence of useful geometrical sym-

metries.

The 2D-GLMT approach, based on cylindrical function expansions, falls into the first category. For

the purposes of this dissertation, this algorithm was particularly appealing because it does not re-

quire any spatial discretization Other arguments in favor of the use of 2D-GLMT for the modeling

of photonic complexes are its numerical stability (especially considering the improvement pro-

posed in section 2.3.6) and its relative speed. However, despite these advantages, the method as

presented in section 2.3 is inherently limited to homogeneous coupled cylinders, in other words to

piecewise continuous refractive index distributions separated by circular interfaces contained in a

2D plane. Although these limitations were acceptable for our purposes, they are an impediment

when considering either (a) 3D geometries, (b) asymmetric scatterers or (c) inhomogeneous refrac-

tive indices. In this section, we enumerate some research areas where one or more of these three

conditions preclude the use of 2D-GLMT and summarize which alternative numerical schemes

may be of use in these cases.

This dissertation was mainly concerned with 2D photonic-crystal-like geometries which can be

easily fabricated using electron beam lithography, for instance. Although 2D structures lend them-

selves better to the introduction of lattice defects than 3D structures, many interesting effects have

been observed in the latter. For instance, researchers have recently demonstrated flat lensing us-

ing a 3D woodpile PhC [92]. Photonic bandgap switching is another recently proposed application

of 3D PhCs [123]. This is achieved using an “inverse-opal” geometry, consisting of closely packed
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arrangements of spherical voids surrounded by dielectric material [7]. In the case of a periodic

3D crystal, the bandgap analysis can still be performed using the plane wave expansion method

[7, 73]. However, it is often necessary to consider finite, photonic-crystal-like structures as was

done in this thesis. In that case, the method of choice encountered in the literature is the finite-

difference time-domain (FDTD) approach, a systematic fully vectorial method based on a spatial

and temporal discretization of the problem [7, 27, 92, 148]. Generalized Lorenz-Mie approaches

can also be used to compute the scattering of arbitrary shaped beams by arrangements of spheres,

using spherical instead of cylindrical harmonics expansions [55]. This numerical method could be

used for the modeling of PMs composed of coupled spherical resonators. However, as with the 2D

version, it is limited to individually homogeneous spheres.

Asymmetric resonant cavities (ARCs), consisting of deformed circular resonators, are another re-

search topic related to the PM lasers discussed in this dissertation [54, 58, 81, 82, 101, 132, 137, 147].

As mentioned earlier, the achievement of directionally emitting compact laser sources is one of

the main goals of ARCs [54]. Several numerical methods for the computation of eigenmodes of

deformed cavities are available in the scientific literature. One of these is the boundary element

method (BEM), which is based on the Green’s function of the Helmholtz equation [41, 165]. This

method is especially suited to asymmetric but homogeneous cavities, in which case the Helmholtz

equation can be recast in a boundary integral equation. A discrete form of this integral equation is

then solved numerically to obtain the eigenfrequencies and the eigenmodes of the ARC, similar to

the approach described in section 2.3.5.

Throughout this dissertation, we have solely considered photonic complexes composed of homo-

geneous cylinders, in other words piecewise continuous refractive index distributions. However,

inhomogeneous and partially pumped resonators have been the object of many recent publica-

tions [5, 10, 11, 34, 66, 84]. This corresponds to a dielectric distribution ε(r) that varies inside a sin-

gle resonator, possibly following a smooth function. As discussed in section 8.3, pumping a laser

in a non-uniform way is another method to tune its emission profile or lasing threshold. The nu-

merical modeling of inhomogeneous or partially pumped optical media represents an additional

challenge since the spatial discretization of inhomogeneous regions is unavoidable. This not only

precludes the use of 2D-GLMT, but also that of BEM. One method that is able to deal with asym-

metric boundaries and inhomogeneous refractive indices consists in computing the characteristic

modes of the cavity via a numerically constructed scattering matrix [108]. This method, like 2D-

GLMT and BEM, naturally takes the Sommerfeld radiation condition into account, allowing one to

avoid the use of artificial boundary conditions provided by perfectly matched layers, for instance.

However, it is more suited for the computation of eigenfrequencies since reconstructing the field

using this scattering matrix method turns out to be numerically unstable [109].

It is important to note that the development of algorithms designed to deal with partially pumped

media has closely paralleled that of SALT. For instance, Esterhazy et al. have recently developed

a high-order finite-element method (FEM) for the discretization of non-uniform pump profiles
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[34, 84]. Their algorithm is designed to solve directly the differential equations of SALT for arbi-

trary refractive index distributions, completely eschewing the CF states presented in section 2.2.2.

Although efficient mostly for symmetrical or low-dimensional resonators, the computation of the

CF states for inhomogeneous and/or 3D geometries turns out to be numerically expensive [34].

This high-order FEM algorithm is perhaps the most promising approach to obtain stationary so-

lutions of the Maxwell-Bloch equations for active, inhomogeneous and complex photonic media.

Indeed, besides not being limited by symmetry considerations, it yields full-vectorial solutions that

include the lasing frequencies, thresholds and field patterns.

In retrospect, the 2D-GLMT approach used in this dissertation was particularly appealing because

of its speed, which in turn has been instrumental in solving the beam shaping problem in a rea-

sonable amount of time. Indeed, since the use of metaheuristics to solve optimization problems

often necessitates numerous objective function evaluations, it is profitable to use a fast algorithm

to carry out these repeated evaluations. Moreover, the speed of 2D-GLMT has been useful to our

contributions on PM lasers since it has allowed us to characterize the impact of gain medium pa-

rameters in an exhaustive way for a simple, symmetrical geometry. To further characterize 3D, in-

homogeneous or asymmetric photonic complexes, however, alternative numerical schemes com-

patible with SALT – such as FDTD and FEM – may be preferable.

8.3 Modes of random lasers and pump engineering

A laser is often understood as being composed of a cavity resonator, an active medium and a mech-

anism allowing the pumping of the lasing transitions. Laser action takes place when the photon

generation rate exceeds the losses of the cavity resonator [138]. Scattering in a laser cavity is often

seen as detrimental because it leads to additional losses, and thus an increased threshold. How-

ever, lasing in strongly scattering active media is also possible and leads to what is commonly called

a random laser [19]. In a random laser, there is no well-defined resonator since the feedback for

laser oscillation is provided by multiple scattering by wavelength-scale obstacles rather than by

repeated round-trips in a conventional resonator of dimensions much larger than the wavelength

[19]. Although the scattering of photons in such a laser is inherently random, it is also coherent,

which means interference effects occur. Thus, a random laser does not possess mirrors, but it

possesses modes owing to coherent feedback [166].

Random lasers may well find applications such as tumor detection [166] and optical trapping [120].

They are appealing structures because of their potentially very small size, low-cost and ease of

fabrication [19]. Indeed, the realization of random lasers using optically pumped active “powders”

has been demonstrated experimentally [19]. It is also possible to fabricate disordered lasers in

a more controlled way using photonic-crystal-like structures. This was recently achieved via the

etching of cylindrical inclusions in a GaAs planar waveguide, optically activated by layers of InAs

quantum dots [120].
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This recent interest in random lasers has given rise to a number of possible modeling tools de-

signed to harness the modal characteristics of strongly scattering random media. The potential of

2D-GLMT for the computation of modes of random lasers was first proposed in [4]. In this section,

we consider the computation of the constant-flux (CF) states of a large array of active cylinders via

2D-GLMT. The goal of this exercise is to illustrate the main difficulties associated to the computa-

tion of modes of random lasers and state some interesting research outlooks.

Using Ref. [39] as a guideline, we assume that an array of identical, non-overlapping rods are uni-

formly distributed within a circle of radius Rout with a predefined surface filling factor. For the

purpose of illustration, we consider one realization of an array with Rout = 40, normalized with

respect to the radius of individual rods (r = 1). We set the filling factor to 0.2, which translates to

an array containing 320 active scatterers. The relative permittivity of the cylinders is set to εc = 4.

The geometry of the resulting array is shown in Fig. 8.1. This arrangement of cylinders provides a

useful, albeit simplified, model of a 2D random laser.

The method for computing CF states described in section 7.7 can be applied to find those of the

random array with little modification. The main difficulty lies in the much greater computation

time for the determinant det[T] of the transfer matrix describing the laser. Moreover, the number

of states in a given wavenumber interval is also greater, as seen in Fig. 8.2a. Using a sufficiently fine

sampling of the complex K plane, we are able to obtain estimates for the position of a number of CF

states (see Fig. 8.2b). These estimates can subsequently be refined using the procedure described

in section 7.7. The field distribution of one of these CF states is shown in Fig. 8.2c. For this value of

the surface filling factor, the scattering strength of the system is modest and the CF state intensity

extends to the whole surface of the random laser. If scattering is stronger, the eigenmodes of the

system can become localized, meaning the strength of the scattering effectively creates a closed

cavity which results in spatial confinement of the mode. This is called the strong scattering, or

Anderson-localized regime [167].

The computation of the field distribution with this fine resolution takes several hours due to the

large number of cylindrical harmonics that contribute to the total wavefunction at a given point

in space. Moreover, stocking the transfer matrices associated to this geometry implies important

memory requirements. For these reasons, we have not yet performed random laser computations

in the strong scattering regime since this requires considering higher filling factors, and conse-

quently important computational resources.

A research topic strongly related to the study of random lasers is the engineering of pump pro-

files in complex laser resonators. In all computations presented in this thesis, including the CF

state shown in Fig. 8.2c, we have been concerned with uniform pumping, meaning that all scat-

terers composing the laser were supposed active. Another case of uniform pumping frequently

encountered in the literature is a random laser composed of passive inclusions in a uniform active

medium. Partial pumping, on the other hand, implies only a subset of the scatterers (or back-
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Figure 8.1 – Possible realization of a random laser composed of 320 identical active cylinders of
permittivity εc = 4.

ground medium) are pumped. Partially pumped lasers have been the object of several numerical

and experimental studies in recent years [4, 5, 10, 11, 66, 85]. This stems from the fact that partial

(or non-uniform) pumping allows to control not only the modal output profile of a laser, but also

its lasing threshold and spectral properties [5]. Liertzer et al. have shown how to turn on and off a

coupled cavity laser by engineering the pump shape, even though the lasing threshold is reached

[84]. In the case of random lasers, pump shape engineering yields an additional control parameter

to harness emission characteristics without having to engineer the shape of the laser cavity itself,

which remains random [5]. For instance, Bachelard et al. have demonstrated how to favor certain

lasing modes by optimizing the spatial pump profile in real-time [10, 11].

A great deal of research concerning random lasers remains to be made. As stated by Andreasen et

al., the theory of partially pumped lasers is not yet full-fledged [5]. Another unanswered question is

the link between modes of random lasers and statistical models based on random matrix theory [4].

In summary, the tools used in this thesis (2D-GLMT and SALT), as well as those described in section

8.2, constitute a framework of choice for the study of complex, disordered and random photonic

media, a field that has witnessed considerable growth in the past decade [19, 120, 151, 166, 167].
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Figure 8.2 – Determination of CF states for the geometry shown in Fig. 8.1. (a) Evolution of
log |det[T]| in the complex K (k = 2) plane. (b) Predictors of the position of various CF states of the
random laser. These correspond to local minima in the surface defined by log |det[T]|. (c) Intensity
distribution |ϕ|2 of a single CF state with K = 1.9420−0.004i . The z coordinate is proportional to
the intensity.
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Appendix A

Various algebraic results

A.1 Two-dimensional generalized Lorenz-Mie theory

This section contains various algebraic results, mainly the computation of the spatial derivatives

of field expressions of the 2D-GLMT.

A.1.1 Computation of spatial derivatives

Let rn = (ρn ,θn) be the cylindrical coordinate system whose center is located at Rn = (Xn ,Yn),

which implies ρ2
n = (x − Xn)2 + (y −Yn)2. Field expansions of the following form are ubiquitous in

the formulation of 2D-GLMT

hl (ρn ,θn) =Fl (kρn)e i lθn , (A.1.1)

where Fl denotes Jl ,Yl , H (+)
l , H (−)

l or any linear combination of these functions. The Cartesian

derivatives of this function are given by

∂hl

∂x
= e i lθn

{
i lFl (kρn)

∂θn

∂x
+kF ′

l (kρn)
∂ρn

∂x

}
, (A.1.2a)

∂hl

∂y
= e i lθn

{
i lFl (kρn)

∂θn

∂y
+kF ′

l (kρn)
∂ρn

∂y

}
, (A.1.2b)

where prime symbols denote differentiation with respect to the whole argument. Using the follow-

ing definition of θn

θn = tan−1
(

y −Yn

x −Xn

)
, (A.1.3)

we obtain
∂θn

∂x
=− 1

1+
(

y−Yn

x−Xn

)2

y −Yn

(x −Xn)2 =− y −Yn

ρ2
n

, (A.1.4a)

∂θn

∂y
=− 1

1+
(

y−Yn

x−Xn

)2

1

x −Xn
= x −Xn

ρ2
n

. (A.1.4b)
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We can also compute the derivatives of ρn

∂ρn

∂x
= y −Yn

ρn
, (A.1.5a)

∂ρn

∂y
= x −Xn

ρn
. (A.1.5b)

Inserting (A.1.4) and (A.1.5) into (A.1.2), we obtain

∂hl

∂x
= e i lθn

ρn

{
− y −Yn

ρn
i lFl (kρn)+k(x −Xn)F ′

l (kρn)

}
, (A.1.6a)

∂hl

∂y
= e i lθn

ρn

{
x −Xn

ρn
i lFl (kρn)+k(y −Yn)F ′

l (kρn)

}
. (A.1.6b)

Also useful are the derivatives of the incident excitation with respect to Cartesian coordinates. For

a plane wave incident from the negative x-axis, we have

h0(x, y) = e i kx , (A.1.7)

which implies
∂h0

∂x
= i ke i kx ,

∂h0

∂y
= 0. (A.1.8)

For an incident complex-source beam (CSB), we have

h0(x, y) = H (+)
0 (krs), (A.1.9)

where rs =
√

y2 + (x − i xR)2. Using equation (9.1.28) from Ref. [1], we obtain

∂h0

∂x
=−kH (+)

1 (krs)
∂rs

∂x
=−k

(
x − i xR

rs

)
H (+)

1 (krs), (A.1.10a)

∂h0

∂y
=−kH (+)

1 (krs)
∂rs

∂y
=−k y

rs
H (+)

1 (krs). (A.1.10b)

A.1.2 Longitudinal field components

The general solution method of 2D-GLMT involves uncoupling both polarizations of the electro-

magnetic field and solving either for Ez or Hz . However, it is sometimes useful to have access to

the in-plane vector components of the field. In this section, we give useful expressions for these

longitudinal components.

A.1.2.1 TM polarization

In the case of TM polarization, the longitudinal field is the magnetic field H, given by

H =− i

k
∇×E =− i

k

[
∂Ez

∂y
êx −

∂Ez

∂x
êy

]
. (A.1.11)
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Let Ez be expanded in the following way

Ez =
∞∑

l=−∞
bnl H (+)

l (kρn)e i lθn . (A.1.12)

Using (A.1.6), we obtain the following longitudinal components

Hx =− i

k

∞∑
l=−∞

bnl
e i lθn

ρn

{
x −Xn

ρn
i l H (+)

l (kρn)+k(y −Yn)H (+)′
l (kρn)

}
, (A.1.13a)

Hy =− i

k

∞∑
l=−∞

bnl
e i lθn

ρn

{
y −Yn

ρn
i l H (+)

l (kρn)−k(x −Xn)H (+)′
l (kρn)

}
. (A.1.13b)

The longitudinal field components of a TM-polarized incident CSB can also be computed from

(A.1.10)

H 0
x = i y

rs
H (+)

1 (krs), (A.1.14a)

H 0
y =−i

(
x − i xR

rs

)
H (+)

1 (krs). (A.1.14b)

A.1.2.2 TE polarization

In the case of TE polarization, the longitudinal field is the electric field E, given by

E = i

n2k
∇×H = i

n2k

[
∂Hz

∂y
êx −

∂Hz

∂x
êy

]
. (A.1.15)

Let Hz be expanded in the following way

Hz =
∞∑

l=−∞
bnl H (+)

l (kρn)e i lθn . (A.1.16)

Using (A.1.6), we obtain the following longitudinal components

Ex = i

n2k

∞∑
l=−∞

bnl
e i lθn

ρn

{
x −Xn

ρn
i l H (+)

l (kρn)+k(y −Yn)H (+)′
l (kρn)

}
, (A.1.17a)

Ey =
i

n2k

∞∑
l=−∞

bnl
e i lθn

ρn

{
y −Yn

ρn
i l H (+)

l (kρn)−k(x −Xn)H (+)′
l (kρn)

}
. (A.1.17b)

The longitudinal field components of a TM-polarized incident CSB can also be computed from

(A.1.10)

E 0
x =− i

n2

y

rs
H (+)

1 (krs), (A.1.18a)

E 0
y =

i

n2

(
x − i xR

rs

)
H (+)

1 (krs). (A.1.18b)
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A.1.3 Time-averaged Poynting vector

The time-averaged Poynting vector measures the average power density flowing through a surface.

It is defined as 21

〈S〉 = 1

2
Re[E×H∗]. (A.1.19)

In this subsection, we derive an expression for 〈S〉 in TM polarization, and give the result for TE,

the derivation being similar.

A.1.3.1 TM polarization

The cross product can be expressed as a determinant

E×H∗ =

∣∣∣∣∣∣∣∣
êx êy êz

0 0 Ez

H∗
x H∗

y 0

∣∣∣∣∣∣∣∣=−Ez H∗
y êx +Ez H∗

x êy . (A.1.20)

Using (A.1.11), and substituting (A.1.20) into (A.1.19) we obtain

〈Sx〉 =− 1

2k
Im

[
Ez E∗

zx

]
, (A.1.21a)

〈Sy 〉 =− 1

2k
Re

[
Ez E∗

z y

]
, (A.1.21b)

where the second subscript indicates partial differentiation. We can further split the fields in real

and imaginary parts, using the notation U ≡U ′+ iU ′′, which yields

〈Sx〉 =− 1

2k
Im

[
E ′

z E ′
zx +E ′′

z E ′′
zx + i E ′

zx E ′′
z − i E ′

z E ′′
zx

]
= 1

2k

[
E ′

z E ′′
zx −E ′

zx E ′′
z

]
,

(A.1.22a)

and similarly

〈Sy 〉 =
1

2k

[
E ′

z E ′′
z y −E ′

z y E ′′
z

]
. (A.1.22b)

A.1.3.2 TE polarization

The computation for the orthogonal polarization is similar, and we only state the result here. The

main difference is the appearance of the refractive index in the final expressions, due to a similar

occurrence in (A.1.15).

〈Sx〉 =
1

2k
Re

[
1

n2

](
H ′

z H ′′
zx −H ′

zx H ′′
z

)
, (A.1.23a)

〈Sy 〉 =
1

2k
Re

[
1

n2

](
H ′

z H ′′
z y −H ′

z y H ′′
z

)
. (A.1.23b)

21. In the Heaviside-Lorentz system of units, this definition lacks a factor of c [71]. We drop this factor for convenience
as we are mostly interested in computing the ratio between the incident and transmitted power, meaning this c factor
cancels out.
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A.1.4 Derivation of far-field expressions

It is straightforward to compute the far-field emission profiles of resonators based on the 2D-GLMT

equations. To achieve this, the field expansions centered on individual scatterers can be recast in

a global frame of reference as proposed in Ref. [103]. The starting point is the equation for the

scattered wavefunction (2.3.5b), which reads

ϕs(r) =
N∑

n=1

∞∑
l ′=−∞

bnl ′ H
(+)
l ′ (k0ρn)e i l ′θn . (A.1.24)

Using Graf’s addition formula, one can displace the H (+)
l ′ (k0ρn)e i l ′θn function in a “global” frame

of reference, say r = (ρ,θ). The addition formula gives

H (+)
l ′ (k0ρn)e i l ′θn =

∞∑
l=−∞

H (+)
l ′+l (k0ρ)Jl (k0Rn)e i (l ′+l )θe−i lφn , (A.1.25)

where Rn is the distance between the center of the cylinder n and the origin of the global coordinate

system, and φn is the angular position of cylinder n in that same frame of reference. Inserting

(A.1.25) in (A.1.24) yields

ϕs(ρ,θ) =
N∑

n=1

∞∑
l ,l ′=−∞

bnl ′ H
(+)
l ′+l (k0ρ)Jl (k0Rn)e i (l ′+l )θe−i lφn . (A.1.26)

The substitution l ← l − l ′ can then be made since indices run to infinity. This yields

ϕs(ρ,θ) =
N∑

n=1

∞∑
l ,l ′=−∞

bnl ′ H
(+)
l (k0ρ)Jl−l ′(k0Rn)e i lθe i (l ′−l )φn . (A.1.27)

Using the Sommerfeld radiation condition, the field at ρ→∞ can be written as

ϕs(ρ,θ) =ϕs(θ)
e i k0ρ√

k0ρ
. (A.1.28)

Using the asymptotic expansion of cylindrical functions

lim
|z|→∞

H (+)
l (z) ∼

√
2

πz
exp

[
i

(
z − lπ

2
− π

4

)]
, (A.1.29)

in (A.1.27), one finally obtains the following far-field distribution

ϕs(θ) =
√

2

π
e iπ/4

∑
n

∞∑
l ,l ′=−∞

bnl ′ Jl−l ′(k0Rn)exp
[

i l
(
θ− π

2

)
+ i (l ′− l )φn

]
, (A.1.30)

where (Rn ,φn) is the location of scatterer n in the “global” frame of reference.
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