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Résumé
Les cavités diélectriques résonantes quasi-bidimensionnelles présentent un important
potentiel pour des domaines aussi variés que la biodétection et la production de rayon-
nement laser. Leur faible taille - typiquement quelques dizaines de micromètres sur leur
plus grand axe - conjuguée à une forte capacité de rétention du rayonnement électro-
magnétique - facteurs de qualité pouvant atteindre 109 - en font d’excellentes candidates
à un grand nombre d’applications de haute technologie où la gestion de l’énergie, la pré-
cision des mesures, et le volume occupé sont des paramètres critiques. À cela s’ajoute
une facilité d’implantation accrue grâce à l’utilisation de principes de microgravure bien
connus.

Un des défis importants relié à l’utilisation des microcavités demeure la conciliation
des hauts facteurs de qualité, la caractéristique fondamentale des microcavités, et de
la capacité à produire une émission de radiation directionnelle. C’est sous ce thème
général que s’articule cette thèse.

Dans un premier temps, l’accent est porté au développement d’un formalisme encadrant
la caractérisation des cavités diélectriques. Une méthode originale utilisant la matrice
de diffusion comme pierre d’assise est présentée à cette fin. Ensuite, une étude pertur-
bative de la cavité diélectrique la plus simple, le disque, est réalisée. Les observations
résultantes sont utilisées comme lignes directrices dans la suite du travail.

Dans un second temps, le formalisme développé est appliqué à une cavité présentant
une déformation d’indice de réfraction simple, la cavité annulaire. Certaines ‘règles’
de transition vers l’émission directionnelle sont obtenues. Aussi, une discussion sur un
modèle de couplage entre un guide d’onde et une microcavité est présentée.

Finalement, un concept de cavité découlant de résultats obtenus tout au long de la
thèse est présenté. La principe de fonctionnement demande le couplage d’un anneau
diélectrique, servant de réservoir de champ électromagnétique à une seconde cavité
‘parasite’ fortement directionnelle.

Ce document est rédigé en majeure partie en Anglais pour faciliter sa diffusion autant
pour fins d’évaluation que pour consultation ultérieure par la Communauté.





Summary
Two-dimensional resonant dielectric microcavities present an important potential in
various domains ranging from bio-detection to production of laser radiation. Their
small footprint - typically tens of microns over their longest axis - conjugated to a
strong capacity to retain the electromagnetic field - quality factors reaching values
of 109 - make them excellent candidates for a large number of high-tech applications
where tight energy management, high precision and low volumes are critical parameters.
Moreover, the implantation of microcavities benefit from well-mastered micro-etching
techniques.

One of the the most challenging issues related to microcavities remains the merging of
high quality factors, the fundamental characteristic of microcavities, and the capacity
to produce highly directional radiation emission. This thematic forms the leitmotiv of
this thesis.

First, attention is focused on the development of a formalism framing the characterisa-
tion of dielectric cavities. An original method using the scattering matrix is presented
for this purpose. Then, a perturbation study of the dielectric disc cavity is carried
out. The results gathered from this investigation are used as guidelines for further
applications.

Second, the scattering formalism is applied to the simplest refractive index deformation
of the disc cavity, the annular cavity. Some transition ‘rules’ from non-directional
emission to directional emission are obtained. Also, a discussion about the waveguide-
cavity coupling is presented. This type of configuration is often found in experimental
setups using microcavities.

Finally, a proposal derived from results obtained throughout the thesis is presented.
The operation principle exploits the coupling from a dielectric ring used as an electro-
magnetic field reservoir to a second strongly directional ‘parasitic’ cavity.

This document is written in English to ease its distribution both for evaluation purposes
and consultation by the Community.
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2.17 Delay spectra of (a) the homogeneous disc (hd) cavity (nc = 3.2, no = 1,
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3.5 Schematics of the cavity and inclusion system. The natural coordinates
for the cavity (r, φ) and inclusion (ρ, θ) are shown, along with parameters
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of the cavity and outside media are respectively nc and no. . . . . . . . 100

3.6 (a) Evaluation of |∆m|−2, Eq. (3.10), using kR0 = 9, nc = 3.2 and no = 1

(Zo = 9, Zc = 28.8) (black dots) over a symmetrical range of m. The
green continuous line indicates the envelop trends given by Eqs. (3.121)
and (3.122) for the corresponding domain of application; origin at m = 0

for Eq. (3.121), origin at m = ±Zc for Eq. (3.122). (b) Evaluation of
|S(1)
mm′ | along the column m′ = 20 for the circular inclusion cavity, nh = 1

and d/R0 = 0.5. The diagonal term |S(1)
m′m′ | is highlighted by a red circle.

Notice the ridge region, |m| < Zo, having a larger scattering amplitude
than terms located near the diagonal component at m = 20. . . . . . . 106

3.7 Mapping of |∆m|−1|∆m′ |−1 (a) from analytical considerations, Eqs. (3.120)
and (3.121), and (b) from exact evaluation, Eq. (3.10). The parameters
are the same as the ones used on Fig. 3.6. The color gradient in (b)
scales with the logarithm of |∆m|−1|∆m′|−1. Note the ridges in regions
with |ν| < Zo and |ν ′| > Zo where ν = {m,m′} and ν ′ = {m′,m}. . . . 107

3.8 Schematic representation of the removal of degeneracy due to pertur-
bation in the delay spectrum. (a) Splitting of a resonant mode (left
spectrum) into even and odd modes relative to an appropriate symmetry
axis (right spectrum). The light pink line on the right picture indi-
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(b) Splitting of two resonant modes (left spectrum) into even and odd
modes relative to an appropriate common symmetry axis (right spec-
trum). The close-up view of the accidental crossing between modes with
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′
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′
b) modes follow diabatic levels (discontinuous lines) that

cross over the gap between adiabatic levels (continuous lines): there is
a modal character exchange along an adiabatic level going left to right.
Consequently, the modes of a given symmetry rearrange themselves in
two orthogonal combinations as they go through the avoided-crossing. . 110
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3.9 Complete phase factor θm0a
= −θ(0)

m0a + θ
(1)
m0a(ε) (dark red curve) near

resonance (18, 7) at k(18,7)R0 ' 13.8916 for the disc cavity + inclusion
corresponding to the physical setup nc = 3.2, no = 1, nh = 1, R0 = 1,
d/R0 = 0.81 and ε = 0.01. The individual terms −θ(0)

m0a (black) and
θ

(1)
m0a(ε) (blue) add up to move the resulting curve (dark red) toward larger
k values. The length and direction of the blue arrows are obtained by the
evaluation of θ(1)

m0a(ε). Note the large phase change as the wavenumber
goes through the resonance, almost by 2π, with the inflexion position
around a phase shift of π [88]. See Fig. 3.10 for the corresponding delay
spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
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nario ε = 0.01 (red, d/R0 = 0.81; orange, d/R0 = 0.90). (a) exact com-
putation from the analytical model of Appendix D and (b) perturbation
method of this Chapter (perturbation of the S matrix and eigenvalues
obtained from perturbation theory). The lateral motion of the peaks is
mostly determined by the q(1)

m0a factor while most of the amplitude decay
is due to the normalization factor 1 + (ηβm0a

)2 (η = 1). . . . . . . . . . 112

3.11 Radial cut of the wavefunction
∣∣∣ψ(0)

m0=18

∣∣∣
2

, Eq. (3.6), near the resonance
at k(18,7)R0 ' 13.8916 and the corresponding effective potential (see In-
troduction, Chapter 1). Note the decaying portion of the field inside the
semi-classical caustic radius m0/nck ' 0.401R0. . . . . . . . . . . . . . 113

3.12 Coefficients
∣∣∣A(1)

m

∣∣∣
2

(ε = 1) for d/R0 = 0.28 (dark red), d/R0 = 0.33 (dark
orange) and d/R0 = 0.38 (orange). Main channel |m0| = 18 is indicated
by thicker line and hollow marker. Physical parameters are the same as
those used in Fig. 3.9. The evaluation is performed at the resonance
maximum delay value of the perturbed (18, 7) even mode. . . . . . . . . 114

4.1 The parametric perturbations of the disc cavity investigated in this Chap-
ter are of two types: (a) inclusion displacement and (b) inclusion growth.
In the second scenario, the inclusion radius r0 is increased while the dis-
tance d + r0 remains constant. This type of deformation is suggested
from the results of the first parametric study. . . . . . . . . . . . . . . . 118

xxii



List of Figures

4.2 Separation of the matrix S(1) with regards to the respective contributions
of ∆−1

m ∆−1
m′ and Jm(nckd)Jm′(nckd). The colored areas are associated

with the definitions found in Fig. 3.7(a), and the hatched areas indicate
the domain of applicability of the oscillatory behavior of Jm(Zd) (single
hatched: oscillatory on lines (columns), exponential decay on columns
(lines); double hatched: oscillatory over lines and columns). As the
inclusion position d is increased from (a) to (b), the underlying ridge
region (|m| < Zo) becomes completely covered by the non-decreasing
terms. Given a line (or column) m = m0 and Zc > |m0| > Zo, not
only is the ridge region becoming exponentially stronger with increasing
d (see Eq. (A.51)), but also many more channels are being included with
significant amplitude. The broadening eventually stops as Zd reaches Zo
(d/R0 = no/nc): the d independent exponential decrease in m due to
∆−1
m0

∆−1
m remains the dominant behaviour in the region |m| > Zo. . . . 121

4.3 Numerical evaluation of the line S(1)
m0m, m0 = 11, for different values of

d/R0: nc = 3.2, no = nh = 1, kR0 = 4.5 and R0 = 1. The vertical
gray lines bound the oscillatory regime of ∆−1

m (maximum size of the
ridge, ±Zo = ±nokR0). The ridge domain grows in size with d until
d/R0 = no/nc is reached. Then a monotonic exponential increase of the
whole structure follows. . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.4 Delay spectrum of (a) the homogeneous disc cavity and of (b) the annular
cavity with d/R0 = 0.388 and r0/R0 = 0.2. The red curves represent
the delays for the Ox axis odd symmetry mode and the green curves
are associated to even symmetry modes. The resonant position of modes
(5, 3), (11, 1) and (8, 2) are shown. Note however that in the annular case,
these labels have to be understood as a result of an adiabatic parametric
follow-up of the disc resonances: in many instances, the effect of the
inclusion may be so disruptive that the near-field looses its WGM aspect. 123

4.5 Displacement of the resonant wavenumber position of mode (11, 1) rel-
ative to the corresponding one in a disc cavity with a centered (d = 0)
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4.6 Resonant delay value of mode (11, 1) relative to the center-to-center dis-
tance d for five inclusion sizes r0/R0. The premature drop observed for
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4.7 Evaluation of Eq. (4.2) for mode (11, 1) at r = R0 (blue curve) and
r → ∞ (red curve). The gray parametric region has both near-field
WGM aspect (< 1% deviation) and far-field non-uniformity (> 50%).
Insets show the near-field (r = R0, inner ring) and the outgoing far-
field (r = ∞, outer ring) polar distribution of |ψ(r, φ)|2 for d/R0 =

{0.352, 0.602, 0.85} (respectively, left to right). . . . . . . . . . . . . . 126
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4.10 Reflection and transmission matrices, Eqs (4.11)-(4.12), versus the semi-
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under investigation nc = 3.2, no = 1, k = 4.5 and R0 = 1. As a base
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4.12 Transition probability to other angular momenta (red) and transmission
probability to the exterior of the physical cavity (blue) according to Eqs
(4.15) and (4.16) respectively. Both escape probabilities reach the same
value at (d + r0)/R0 ' 0.482: using a particle picture of the system,
at this parametric position it is equally probable for a photon to escape
mode (11, 1) by regular potential tunneling than it is by coupling to
angular momentum components different from m0. . . . . . . . . . . . 132
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4.14 Normalized far-field profile for three sets of parameters (d/R0, r0/R0). 136
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figuration space and (b) in phase space. The reflection of rays on the
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4.21 Positions in phase space of the escaping rays/field from the non-regular
region; (a)-(c) Gaussian-smoothed results from ray optics simulations
and (b)-(d), outgoing Husimi distributions obtained from wave simula-
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4.26 Delay value at the peak of even mode (11, 1). The semi-log graph reveals
a premature fall of the delay at d/R0 ' 0.3 and a recovery at d/R0 ' 0.6

with respect to the monotonous delay spoiling caused by the exponen-
tially increasing amount of field being diverted from angular momentum
m = 11 to other channels. The markers indicate the positions at which
the spectra of Fig. 4.27 are drawn. Also, the expected delay spoiling
curve (dashed line) is presented (see Eq. (4.50)). . . . . . . . . . . . . . 156

4.27 Spectra for four values of the parameter d. Odd symmetry modes with
respect to the Ox axis of the cavity (Fig. 4.1) appear in green, and
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position as the parameter d is varied. . . . . . . . . . . . . . . . . . . . 157

4.28 (a) Corrected peak value of resonance (11, 1) relative to the homogeneous
disc peak value versus the deformation parameter d and (b) peak value
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disc: kR0 ' 4.4989), and (8, 2) ‘odd’ is found at kR0 ' 4.5897 and (8, 2)
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5.1 Schematic representation of the waveguide-cavity coupling. Right-most
inset presents a perspective view of the system composed of thin waveg-
uide and cavity arranged in a common plane. The guided field is assumed
to originate from a continuous wave (i.e. monochromatic) source and is
recorded by a perfect detector. The comparison of the input and output
power defines a transmission coefficient that is strongly affected by the
amount of field diverted by the cavity. This is especially true around
resonances of the cavity. . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.2 Coordinate system for the description of the evanescent field emanating
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5.3 Schematics of the coupled system (cavity + waveguide). Only the electric
field is displayed. The domain occupied by the cavity is identified by DC . 171

5.4 Representation of the input and output envelopes of the guided waves.
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Character Description
r, φ Polar coordinates
x, y, z Cartesian coordinates
t Time

Tab. 1 Notation for coordinates.

Character Description
· Scalar product
× Vector product
df(η)
dη

= f ′(η) Shorthand notation for the derivative; Depending on the context,
the ′ notation may be used on constants to denote different values
attributed to a unique character. For instance, m and m′ for two
different angular momenta.

∇· Divergence operator
∇× Curl operator
∇2 Laplacian operator

Tab. 2 Notation for common operators.

Character Description
v Vector (lower case bold unless stated otherwise)
M Matrix (upper case bold unless stated otherwise)
vj Component j of vector v

Mjj′ Component on line j column j′ of matrix M

v̂ Unit length vector for coordinate v; When specified,ˆnotation may
also refer to an abstract operator∣∣ 〉
Abstract vector notation for a function; uses same algebra as in
quantum mechanics [36]

Tab. 3 Matrix and vectors.
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Character Description
Jν(η) Bessel function of the first kind of order ν
Yν(η) Bessel function of the second kind (Neumann function) of order ν
H

(1)
ν (η) Hankel function of the first kind of order ν

H
(2)
ν (η) Hankel function of the second kind of order ν

Tab. 4 Notation for common special functions. See Appendix A.

Character Description
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µ0 Vacuum permeability
c Speed of light in vacuum, c = 1/

√
µ0ε0

E Electric field (vector)
H Magnetic field density (vector)
ψ Wavefunction, Ez or Hz (scalar)
n Refractive index
k Wavenumber
ω Angular frequency
τ Delay, lifetime
m Quantized angular momentum
S Scattering matrix
Q Delay matrix
A Vector of incoming coefficients for ψ outside the cavity
B Vector of outgoing coefficients for ψ outside the cavity

Tab. 5 Notation for physical quantities.
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Angular momentum m arrangement of matrix U with matrix element Umm′ :

Fig. 1 Description of the field display. The far-field is depicted as a ring surrounding the near field of
the cavity. The amplitude increases with the color scale from light yellow to dark brown.
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After long months of ceaseless anxiety and strain, after times when
hope beat high and times when the outlook was black indeed, the end
of the Endurance has come. But though we have been compelled to
abandon the ship, which is crushed beyond all hope of ever being
righted, we are alive and well, and we have stores and equipment
for the task that lies before us. The task is to reach land with all
the members of the Expedition.

Sir Ernest Shackleton,

Alors que le sort de l’Endurance est scellé par la poussée de la
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le désert de glaces s’annonce. Extrait tiré de South: The Last
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Chapter 1

Introduction

This Chapter introduces the scope of this thesis within the framework of
the study of optical dielectric microcavities. The derivation of the main
partial differential equation - the scalar Helmholtz wave equation - is ob-
tained through a series of hypotheses on the electromagnetic field and on
the media in which it stands. The solution for the homogeneous disc cav-
ity is presented and interpreted through an effective potential model and
semi-classical physics.

The technological capacity to produce nano and micrometer-sized glass or silicon struc-
tures offers great promises as to the implantation of microcavities in modern visible and
near infrared optical devices. The distinguishing property of these resonators to accu-
mulate extremely large amounts of field within a small volume makes them candidates
of choice in technological applications such as low threshold lasers [64, 137, 162] and
high quality sensors [7, 6, 43, 110, 114, 151, 152, 156, 170, 169]. Moreover, it appears
feasible to arrange many of these microstructures in ‘macro’ devices that allow for multi-
plexing through evanescent coupling with a multitude of thin on-chip waveguides. This
in turn may yield simultaneous multi-diagnostic bio-sensor [80, 153, 157] or possible
multidirectional gyroscope devices [138, 141, 142] that possess a small footprint, have a
low energy consumption, and allow for redundancy and environmental monitoring (for
instance, measurements of various parameters such as temperature changes [78]). These
combined advantages improve the overall reliability of the device. Keeping these tech-
nological advances in sight, the thematic of electromagnetic (quasi-) two-dimensional
cavities will constitute the subject of the present work.

One topic that seems especially elusive concerning two-dimensional cavities is the far-
field directionality versus high quality (HQ) mode duality. On the one hand, highly



directional modes in the far-field usually have poor quality factor (the stadium cavity
for instance [47, 46]), and on the other hand, high quality modes often have uniform
far fields (the disc cavity for instance, see section 1.3 on this topic). Early attempts to
mix these properties together involved the geometrical deformation of disc cavities. The
quadrupolar deformation is emblematic of these Asymmetric Resonant Cavities (ARCs)
[89]. While recent publications indicate great success in achieving high directional/high
quality modes [155], at the time I started working on the subject even the present gold-
standard numerical method for solving the homogeneous ‘open cavity problem’ had just
been published [158]. With this goal in mind, it was proposed to control the output
far-field of a disc cavity through the continuous deformation of its bulk refractive index
instead of its boundary shape. A ray optics model of the inhomogeneous refractive index
cavity had already been developed and it would serve as a guide for the investigation
[122].

This physical system raised the issue of solving the wave equation - the ‘open’ Helmholtz
equation - over a volume of refractive index that is not necessarily defined in piecewise
sections of constant value. Furthermore, the usual description of the resonant behaviour
of an object teaches us to look for emission modes [88]. These modes are divergent solu-
tions of the wave equation with a discrete resonant wavenumber k located in the complex
k-plane: the real part is associated with the oscillating, propagating component, and
the imaginary part is proportional to the inverse of a resonant mode’s lifetime. The
emission modes description of the cavity provides an intuitive representation of open
systems such as lasers in regards to their contain-and-release behaviour.

However, the mainstream technique of boundary integral equations implemented through
the Boundary Element Method (BEM) [159] relies on a piece-wise free-space Green func-
tion to solve the Helmholtz equation. Therefore, it cannot be adapted in a straight-
forward manner to our scenario of inhomogeneous refractive index: the preliminary
computation of a non-free Green function adapted to the continuous refractive index
variation of our matter appeared to defeat the usefulness of the BEM approach. It
then came to our attention that a numerical method exactly suited to solve Helmholtz
equation over an inhomogeneous refractive index surface existed [112, 113], but only for
real wavenumber values1. Although the method gives a numerical approximation of the
scattering matrix S(k), it does not permit the exploration of the complex wavenumber
k-plane in order to obtain its poles, i.e the singular solutions to the wave equation
needed for the emission modes description of the cavity.

1The numerical method demands that the field over a thin annulus covering part of the cavity be
expanded over a complete orthogonal basis of functions. The condition on reality of the wavenumber
ensures that such a basis exists. An adaptation of the method is presented in Chapter 2, with further
details in Appendix C.
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1.1. Summary of content

To get around this issue, the authors of [112, 113] make use of the trace of Smith’s
delay matrix Q [135]. Most of their original study was concerned with the perturbation
of the strong resonances of a disc cavity: a look at the trace of the delay matrix near
clearly visible peaks (i.e. resonant modes with a small imaginary wavenumber close
to the real k-line) gives an idea of how the underlying high quality modes of the disc
respond to perturbations of the cavity geometry. It remains unclear, however, how
to investigate the many other lower quality modes of the disc, if the method is to be
adapted to strongly deformed disc cavities, and how exactly to obtain ‘something more
specific’ than a simple average delay line expressing the global behaviour of a cavity. As
it turned out, the numerical method designed to solve the problem of inhomogeneous
refractive index cavities raised an issue of its own in the form of a somewhat more
physical topic concerning the expression on the real-k line of the poles of the scattering
matrix.

1.1 Summary of content

The initial motivation of studying inhomogeneous cavities and the apparent incapacity
to solve the corresponding wave equation in the complex plane, as usually done for
emission modes, led me to seek other ways to express the modes of a cavity on the
real-k line. The article by Rahachou and Zozoulenko [113] showed that one promising
avenue of investigation would be related to Smith’s delay matrix2.

In Chapter 2, I present a ‘bottom-up’ development of an electromagnetic energy for-
malism for the modes of a dielectric cavity. This derivation properly justifies the use of
the delay matrix as a central feature of a cavity on the real-k line, and defines a basis of
modes that are related to the poles of the scattering matrix. In view of this, this basis
of modes is understood to be characteristic of the cavity under study just as are the
singular diverging solutions of the wave equation in the complex plane. The numerical
method used to solve the problem is also presented with some early results.

Since many results of Chapter 2 were not readily found in the literature, it appeared
important to show certain cases where analytical results could be derived in order to
confirm the ideas presented. Unfortunately, solvable cases of open cavities are scarce,
and, when they exist, they are usually difficult to follow analytically (see Appendix D
for instance). This led me to develop a perturbation formalism for the delay matrix
of the disc cavity. This subject is addressed in Chapter 3. Along with the general

2Notice that the expression of the trace of Smith’s delay matrix is also known as Krein’s trace
formula for the density of states [21, 70].
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development of the formalism, two applications are investigated: boundary deformation
and dielectric particle inclusion.

As may be understood from Chapter 3, an important feature of the perturbed disc cavity
is the contamination of high quality modes of the disc cavity by many lower quality
modes. The energy contained in a high quality mode is not only shared with these low
quality modes, but also more easily lost through them. This results in a decrease in
quality of the high quality modes of the disc cavity to the benefit of many low quality
modes. These, in turn, tend to be more directional in the far-field, hence providing
the high quality modes some directional features. Among the results of Chapter 3,
many are about the disc cavity with a small circular inclusion. This cavity, a perturbed
limit of the annular cavity, seems appropriate to extend the perturbation results to
full numerical computations3. The competition between two field emission mechanisms
that appear to structure the transition from high quality/low directional modes to high
quality/high directional modes lies at the heart of Chapter 4. The Chapter is also
complemented with results on the coupling of resonances and boundary roughness.

Throughout this investigation, I remained attached to the experimental realisation of
the concepts that were elaborated in the theory. This is the reason why a simple model
of the coupling of a cavity with a waveguide was developed. This configuration is often
found as a means of simultaneously routing electromagnetic power to a cavity through
the input port of the waveguide and measuring events affecting the cavity by the output
port of the waveguide. A short discussion on the exact context of application and the
model itself are presented in Chapter 5.

The Conclusion 6 of this work presents a necessary summary of the main results ob-
tained throughout the preceding Chapters. The Section 6.1 could prove useful as a
reading guide, for the reader as it traces back results and observations to the appro-
priate figure, equation or text section in the form of a list separated by chapters. The
Conclusion also presents some perspectives about the main goal of this work - highly
directional high quality cavities - an attempt to tie together some of the results obtained
into a single cavity design.

3The annular cavity is a kind of inhomogeneous index cavity. The continuously varying refractive
index of a disc cavity that was foreseen at the very beginning of my graduate studies appeared in
the end to be complicated to realize experimentally. The intended idea was to ‘coat’ a solid-state 2D
cavity with nematic molecules to form a liquid crystal layer that could be manipulated externally to
induce specific directional light outputs. This concept was essentially abandoned. From then on, the
annular cavity appeared more easily interpretable (the geometrical rays in a continuous inhomogeneous
medium are curves which complicates the analysis) and provided many semi-analytical results. The
smooth inhomogeneous cavity concept was implemented recently to control the resonance position of
a ring resonator [109].
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1.1. Summary of content

Fig. 1.1 Flow chart of the thesis.
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It appears appropriate to define exactly the problem at hand to avoid any ambiguities
regarding the results of the coming Chapters. After a short discussion of cavities,
the following Section presents a series of hypotheses about the electromagnetic field
and the material substrate in which it stands in the context of the study of dielectric
microcavities. These hypotheses lead to a wave equation and to characteristic continuity
relations for the field. In line with this development, the homogeneous cavity case is
discussed as an illustrative application, both in the full wave perspective and in the semi-
classical limit. Although of great simplicity, the results derived for the homogeneous
disc cavity will often be recalled throughout this work.

The flow chart of the thesis is presented in Fig. 1.1.

Although the peer-reviewed publication output of my work is small, I stress that many
ideas and results presented in this thesis are novel and original. This is to be under-
stood from the literature review standpoint of early 2011, at which point my scientific
involvement declined sharply due to higher priority external obligations. Some topics
presented in this thesis were reviewed as part of conference proceedings: the descrip-
tion of the cavity through a scattering formalism with emphasis on the delay matrix
as a central object of interest [95] (Chapter 2 of this thesis), the competition of escape
mechanisms from an annular cavity [101] and the use of specific areas of phase space
to predict far-field emission of an annular cavity [106] (Chapter 4 of this thesis). These
and other unpublished results were presented as part of original contributions to scien-
tific conferences: ICTON 2013 [96], WOMA 2011 [94], ICTON 2010 [100, 105], SIAM
Conference on dynamical systems 2009 [99, 98], CAP Conference 2008 [102, 97] and
SIAM Conference on dynamical systems 2007 [123, 103]. This thesis is built around the
manuscripts of four articles -one for Chapter 2, one for Chapter 3, and two for Chapter
4- that were intended for publication as contributions in peer-reviewed journals. These
never entered an internal reviewing process within the research group and I abandoned
the idea of having them published within a reasonable time window for the benefit of
higher priority issues.

1.2 Preliminary considerations

This Section introduces the two-dimensional cavity model for electromagnetic waves.
A short discussion of the different aspects of 2D cavities is followed by the derivation of
the main mathematical equations modeling the electromagnetic field interaction with
dielectric cavities. The relevant expressions are then applied to the homogeneous disc
cavity.
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1.2. Preliminary considerations

1.2.1 A short discussion of cavities

The last quarter of century has seen the rise of integrated micro-optics as a new techno-
logical paradigm [8, 87]. Amongst the key components that are especially coveted are
micro-resonators (or micro-cavities) [163], small structures that can efficiently concen-
trate light in a finite volume at specific wavelengths. Although all physical resonators
are three-dimensional, certain combinations of cavity material distribution and wave-
length bandwidth reduce the effective number of degrees of freedom of the trapped light
field. In turn, the dimensionality or geometry of the physical cavity is reduced as well.
Linear resonators formed by stacks of different materials (‘Bragg reflectors’) may be
considered one-dimensional (e.g. the Vertical Cavity Surface-Emitting Laser (VCSEL)
[71]; Fig. 1.2(a)), thin planar slabs of material form 2D resonators Fig. 1.2(b), and
highly symmetrical 3D structures, including the extremely high quality microspheres
[150], may confine the light field into an equatorial plane [30, 137], Fig. 1.2(c). Res-
onators made out of plain dielectric material like the discs of Fig. 1.2(b) or the spheres
of Fig. 1.2(c) rely on partial reflections of the circulating field at the media disconti-
nuity (e.g. air-silica boundary) to retain the electromagnetic energy, see inset of Fig.
1.2(b).

Two-dimensional cavities hold a special place in this classification since they represent
open versions of well studied quantum billiards. It is observed that the level-spacing
statistics of quantum billiards, or closed cavities, share common features with equivalent
measurements done on certain nuclear and atomic reactions (see [117] for instance).
In turn, the particular level-spacing statistics of closed cavities would appear to be
related to the dynamics of their classical billiard counterpart, especially regarding their
chaotic dynamical features [48, 79, 84, 108, 166, 167]. Because of similar statistical
behaviours, quantum billiards provide a model for more complex physical systems in
regards to wave-particle dualism in the less intuitive entrenchment of classical mechanics
[59, 52, 139, 51, 20].

The quantum billiards themselves are finite ideal 2D domains where the Helmholtz
wave equation is solved as a Dirichlet problem for the field distribution ψ(r) 4 (see
[83, 154, 65] for some published results),

∇2ψ(r; k) + k2ψ(r; k) = 0 , ψ(r = rbnd) = 0 . (1.1)

This system is an eigenvalue problem whose solutions {ψj(r; k)} form a discrete spec-
trum of real wavenumber values k = {kj}, Fig. 1.3.

4The Helmholtz equation is found in many areas of physics. It is the monochromatic scalar wave
equation commonly found in quantum mechanics [36], electromagnetics [29] and acoustics [72] for
instance.
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Leibniz
Ferdinand-Braun-Institut
http://www.fbh-berlin.com/departments/process-technology/frontend/etching

Thor labs
http://www.thorlabs.com/NewGroupPage9.cfm?objectgroup_id=6473

(a) 1D cavity

(b) 2D cavity

(c) 3D cavity

Fig. 1.2 (a) Left: Principle of action of a tunable VCSEL (Thor Labs www.thorlabs.com); Upper
right: Scanning Electron Microscope (SEM) rendition of a VCSEL (Ferdinand-Braun Institut www.fbh-
berlin.com); Lower right: Array of VCSELs on a single wafer (Thor Labs). (b) SEM rendition of silica
micro-discs on their support pilar, S. Saïdi and Y.-A. Peter, École Polytechnique de Montréal 2009.
Right inset: The trapped light field is reflected at the media discontinuity. (c) Left: A laser microsphere
makes the front cover of the Nature issue of February 2002, S. M. Spillane et al. [137]. Right: The
laser microsphere spectrum.

The classical counterpart of quantum billiards, simply billiards, are enclosures where
the free-moving, yet trapped, point particles obey specular reflection at the boundaries
[14]. The correspondence between quantum and classical billiards from a mathematical
equations perspective is revealed by letting the wavelength λ appearing in Helmholtz’s
equation (1.1) through the wavenumber k = 2π/λ become very small with respect to
the characteristic length scale l of the cavity λ� l. An acceptable characteristic length
might be the average radius of the cavity. The small wavelength limit paves the way
toward the geometrical ‘ray’ optics. The underlying dynamical system of bouncing light
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1.2. Preliminary considerations

Fig. 1.3 Left: Some eigenfunctions ψj(r) that solve problem (1.1) for a quadripolar deformation of the
disc. The boundary of this specific cavity is defined by the radial function rbnd(φ) = R0(1 + ε cos 2φ)

with respect to polar angle φ and numerical values R0 = 1 and ε = 0.1. The labels ‘regular’ and
‘irregular’ attributed to each modes refer to trajectories found in the classical billiard picture, Fig. 1.4.
The eigenfunctions shown here have eigen-wavenumber values pertaining to the discrete spectrum
k = {kj} presented to the right. The non-dimensional abscissa of the spectrum is in kl units where l
is the mean radius of the cavity (l = R0 = 1).

particles falls within the hamiltonian formalism [89], and the motion of the captive rays
for a certain billiard geometry defines the overall dynamical category that this geometry
pertains to. A useful representation of the dynamics of billiards is provided by the phase
space. Technically, the phase space of billiards - or more precisely, the Poincaré section
of phase space - is built from the record of impact positions and incident angles on the
cavity boundary for many different trajectories [14], Fig. 1.4.

While some billiard geometries are fully integrable5 almost all of them show a certain
amount of random-looking trajectories resulting from the presence of hamiltonian chaos
[93]. Extreme cases such as the stadium cavity [33] are completely chaotic, and inter-
mediate scenarios like the quadripolar deformed disc [14, 89, 126] present both chaotic
and regular trajectories, Fig. 1.4. These billiards, mixed-dynamics billiards, show a
phase space with both regular dynamics domains (regular ‘islands’) and a chaotic sea.

5In an integrable hamiltonian system, there are as many constants of motion as there are degrees
of freedom [93]. For billiards, besides the circular cavity, the prominent member of this dynamical
class is the elliptic cavity. Apart from energy conservation, this cavity supports trajectories that keep
constant their angular momentum with respect to the foci of the ellipse [89].
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Fig. 1.4 Classical trajectories of the quadripole billiard. The cavity geometry is the same as the one
of Fig. 1.3. Typical regular and irregular ‘chaotic’ trajectories are shown in configuration space on the
left and in phase space on the right. The correspondence between configuration space and phase space
is schematically represented on the right. The phase space itself summarizes the overall dynamical
properties of a given billiard geometry: regular trajectories appear as ‘stable islands’, and irregular
trajectories quickly fill (part of) the ‘chaotic sea’.

The correspondence between wave modes Fig. 1.3 and classical trajectories Fig. 1.4
lies at the heart of the historical motivation of the study of 2D cavities.

Returning to the wave problem (1.1), we may decide to give the cavity a certain physical
density. This property is characterized in an optical context by the refractive index
n(r). Doing this affects the effective size of the wavenumber, which is then replaced by
k2 → n2k2 in problem (1.1) 6.

Furthermore, we may ‘open’ the cavity by defining its boundary through a media dis-
continuity from a finite ‘optically dense’ domain of refractive index nc, the cavity, to
an infinite ‘thinner’ surrounding of index no < nc. Opening the cavity by granting
the field ψ access to any area of the xy-plane has a definitive impact on the modes
of the formerly closed cavity: The well-defined quantized spectrum of modes with real

6For the sake of comparison with Fig. (1.5), the solutions presented in Fig. (1.3) are computed
with a cavity refractive index n = nc = 1.5.
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wavenumber eigenvalues {kj} ceases to exist and is replaced by a continuum of accept-
able real wavenumbers k.

Since the exterior field, located far enough from the cavity, is separable into incoming
and outgoing components with respect to the cavity position, the open cavity config-
uration may now be defined through scattering theory [88]. The absence of restriction
on the wavenumber k means that we may now choose freely both the wavenumber and
incoming waveform incident at the cavity7. Solving the Helmholtz equation with a
refractive index distribution n2(r) of the cavity and its surroundings,

∇2ψ(r; k) + n2(r)k2ψ(r; k) = 0 (1.2)

for a given incoming field pattern, determines the appropriate outgoing waveform cor-
responding to the interaction of the incoming wave with the cavity, see Fig. 1.5(a).

(a) Scattering experiment (b) Emission experiment

Fig. 1.5 Differences between (a) the scattering experiment and (b) the emission experiment. While
the scattering experiment may be solved for all real wavenumbers and all incoming fields ψinc solving
Eq. (1.2), the emission experiment seeks to obtain singular solutions of Eq. (1.2) that result solely in
an outgoing wave ψout. These singular solutions lie in the complex k-plane in the form of poles of the
scattering matrix S(k).

At this point, one may wonder about the contrast between the well-defined eigenproblem
of the closed cavity problem (1.1) and the ‘(almost) everything works problem’ of the
open cavity problem (1.2). This issue actually calls for modes of intrinsically open
systems 8. As it turns out, all the combinations of incoming fields and wavenumbers do
not have the same outcome: certain incident field patterns over specific real wavelength

7Provided of course that the incoming waveform be expandable in solutions of Helmholtz equation.
8See the discussion found in the related field of quantum optics [42].
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range may cause the electromagnetic field to accumulate in large density inside the
cavity. The origin of this resonant behaviour does not lie on the real-k line, but belongs
to the complex k-plane. The cavity possesses quasi-normal modes (i.e. modes of Eq.
(1.2) that have a complex wavenumber eigenvalue [27]) that appear as discrete singular
divergent solutions of (1.2) in the fourth quadrant of the complex k-plane, see Fig.
(1.6).

Assuming that a scattering experiment is, abstractly, carried out at such a discrete
complex wavenumber position, an incoming plane wave will cause an ‘infinitely’ large
response of the cavity, and the exterior field will be ‘infinitely dominated’ by the out-
going wave component: the quasi-normal mode. The complex wavenumber positions
corresponding to singular solutions (1.2) are poles of the scattering matrix S(k), an
object that transforms the incoming wave into an outgoing wave [88]. The imaginary
part of the wavenumber of a given resonance kp in the complex plane is inversely pro-
portional to the lifetime of the resonance: a small imaginary part close to the real k line
indicates a long lifetime of the associated mode, while a large imaginary part denotes
a rapid decay rate. This result stems from the prior hypothesis of a mono-chromatic
field with an e−iωt time dependency 9: replacing back the complex resonant wavenum-
ber value ωp = ckp in this expression results in a time-decreasing field with a decay
constant c|Im{kp}|.

Cavities are often characterized by their quality factor [77, 104],

Qp =
Re{kp}

2|Im{kp}|
. (1.3)

This simple expression gives a non-dimensional number which denotes the amount of
field oscillations over the time it takes for a decrease in amplitude of 1/e ' 37% (or
1/e2 ' 14% intensity). Notice however that unlike a one-dimensional resonator, a two-
dimensional cavity may possess both low quality and high quality modes over a small
wavenumber range, therefore blurring the prescription high quality cavity.

Not unlike the closed quantum billiard system, it was observed that open cavity resonant
modes may show a field distribution that resembles the classical trajectories observed
in the billiard system (see for instance [40, 77, 128, 147]). Therefore, the investigation
of the dynamical features of the classical billiard may help to understand the properties
of the open cavity.

9ω = ck, c being the speed of light in the vacuum.
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Fig. 1.6 Left: Some modes of the open quadripole cavity solving Eq. (1.2). The cavity geometry is
the same as the one of Fig. 1.3, supplemented with a cavity refractive index nc = 1.5 and an outside
medium refractive index no = 1. Notice the far-field intensity distribution (i.e. |ψ(r)|2 as |r| → ∞)
represented by a color-scaled ring encircling the cavity. Right: ‘Energy’ spectrum of the quadripole
cavity and some of its poles located in the complex k-plane.

1.2.2 Definition of the physical content

One of the pioneers of asymptotic physics, Joseph B. Keller, clearly defines in [69] a
common problem involving partial differential equations. In essence, provided that the
governing equations of motion of some phenomenon are found, and that these equations
are governed by partial differential equations (PDE), as they often are in nature, we
are faced with an infinite number of acceptable solutions. We cannot eliminate any
of these because we are not being specific enough on the object that is investigated.
For instance, Maxwell’s equations solve all scenarios involving classical electromagnetic
fields. What is needed are auxiliary conditions : these are initial conditions, boundary
conditions, or even general properties of the object at hand that reduce the number of
acceptable solutions. Although there may still be an infinite number of solutions left,
these solutions are now specific to their context. The combination of partial differential
equations and of auxiliary conditions defines a PDE problem.

The system of interest here consists in a classical electromagnetic field that interacts
with a volume of material. Therefore, the governing equations of motion for this setup
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are Maxwell’s equations [66],

∇× Ẽ = − ∂

∂t
B̃ (1.4)

∇× H̃ = J̃ +
∂

∂t
D̃ (1.5)

∇ · D̃ = ρ̃ (1.6)

∇ · B̃ = 0 (1.7)

where

Ẽ = Ẽ(r, t) is the electric field
H̃ = H̃(r, t) is the magnetic field
D̃ = D̃(r, t) is the electric displacement field
B̃ = B̃(r, t) is the magnetic flux density
ρ̃ = ρ̃(r, t) is the density of free charges
J̃ = J̃(r, t) is the free current density.

These coupled partial differential equations describe any classical electromagnetic field.
They are known to be notoriously hard to solve in their full vectorial form and it is
common usage to assume certain conditions to simplify their form. With regards to
the definition of a PDE problem, the first set of auxiliary conditions consists in general
assumptions about the medium where the field is assumed to propagate.

We will assume that the medium does not hold any free currents or charges (J̃ = 0 and
ρ̃ = 0 in Eqs (1.5) and (1.6)). With regards to the polarization of the medium, we will
assume that the medium is lossless (or gainless), isotropic and linear. This makes it
possible to write D = εE where ε is the scalar permittivity of the medium. Also, we
will assume that the medium has a constant response over the frequency bandwidth of
interest (i.e. the permittivity is time independent, ε = ε(r)). Finally, we will assume
that the medium is non-magnetic, so that B = µH = µ0H where µ0 is the magnetic
permeability of vacuum.

In the following, the permittivity will be replaced with the refractive index. The per-
mittivity and refractive index are related to each other by ε(r) = n2(r)ε0 where ε0 is the
permittivity of vacuum. Notice that the speed of light in vacuum c is computed from
c = 1/

√
ε0µ0.

Since we aim to investigate propagating waves, it is convenient to decompose the elec-
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tromagnetic field into time harmonics10 to expose its oscillating properties,

Ẽ(r, t) =
1

2π

∫ +∞

−∞
dω e−iωtE(r, ω) (1.8)

H̃(r, t) =
1

2π

∫ +∞

−∞
dω e−iωtH(r, ω) . (1.9)

These hypotheses about the medium greatly simplify Maxwell’s equations (1.4)-(1.7),

∇× E = +iωµ0B (1.10)

∇×H = −iωε0n2(r)E (1.11)

∇ · n2(r)E = 0 (1.12)

∇ ·H = 0 . (1.13)

Taking the curl operator of Eqs (1.10) and (1.11) so that a wave equation may be
retrieved, we obtain

∇×∇× E = +n2(r)k2E (1.14)

∇×∇×H = −iωε0∇× n2(r)E (1.15)

where we have used the relation k = ω/c for wavenumber k = 2π/λ with λ, the vacuum
wavelength of the field.

At this point, we introduce the main hypothesis upon which this work stands. This
assumption is that the cavity is a finite cross-section cylindrical symmetry structure
that is optically thin with respect to its planar cross-section. The finite cross-section
ensures that we are not dealing with guiding structures, and the thinness hypothesis is
to be understood in the sense that only the fundamental mode exists in the transverse
direction for both the electric and magnetic field (see Appendix E). This relaxes the
modeling effort to the plane cross section of the cavity, Fig. 1.7. The optical thinness
hypothesis actually aims at ‘trivializing’ any z-dependent component of the field in
much the same way the treatment of the infinite length cylinder would prescribe. This
hypothesis comes together with the effective refractive index hypothesis - a compensa-
tion on the value of the refractive index for the finite extent of the cavity along the Oz
axis, Appendix E - that was verified experimentally in [19, 17, 18] 11.

This planar configuration also offers a way to separate the two polarization states of the
field with respect to the plane of the cavity, Fig. 1.7. We define a Transverse Magnetic

10i ≡
√
−1 is used throughout this work.

11Notice that one of the conclusions of [19] is that the experimental resonance spectrum is a
frequency-shifted version of the theoretical one. Even if the agreement is not exact in a quantitative
way for predicting the resonances positions, predictions regarding the overall behaviour of the field
in a thin cavity appears to be well modeled. Experimental realizations of thin cavities show that the
emitted field is well predicted by this model, see for instance [164].
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Fig. 1.7 The optical thinness hypothesis for the dielectric cavity. This hypothesis asserts that the
amplitude |A| of the electromagnetic field along the z axis resembles that the fundamental mode of a
planar waveguide (see Appendix E). It is assumed that any z dependency may be factored out of the
electromagnetic field.

(TM) polarization for the case where the electric field vector is along the Oz axis (and
the magnetic field vector is within the xy plane), and conversely, a Transverse Electric
(TE) polarization for the case where the magnetic field vector is along the Oz axis (and
the electric field vector is within the xy plane). This additional prescription leads to
considerable simplifications in Eqs (1.14) and (1.15).

For the TM polarization E = E(x, y)ẑ, using identity ∇×∇× = ∇∇ · −∇2, we find

(TM) ∇(∇ · E)−∇2E = n2k2E . (1.16)

Assuming that n(r) = n(x, y), and using Eq. (1.12) we find that

(TM) n∇ · E = 0 (1.17)

which in turn simplifies Eq. (1.16),

(TM) ∇2E + n2k2E = 0 . (1.18)

Equation (1.18) is the Helmholtz equation (1.2).

The treatment of the TE polarization H = Hẑ is somewhat more involved. Redefining
H = n(r)h = n(x, y)h(x, y)ẑ [39], we expand the left hand side of (1.15) 12,

(TE) ∇×∇×H = −n∇2h− h∇2n− 2ẑ∇n · ∇h (1.22)

12Some useful vectorial calculus identities [50]:

∇× fA = f∇×A−A×∇f (1.19)

∇× (A×B) = A∇ ·B−B∇ ·A + (B · ∇)A− (A · ∇)B (1.20)

A× (B×C) = (A ·C)B− (A ·B)C . (1.21)
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Using Eqs (1.10) and (1.11), we expand the right hand side of Eq. (1.15),

(TE) −iωε0∇× n2(r)E = −iωε0
[
n2(+iωµ0nh)− i 1

ωε0

1

n2
(∇× nh)×∇n2

]

= n3k2h− 2(∇n) · (∇h)ẑ − 2
(∇n)2

n2
h . (1.23)

Canceling out common terms of Eqs. (1.22) and (1.23), we find a wave equation similar
to the Helmholtz equation (1.18),

(TE) ∇2h+

[
n2k2 +

∇2n

n
− 2

(∇n)2

n2

]
h = 0 (1.24)

the only difference being the supplementary k-independent contribution from the smooth
variation of the refractive index. For a medium constituted of piecewise constant valued
domains of refractive index, the Helmholtz equation is retrieved in its exact form.

The refractive index derivatives of Eq. (1.24) belong to parts of the cavity that do
not change discontinuously: discontinuous steps of the refractive index are dealt with
specific boundary conditions. The general forms of the boundary conditions for source-
less media are [29]

ν̂ ×
[
E
∣∣
∂D1
− E

∣∣
∂D2

]
= 0 (1.25)

ν̂ ·
[
D
∣∣
∂D1
−D

∣∣
∂D2

]
= 0 (1.26)

ν̂ ×
[
H
∣∣
∂D1
−H

∣∣
∂D2

]
= 0 (1.27)

ν̂ ·
[
B
∣∣
∂D1
−B

∣∣
∂D2

]
= 0 (1.28)

where ν̂ = ∇f(r)/|∇f(r)| is the unit normal vector to a boundary line ∂D defined by a
certain parametric curve f(r). The indices 1 and 2 identify the medium on both sides
of the separation, see Fig. 1.8.

For the TM boundary condition, using Eqs (1.25) and (1.27) together with Eq. (1.10),
we find

(TM) E
∣∣
∂D1

= E
∣∣
∂D2

(1.29)

(TM)
∂

∂ν
E

∣∣∣∣
∂D1

=
∂

∂ν
E

∣∣∣∣
∂D2

(1.30)

where ∂
∂ν

is the normal derivative to the boundary.
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Fig. 1.8 Two-dimensional cavity and assumed TM and TE polarization states with details on the
boundary including the unit normal vector ν̂.

For the TE boundary condition, using Eqs (1.25) and (1.27) together with Eq. (1.11),
we find

(TE) H
∣∣
∂D1

= H
∣∣
∂D2

(1.31)

(TE)
1

n1

∂

∂ν
H

∣∣∣∣
∂D1

=
1

n2

∂

∂ν
H

∣∣∣∣
∂D2

. (1.32)

Equations (1.29) through (1.32) identify that the electric field and its normal derivative
are continuous for the TM polarization, and that the magnetic field and its weighted
normal derivative are continuous for the TE polarization. These equations form another
set of auxiliary equations specific to the behaviour of the field for discontinuous media.

Although the boundary conditions of the TM and TE polarizations lead to different
wave behaviours, in this work we shall focus solely on the TM polarization. This choice
is done for the sake of simplicity.

At this point, we still need to identify the asymptotic boundary conditions to clearly
define the problem. Since we assume that the cavity is of finite size and embedded
into a medium of constant refractive index no, and that nowhere in the infinite plane
exists a physical boundary performing anything else than smoothness of the fields, Eqs
(1.29)-(1.32), we are immediately led to Sommerfeld’s radiation condition [88],

ψ±(|r| → ∞) ∼ e±inok|r|√
|r|

(1.33)

where ψ holds for the TM electric or the TE magnetic fields alike. This condition asserts
that far enough from the scatterer whose position is about the origin r ' 0, the field ψ
is a radial wave with a geometrically decreasing amplitude with respect to the distance.
Two types of radiating waves exist: with regards to an implicit e−iωt time dependence
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1.2. Preliminary considerations

of the field, ψ+ is moving away from the origin while ψ− is coming toward the origin.
For a source of field located near the origin, the appropriate type of radiation is ψ+,
and for a sink of field located near the origin, the appropriate type of radiation is ψ−.

Outside a circular domain of radius Rmax completely enclosing the cavity, see Fig. 1.9,
the refractive index has a constant value no. In this exterior domain, Eqs (1.18) and
(1.24) have the exact same form,

∇2ψ + n2
ok

2ψ = 0 r ≥ Rmax . (1.34)

Using cylindrical coordinates and neglecting any z axial contributions (optical thin-
ness), we separate the field ψ(r) into a product of radial and angular functions, ψ(r) =

R(r)Φ(φ). This Ansatz is motivated by the absence of any features in the exterior do-
main that would introduce intricate coupling between angular and radial coordinates.
Inserting this solution into Eq. (1.34) immediately leads to two ordinary differential
equations for the radial function and the angular function,

r2d
2R
dr2

+ r
dR
dr

+
(
n2
ok

2r2 −m2
)
R = 0 (1.35)

d2Φ

dφ2
+m2Φ = 0 (1.36)

where m2 is a constant13. Equation (1.36) is an eigenvalue problem taking the form
of the harmonic oscillator differential equation. The solutions take the form e±imφ and
must satisfy periodicity around the origin (the field must be continuous on a closed
path encircling the disc of radius Rmax). This fixes the unknown constant m to integer
values,

m = {0, ±1 ± 2, ±3 ...} (1.37)

Equation (1.35) is the Bessel differential equation whose general solutions are the
well known Bessel functions of the first and second kind, Jm(nokr) and Ym(nokr) re-
spectively (Ym(nokr) are also known as Neumann function), or linear combinations
of these: Hankel functions H(1)

m (nokr) = Jm(nokr) + iYm(nokr) and H
(2)
m (nokr) =

Jm(nokr) − iYm(nokr). The properties of these functions are thoroughly discussed in
Appendix A.

The solutions to Eq. (1.35) we are looking for must satisfy the Sommerfeld radiation
condition (1.33). This condition is immediately satisfied by the two Hankel functions
(see Eqs. (A.30) and (A.31))

ψ+ : lim
r�Rmax

H(1)
m (nokr) ∼

√
2

πnokr
e+inokre−im

π
2
−iπ

4 (1.38)

ψ− : lim
r�Rmax

H(2)
m (nokr) ∼

√
2

πnokr
e−inokre+imπ

2
+iπ

4 . (1.39)

13This constant common to both equations is an immediate consequence of the separation Ansatz.
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1.2. Preliminary considerations

Fig. 1.9 A continuous wave scattering event with a finite-sized dielectric cavity with proper radiation
condition at infinity. With regards to incoming and outgoing waves, the presence of the cavity inside
the circular domain of radius Rmax is expressed by the scattering matrix S.

The first Hankel function, H(1)
m , is associated with an outgoing wave while the second

Hankel function, H(2)
m , is associated with an incoming wave. A general solution to Eq.

(1.34) complemented by the radiation condition is therefore

ψ(r) =
+∞∑

m=−∞

[
AmH

(2)
m (nokr) +BmH

(1)
m (nokr)

]
eimφ r ≥ Rmax . (1.40)

Since the Hankel functions are associated with incoming and outgoing waves relative to
the origin and that this origin is also precisely at the geometrical center of the domain
of radius Rmax embedding the cavity, the coefficients A = {Am} and B = {Bm} of Eq.
(1.40) must be related to one another by the interaction of the incoming field with the
physical content of the domain |r| < Rmax. Since we assume that the field is linear, the
relation between A and B is linear as well,

B = SA (1.41)

where S is the scattering matrix whose purpose is to transform the incoming angular
coefficients A into outgoing coefficients B with respect to the ‘mixing’ and ‘phase-
offsetting’ properties of the cavity. The complete picture of the continuous wave scat-
tering experiment is schematically presented in Fig. 1.9.

Since the coefficients A and B must satisfy power conservation for real refractive index
and wavenumber, the matrix S is unitary,

S†S = SS† = 1 n ∈ R, k ∈ R (1.42)

Obviously, S does not only depend upon the refractive index distribution of the cavity,
it also changes with respect to the wavenumber k. For a given constant incoming
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1.2. Preliminary considerations

coefficient vector A, the output vector B may vary much with k. Even more striking is
the aspect of the near-field which may rapidly increase (and decrease) in amplitude as
the wavenumber is linearly changed. The cavity is resonant : peaks of stored energy (or
increasing cross-section) are related to the presence of poles of the scattering matrix in
the complex k-plane [88]. The poles of the scattering matrix are found by solving

det{S(k)}−1 = 0 k ∈ C (1.43)

for the wavenumber k. At these complex k-plane positions, an incoming wave with an
infinitesimal amplitude produces an ‘infinite’ outgoing response from the cavity.

The roots of Eq. (1.43) have a negative imaginary part. Equation (1.38) must be
increasing in amplitude with r because of causality: the field located far from the
cavity recorded at time tf was released from the cavity at an earlier time ti � tf when
the amount of field inside the cavity was larger than it is at tf . The complex root
condition (1.43) defines the emission problem.

For k on the real line however, any incoming vector A produces an acceptable solu-
tion to the scattering relation (1.41). This poses the issue of the ‘definiteness’ of the
scattering problem. Yet, it appears that some choices of incoming vectors A would
be more appropriate to select resonant modes on the real-k line. After all, the poles
of the scattering matrix have an imprint on the real-k line through the observation of
resonances: it is reasonable to suppose that carefully selected incoming vectors {A} at
a given k may identify the signature of single specific poles on the real-k line. Therefore,
we need to define an observable that is characteristic of the resonance phenomenon at
hand.

In this work, we argue that Smith’s delay matrix [135] provides a characteristic expan-
sion basis for the representation of the resonances of the real-k line. In Chapter 2, we
determine that the overall extra electromagnetic energy that accounts for the presence
of the cavity with respect to an otherwise empty universe is proportional to the delay
matrix

Q = −iS†∂S

∂k
k ∈ R . (1.44)

The characteristic modes of the cavity are defined through the eigen-quantities of this
matrix: locally non-interacting modes are defined by the incoming vectors {Ap} through
the eigenvectors of Q while the eigenvalues are immediately related to the average time
a given mode will be delayed by the cavity with respect to free propagation. Since
the delay matrix is hermitian symmetric, its eigenvalues are real and its eigenvectors
form an orthonormal basis. Also, the so-defined characteristic modes of the cavity are
time-reversible: the complete outgoing wavefield is a phase-offset complex conjugate
version of the incoming wavefield. In other words, the characteristic modes are self-
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1.2. Preliminary considerations

replicating fields through the interaction with the cavity. This motivated us to interpret
the characteristic modes as a special set of modes sitting on the real k-line half-way
between the poles of the scattering matrix Eq. (1.43) (pure emission) and zeros of
the scattering matrix (pure absorption). A formal comparison of the emission poles
description of the cavity and of the characteristic modes description is provided in
Section 2.1.3.

With regards to the definition of a PDE problem provided at the beginning of this sec-
tion, the description of the physical problem of investigating two-dimensional dielectric
cavities is summarized in Fig. 1.10. I also pushed this description beyond the point of
defining the PDE problem to indicate that we may still have a choice to do regarding
the point of view we want to exploit regarding the PDE problem at hand. The ‘proper’
choice is one of the main objects of this thesis.
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1.2. Preliminary considerations

Fig. 1.10 Definition of the PDE problem for the two-dimensional dielectric cavity.
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1.3. A solvable case: The homogeneous cavity

1.3 A solvable case: The homogeneous cavity

Although it does not display the complex features of other cavities, the open homoge-
neous disc cavity remains the only cavity having a simple, analytically trackable solu-
tion. This is important for developing physical intuition and to gather basic formulae to
describe the behaviour of the electromagnetic field. Moreover, since most of this thesis
is concerned with the deformation of the disc cavity, knowledge of its modes provides
the known eigenbasis for comparison and for setting a perturbation calculation.

The refractive index of the homogeneous disc cavity of radius r = R0 is defined by

n2(r, φ) = n2
c +

[
n2
o − n2

c

]
U(r −R0) (1.45)

where nc is the bulk material refractive index of the disc, no < nc is the refractive index
of the environment exterior to the cavity, and U(x) is the Heaviside step function:
U(x) = 0 for x < 0, and = 1 for x > 0. The partial differential equation to consider is
(1.18),

∇2ψ(r) + n2(r)k2ψ(r) = 0 (1.46)

with continuity boundary conditions (1.29)-(1.30)

ψ
∣∣
r=R0

= ψ
∣∣
r=R0

(1.47)
∂

∂ν
ψ
∣∣
r=R0

=
∂

∂ν
ψ
∣∣
r=R0

(1.48)

and radiation condition (1.33)

ψ±(|r| → ∞) ∼ e±inok|r|√
|r|

. (1.49)

This problem has already been solved for the exterior domain: the general solution
consists in a linear superposition of Hankel functions (1.40)

ψ(r) =
+∞∑

m=−∞

[
AmH

(2)
m (nokr) +BmH

(1)
m (nokr)

]
eimφ r ≥ R0 . (1.50)

The same coordinate separation procedure can readily be done again for the interior
domain, resulting in the differential equations (1.35) and (1.36) only now with no → nc.
For the interior domain r < R0, a solution of the kind of Eq. (1.50) will be divergent
at the origin unless Am = Bm (see the small argument expansions of Bessel and Hankel
functions presented in Appendix A). Setting Am = Bm = 1/2 am in (1.50) yields Bessel
functions of the first kind,

ψ(r) =
+∞∑

m=−∞
amJm(nckr)e

imφ r ≤ R0 . (1.51)
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1.3. A solvable case: The homogeneous cavity

The task now is to determine the different unknown coefficients {Am}, {Bm} and {am}.
These are obtained through the boundary conditions (1.47) and (1.48). Since there
is one more set of unknown coefficients than there are boundary conditions, the two
other sets of unknown coefficients will be defined through the first one. We choose the
{Am} coefficients as the independent ones. This choice is convenient in regard of the
scattering experiment where a wave incident to the cavity is defined through the {Am}
coefficients. The application of the boundary conditions yields

∑

m′

[
Am′H

(2)
m′ (Zo) +Bm′H

(1)
m′ (Zo)

]
eim

′φ =
∑

m′

am′Jm′(Zc)e
im′φ (1.52)

no
∑

m′

[
Am′H

(2)′

m′ (Zo) +Bm′H
(1)′

m′ (Zo)
]

eim
′φ = nc

∑

m′

am′J
′
m′(Zc)e

im′φ (1.53)

where Zo = nokR0 and Zc = nckR0, and ′ denotes the argument derivative for the
Bessel and Hankel functions.

Assuming that an incident wave has angular momentum14 m (i.e. a single incoming
coefficient Am = δmm′Am′ is chosen), we would be interested in obtaining knowledge of
the distribution of the coefficients {Bm′} = {Sm′mAm} and {am′} = {Tm′mAm}. This
is done by projecting on the appropriate angular basis function,

〈
φ
∣∣ Φm

〉
= eimφ,

equations (1.52) and (1.53),

AmH
(2)
m (Zo) +BmH

(1)
m (Zo) = amJm(Zc) (1.54)

no

[
AmH

(2)′
m (Zo) +BmH

(1)′
m (Zo)

]
= ncamJ

′
m(Zc) . (1.55)

We readily solve this linear system of algebraic equations for Bm and am,

Bm = −∆̄m

∆m

Am (1.56)

am = − 4i

πkR0

1

∆m

Am (1.57)

with

∆̄m = ncH
(2)
m (Zo)J

′
m(Zc)− noH(2)′

m (Zo)Jm(Zc) (1.58)

∆m = ncH
(1)
m (Zo)J

′
m(Zc)− noH(1)′

m (Zo)Jm(Zc) . (1.59)

In regards to the description of the scattering matrix S and transfer matrix T as
the linear transformation relating an incoming wave to the outgoing wave, {Bm′} =

{Sm′mAm}, and to the field inside the cavity, {am′} = {Tm′mAm}, we associate

S
(0)
mm′ = −∆̄m

∆m

δmm′ (1.60)

T
(0)
mm′ = − 4i

πkR0

1

∆m

δmm′ . (1.61)

14The use of this nomenclature for the index m will appear evident from a semi-classical result
obtained in this Section.
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1.3. A solvable case: The homogeneous cavity

The scattering matrix (and transfer matrix) for the homogeneous disc cavity is diagonal.
This form of the S matrix could already have been predicted from the separation of
coordinates Eqs (1.35) and (1.36) that applies for the whole configuration plane: the
orthogonal expansion basis indexed through the angular momenta {m} is the eigenbasis
for the homogeneous cavity scattering matrix. One such function is depicted in Fig.
1.11.

Fig. 1.11 Representation of |ψ(r)|2 for one of the modes of the disc cavity nc = 1.5, no = 1.0 and
R0 = 1; dark = high amplitude, white = low amplitude. This (resonant) mode is labeled (21, 3)

because it possesses angular momentum |m| = 21 and presents 3 maxima along its radial line inside
the cavity. We arbitrarily choose to set the incoming coefficients A+21 = A−21 = 1/

√
2 to select the

odd symmetry mode with respect to the horizontal axis of this picture. Accordingly, this mode has
a degenerate (orthogonal) companion with even symmetry obtained by setting A+21 = +1/

√
2 and

A−21 = −1/
√

2.

For k ∈ R, ∆∗m = ∆̄m (see Appendix A) and the S matrix is unitary,

S†S = SS† = 1 . (1.62)

The diagonal elements of the scattering matrix lie on the complex unit circle, Smm′ =

eiθmδmm′ , and the rate of change of the eigenphases {θm(k)} with respect to the wavenum-
ber corresponds to the eigenvalues of the delay matrix (1.44), also diagonal in the
homogeneous disc case,

∂θm
∂k

= Qmm =
cτ

R0

= −iS∗mm
∂Smm
∂k

= −i
(

1

∆̄m

∂∆̄m

∂k
− 1

∆m

∂∆m

∂k

)
. (1.63)

Large variations of the eigenphases with respect to the wavenumber are associated with
resonances of the cavity. Because S+m+m = S−m−m or Q+m+m = Q−m−m, the modes of
a given angular momentum |m| are degenerate: the rotational symmetry of the system
implies that all quantities found for mode +m equally apply for mode −m. The loss of
this rotational degeneracy is considered in Chapter 3.
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1.3. A solvable case: The homogeneous cavity

The poles of the scattering matrix (1.60) are found by solving

∆m(k)
!

= 0 (1.64)

for wavenumber k. Since the different Bessel and Hankel functions have an oscillating
behaviour for an argument Z > m, Z = {Zo, Zc}, we expect that many solutions
to problem (1.64) exist. Approximate expansions for ∆m(k) showing this oscillatory
feature may be found in Chapter 3 Eqs (3.118)-(3.120). The complex k-plane amplitude
of the ∆m(k) function is depicted in Fig. 1.12 for two values of m; some solutions to
problem (1.64) are marked by white crosses. These positions correspond to singular
values of the scattering matrix, or emission modes. They are almost evenly spaced with
respect to their real wavenumber component, a consequence of the monotonic phase
evolution of the oscillating Bessel and Hankel functions.

Re{kR0}
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0
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(a) m = 21
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−0.4

−0.2
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(b) m = 31

Fig. 1.12 Complex k-plane amplitude of ∆m(k) Eq. (1.59) for a homogeneous disc cavity of radius
R0 = 1 and refractive index nc = 1.5 immersed in an environment no = 1.0. The (logarithmic)
color scale ranges from dark near zero values (largely negative on a logarithmic scale) to bright for
high |∆m(k)| values. The poles of the S matrix (1.60) for the two angular momenta presented are
indicated by white crosses.

The existence of multiple resonances for a given angular momentum m has an impact
on the delays of the delay matrix (1.63), presenting a series of resonant delay peaks as
shown in Fig. 1.13.

Table 1.1 presents a comparison of the different numerical values computed for the
position and size of the resonances presented in Figs 1.12 and 1.13. The equivalent delay
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Fig. 1.13 Non-dimensional delay cτ/R0 (c is the speed of light in vacuum) as computed by Eq. (1.63)
for the homogeneous disc cavity defined by the same parameters as those used for Fig. 1.12, and the
same two angular momenta. The labeling (m, j) of the different resonant peaks refers to the angular
momenta m, and the number j of in-cavity radial extrema of the field. For instance, (31, 1) is the first
- and largest lifetime - resonance of the |m| = 31 series; no other |m| = 31 resonances exist at smaller
wavenumber values.

value for the pole positions is computed using 2/|Im{kR0}| 15, and the identification of
the modes is done using the usual convention (m, j), m being the angular momentum
and j, the number of radial maxima inside the disc domain r < R0. Modes (21, 1)

and (21, 2) are added for the sake of comparison with modes (31, 1) and (31, 2). The
differences between the pole and the delay matrix descriptions regarding the resonant
modes’ position increase with the number of radial maxima within a given angular
momentum (modes (21, 1) through (21, 5)), and decrease with angular momenta (modes
(21, 1 − 2) and (31, 1 − 2)). This is explained by the greater proximity of the poles to
the real-k line for larger momenta m at constant j, and lower indices j at constant
m. The pole description demands that a certain fraction of the complete wavenumber
- the imaginary part - be dedicated to an evanescent-like behaviour while the delay
description relies solely on a ‘propagating’ real wavenumber to model the wave. In this
latter description, any evanescent features are relegated to the waveform of the field.

The interpretation of the many solutions to problem (1.64) or of the many peaks of
(1.63) is facilitated by an intuitive model of the disc cavity.

15The factor 2 in this expression is needed to double the emission time: because of time reversibility of
the scattering experiment, the complete time delay as measured by the delay matrix is (approximately)
twice the emission time.
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Mode Poles of S Resonant delays of Q

(m, j) Re{kR0} 2/|Im{kR0}| kR0 cτ/R0

(21, 1) 16.5962405654 2.41794× 102 16.5962405645 2.41779× 102

(21, 2) 19.48301 1.652× 101 19.48299 1.631× 101

(21, 3) 22.16182 7.0 22.16152 6.5

(21, 4) 24.73855 5.3 24.73813 4.6

(21, 5) 27.21555 4.7 27.21516 3.9

(31, 1) 23.75862762963 5.2572886× 103 23.75862762948 5.2572879× 103

(31, 2) 26.97732192 9.3098× 101 26.97732188 9.3060× 101

Tab. 1.1 Comparison of some of the resonances for the homogeneous disc (nc = 1.5, no = 1.0,
R0 = 1) as determined by the computation of the poles of the S matrix, problem (1.64), and from the
Q matrix, maximization of (1.63). All digits are kept up to the last two disagreeing significant digits.
Numerical resolution is 10−12 on the wavenumber value for the pole search and peak maximization.

1.3.1 The effective potential description

The generalization for all values of r of the differential equation for the radial function
Eq. (1.35) for the disc cavity takes the form

r2d
2R
dr2

+ r
dR
dr

+
[
n2(r)k2r2 −m2

]
R = 0 (1.65)

with n2(r) the refractive index of the disc as defined by Eq. (1.45) and m is an in-
teger constant. This differential equation is quite similar to the 1D time independent
Schrödinger equation. This is even more obvious if the first derivative is removed [67, 89]
by defining a scaled version of the radial function R(r),

R(r) =
f(r)√
r

. (1.66)

This leads to a new second order differential equation

d2f(r)

dr2
−
[
−n2(r)k2 +

m2 − 1/4

r2

]
f(r) = 0 . (1.67)

Using a convenient reference ‘energy level’ n2
ok

2, we readily obtain a Schrödinger-like
equation

− d2f(r)

dr2
+ Veff(r)f(r) = n2

ok
2f(r) . (1.68)

with the k-dependant effective potential

Veff(r) =

[
[n2
o − n2(r)]k2 +

m2 − 1/4

r2

]
. (1.69)

This potential is everywhere decreasing except at the cavity boundary r = R0 where
n(r) steps from nc to no < nc. This produces a ‘dent’ in the potential, allowing for
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resonant states to exist behind the so-formed barrier Fig. 1.14. Resonant states are
not bound states: they are not localized solely within the cavity boundary. Given an
angular momentum m, the height of the potential barrier remains the same at a value
of (m2 − 1/4)/R2

0 but its depth increases with wavenumber k.

This simple potential model for the disc cavity provides a way to show that three
domains of wavenumber exist for a given m, each exhibiting a typical behaviour16:

• Below barrier regime kR0 <

√
m2−1/4

nc
: The high angular momentum of the

field with respect to the wavenumber ‘energy level’ prevents the field to reach the
cavity, Fig. 1.14(a);

• In-barrier regime
√
m2−1/4

nc
< kR0 <

√
m2−1/4

no
: The angular momentum and

the wavenumber balance each other and enable the resonant behaviour where the
field gets captured behind the potential barrier, Figs 1.14(b) and 1.14(c);

• Above barrier regime
√
m2−1/4

no
< kR0: The angular momentum is too small for

the wavenumber ‘energy level’ n2
ok

2, and the field easily has access to the cavity,
sometimes with larger amplitudes giving rise to a series of low-lying resonances,
filling the baseline of the delay spectrum, Fig. 1.14(d).

Given an angular momentum m, increasing the real wavenumber k from 0 to the barrier
limit shows a monotonous increase in the amount of field found in the cavity. Then, a
finite number of large resonances appear as the wavenumber gets in the in-barrier regime
(for m = 21, resonances (21, 1) and (21, 2) are in this regime). The barrier gets thinner
as the wavenumber ‘energy level’ grows, leading to smaller resonant lifetimes. Finally,
the above barrier regime shows an infinite series of low-lying resonances. Reference to
these domains will appear throughout the thesis.

1.3.2 The semi-classical limit

Another useful interpretation of the homogeneous disc cavity modes comes from semi-
classical physics. A complete discussion on the subject is largely beyond the scope of
this work, but we will outline the main ideas and results that we will often refer to (see
[147] for a general discussion on the semi-classical physics of the disc cavity).

16The off-resonance results belong to the scattering description of the field, the wavenumber is real.
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Fig. 1.14 Effective potential representation of the homogeneous disc cavity with nc = 1.5, no = 1.0

and R0 = 1 for |m| = 21. The ‘classically forbidden’ regions of the potential are colored in gray, and the
energy level (nok)2 is represented by the dashed green line with the wavefunction |ψ(r, φ)|2 = |R(r)|2
in plain blue trace standing upon it. (a) Below barrier regime (off-resonance); (b) In-barrier regime, off-
resonance; (c) In-barrier regime, on-resonance (21, 1); (d) Above barrier regime, on-resonance (21, 4).

The semi-classical Ansatz for the scalar wave equation writes [9]

ψ(r) ∼ eikS(r)

∞∑

j=0

1

(ik)j
aj(r) (1.70)

where S(r) ∈ R is a real phase factor called the eikonal and aj(r) ∈ R are the am-
plitude factors of an asymptotic expansion in wavenumber k (i.e. the wavenumber is
considered large with respect to the characteristic size of the object under study). The
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1.3. A solvable case: The homogeneous cavity

amplitude factors aj are supposed to be monotonous with respect to spatial coordinates
in distinction to the fast changing kS term. Inserting this expression into the Helmholtz
equation (1.18), we get the auxiliary expression arranged in leading powers of k

0 = k2
[
− (∇S)2 + n2(r)

] ∞∑

j=0

1

(ik)j
aj

+k1

[
i

(
2
∞∑

j=0

1

(ik)j
∇S · ∇aj +∇2S

∞∑

j=0

1

(ik)j
aj

)]

+k0

[ ∞∑

j=0

1

(ik)j
∇2aj

]
. (1.71)

Keeping only the leading powers of k for the real and imaginary parts, we find a set of
partial differential equations

(∇S)2 = n2 (1.72)

2∇S · ∇a0 + a0∇2S = 0 . (1.73)

The first one is the eikonal equation and the second one is called the transport equation.
These are the general expressions that form the very framework of geometrical optics:
for given ‘initial’ amplitude and a phase profile, the eikonal equation traces a series of
trajectories or geometrical rays perpendicular to constant phase fronts S(r) = const.,
and the transport equation distributes the field amplitude accordingly. The geometrical
rays reflect the variations of the refractive index n(r). In the following we shall be
especially interested in the complete phase of Eq. (1.70),

θ = kS . (1.74)

We rewrite Eq. (1.72) in hamiltonian form

1

2
p2 + V (r) = E (1.75)

with

linear momentum: p =∇θ (1.76)

potential: V (r) =
1

2

[
(nok)2 − (n(r)k)2

]
(1.77)

constant energy: E =
1

2
(nok)2 . (1.78)

For a refractive index defined in a piecewise manner such as the disc cavity, the linear
momentum p is locally constant due to Eq. (1.72) and the classical trajectories asso-
ciated to (1.75) are straight lines. The position along a trajectory may be cast in a

32



1.3. A solvable case: The homogeneous cavity

parametrical form q(τ) = pτ + q(0) where τ is a scalar parameter running along one
trajectory. For smoothly varying refractive indices, trajectories are bent [122].

At this point, the equations for the motion of individual light particles in dielectric
cavities are known, regardless of our ability to solve exactly Eqs (1.72) and (1.73).
However the disc cavity is a special case that allows for an exact solution of all the
trajectories at once, that is, the solution for θ through the eikonal equation (1.72).

Taking into account the natural symmetry of the problem in polar coordinates - V (r) =

V (r) = V0 for r < R0 - we first assume separability of the phase θ into radial and angular
parts,

θ(r, φ) = θr(r) + θφ(φ) . (1.79)

Inserting into Eq. (1.75) leads to
(
dθr
dr

)2

+
1

r2

(
dθφ
dφ

)2

+ V0 = E (1.80)

Since no quantity in this expression explicitly depends on the angular position φ other
that θφ(φ), we must have

dθφ
dφ

= K0 = const. . (1.81)

Taking the positive root of the differential component of Eq. (1.81), the formal solution
to (1.81) is

θr =

∫
dr
√

(E − V0)−K2
0/r

2 +K1 (1.82)

where K1 is an arbitrary constant. Following the change of variable

η =
K0√
E − V0

1

r
(1.83)

the integral (1.82) becomes

θr = K0

∫
dη

1

η2

√
1− η2 +K1 (1.84)

which is easily solved by integration by parts17. For r > K0/
√
E − V0, the solution to

(1.84) is

θr = −
√

(E − V0)r2 −K2
0 +K0 arccos

K0√
(E − V0)r

+K1 . (1.85)

Recalling that this is the solution for the positive root of the differential component of
Eq. (1.81), we write the two solutions for θr

θ±r (r) = ±
[

+
√

(E − V0)r2 −K2
0 −K0 arccos

K0√
(E − V0)r

]
+K±1 , r > K0/

√
E − V0 .

(1.86)
17
∫
udv =

∫
d(uv)−

∫
vdu and u =

√
1− η2 and v = −1/η
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1.3. A solvable case: The homogeneous cavity

The complete solution for Eq. (1.72) in cylindric coordinates for a constant refractive
index n, and r > K0/nk is therefore

θ±(r, φ) = ±
[
+
√
n2k2r2 −K2

0 −K0 arccos
K0

nkr

]
+K±1 +K0φ , r >

K0

nk
. (1.87)

Taking the gradient of this function in order to compute the trajectories’ momentum p

Eq. (1.76), we find

p± = ∇θ± = ±
√

(nkr)2 −K2
0

r
r̂ +

K0

r
φ̂ . (1.88)

This result shows that free-propagating trajectories forming straight lines are actually
each composed of two line segments coalescing into a circle of radius r = K0/nk: for
a given trajectory, p− is incident on this circle (the r̂ component is negative), and p+

is leaving the circle, Fig. 1.15. This accumulation line of all trajectories is referred
to as a caustic curve [9]. The scattering process onto a caustic curve results for an
outgoing trajectory in a −π/2 phase offset with respect to the incoming one [9, 28].
This motivates us to set K±1 = ∓π/4 in Eq. (1.87) so that scattering by the caustic is
naturally taken into account in a symmetrical way by θ+ and θ−,

θ±(r, φ) = ±
[
+
√
n2k2r2 −K2

0 −K0 arccos
K0

nkr
− π

4

]
+K0φ , r >

K0

nk
. (1.89)

For waves below the caustic radius r < K0/nk, the analysis of complex rays [68, 28]
shows that the Eikonal takes the form

Λ±(r, φ) = ∓i
[
+
√
K2

0 − n2k2r2 −K0 arccosh
K0

nkr

]
+K0φ , r <

K0

nk
. (1.90)

Recalling that one idea behind the semi-classical Ansatz (1.70) involves the separation
of a slow moving amplitude term and a fast evolving phase term, this complexified
eikonal suppresses the amplitude terms aj on a shorter length scale than they would do
on their own. Notice that these formulations for the phase are the same as the ones for
the large m expansion for the different Bessel and Hankel functions Eq. (A.32).

For K0 not an integer, the wave function as defined by Eq. (1.70) is not continuous
over a round trip about the origin. Because of this, K0 will be set to an integer value
m.

Computing L = r × p confirms that m is the modulus of the classical angular mo-
mentum, and the same for both function θ+ and θ− Eq. (1.89). This enforces our
nomenclature for m being the angular momentum in the full wave description of the
field.
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1.3. A solvable case: The homogeneous cavity

Fig. 1.15 Phases θ−(r, φ) (blue) and θ+(r, φ) (red) according to Eq. (1.89) evaluated at evenly spaced
constant values. A geometrical trajectory ‘optical ray’ perpendicular to the constant phase levels Eq.
(1.88) is also shown with emphasis on the changeover at the caustic from the incoming wave in blue to
the outgoing wave in red. The scattering by the caustic curve causes a phase offset of −π/2 between
the two wave types.

So far, we have only managed to solve the eikonal equation in polar coordinates irre-
spective of the actual cavity shape. The benefits of this procedure appear as we apply
the boundary conditions of a disc cavity to Eq. (1.89).

The solution of the disc cavity problem with refractive index (1.45) demands that the
boundary conditions (1.29)-(1.30) be satisfied. This can be done with a superposition
of first order waves a0eiθ or a0eiΛ known to solve the Eikonal and transport equations
(1.72)-(1.73) for a given geometry,

ψ0(r) =
∑

l

al0eiθ
l

+
∑

l

αl0eiΛ
l

. (1.91)

For the cylindrical coordinates, we have found in Eq. (1.89) that two real wave types
exist above the caustic: one directed toward the caustic and the other, leaving it. The
presence of a physical circular boundary at r = R0 concentric to the caustic r = m/nck

implies that the incoming and outgoing waves to the caustic must be connected to each
other again at the exterior interface R0 > m/nck, Fig. 1.17. For the sake of simplicity,
we will assume that the cavity does not leak: the reflection at the physical boundary
at r = R0 leaves the amplitudes al0 untouched except, perhaps, for a phase offset that
is to be transferred to the phase term θl in any case.

How many waves need to be superimposed in Eq. (1.91) to solve the disc problem?
Since we are concerned with waves keeping their total energy (the media are lossless
everywhere including the boundaries), and that the linear momentum at the circular
boundary from an incoming trajectory |p+ · r̂| to a reflected one |p− · r̂| is constant for a
given m, we may assume that a single pair of θ+ = θ+

m and θ− = θ−m is sufficient to solve
the problem of elastic reflection at the interface for r < R0. We may of course superpose
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1.3. A solvable case: The homogeneous cavity

waves of different values of angular momentum, but these will not interact with each
other: wavefunctions labeled with integer angular momenta form an orthogonal set of
functions.

For r > R0, we shall rely on the decaying types of waves involving Λ± = Λ±m phase
factors (1.90). This prescription is indicated since we want the ‘real’ waves to remain
within the cavity. This description is closely related to the one used for the total internal
reflection phenomenon [58]. Notice that in this case, the cavity is enclosed in a second
caustic boundary located at r = m/nok > R0.

Under these conditions, the complete semi-classical field is modeled as

ψ0(r) =

{
a+eiθ

+
m + a−eiθ

−
m r ≤ R0

α−eiΛ
−
m r ≥ R0

(1.92)

with the explicit phase functions

θ±m(r, φ) = ±
[
+
√
n2
ck

2r2 −m2 −m arccos
m

nckr
− π

4

]
+mφ (1.93)

Λ−m(r, φ) = +i

[
+
√
m2 − n2

ok
2r2 −marccosh

m

nokr

]
+mφ . (1.94)

The application of the TM boundary conditions (1.29)-(1.30) on (1.92) should indicate
any phase offset conditions on the boundary reflected cavity waves, and no changes in
internally reflected waves should be observed.

Fig. 1.16 Application of Eq. (1.89) to the disc cavity of radius R0 in a no loss scenario. A trajectory
perpendicular to constant phase levels is reflected at the boundary of the cavity and undergoes a phase
shift as it moves from an outgoing wave to an incoming wave.
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1.3. A solvable case: The homogeneous cavity

Using the TM boundary conditions (1.29)-(1.30), we are led to
[
a+

0 eiθ
+
m + a−0 eiθ

−
m

]
r=R0

=
[
α−0 eiΛ

−
m

]
r=R0

(1.95)

∂

∂r

[
a+

0 eiθ
+
m + a−0 eiθ

−
m

]
r=R0

=
∂

∂r

[
α−0 eiΛ

−
m

]
r=R0

. (1.96)

These conditions are valid for all angles φ.

Recalling that our semi-classical model implies that the phase factors are rapidly chang-
ing in comparison to the amplitude factors, condition (1.96) may be simplified by keep-
ing only the leading terms involving phase derivatives,

[
a+

0 eiθ
+
m
∂θ+

m

∂r
+ a−0 eiθ

−
m
∂θ−m
∂r

]

r=R0

'
[
α−0 eiΛ

−
m
∂Λ−m
∂r

]

r=R0

. (1.97)

Using condition (1.95) to form a ratio with (1.97), the α−0 coefficient is canceled out,
leaving

a+
0 eiθ

+
m ∂θ+

m

∂r
+ a−0 eiθ

−
m ∂θ−m

∂r

a+
0 eiθ

+
m + a−0 eiθ

−
m

=
∂Λ−m
∂r

∣∣∣∣∣
r=R0

. (1.98)

Using Eqs (1.93) and (1.94), the radial derivatives are evaluated and we readily obtain
the relation between the incoming and reflected waves,

a−0 eiθ
−
m
∣∣
r=R0

= a+
0 eiθ

+
m+iarg{R}∣∣

r=R0
(1.99)

with the argument of the reflection coefficient

arg{R} = −2arctan

(√
m2 − (nokR0)2

√
(nckR0)2 −m2

)
. (1.100)

The relation (1.99) implies that the phases must be equal, leading to the condition on
the only undetermined parameter k

√
n2
ck

2R2
0 −m2−m arccos

m

nckR0

−π
4

= arctan

(√
m2 − (nokR0)2

√
(nckR0)2 −m2

)
+(j−1)π , j ∈ Z .

(1.101)
Since the left hand side of Eq. (1.101) is monotonically increasing with k from a
minimum value of −π/4 at k = m/ncR0, and that the right hand side is monotonically
decreasing from jπ − π/2 at k = m/ncR0 to jπ − π at k = m/noR0, we expect that
some values of j ≥ 1 might lead to solutions of Eq. (1.101). This result is in accord
with the onset, at a certain wavenumber value, of series of resonant solutions of a given
m, as observed in Figs 1.13 and 1.12.

The limiting values of the right hand side of Eq. (1.101) are known to correspond
to Dirichlet (the total wavefunction is zero) and Neumann boundary conditions (the
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1.3. A solvable case: The homogeneous cavity

wavefunction derivative is zero) [68]. This description fits well with the in-barrier case of
the 1D potential model found in Section 1.3.1, the ‘most reflected’ waves being localised
at the bottom of the potential ‘dent’ (Dirichlet) and ‘free boundary’ modes appearing
near the top of the barrier (Neumann).

An example of graphical solution to Eq. (1.101) is presented in Fig. 1.17, and compar-
ison of wavenumber values from peaks of the delay matrix and semi-classical approxi-
mation is provided in Tab. 1.2.

Fig. 1.17 Graphical solution to problem (1.101) for m = 21 and nc = 1.5, no = 1.0 and R0 = 1. The
black line is the left hand side of (1.101) and green curves correspond to the right hand side; solutions
are at the crossings. Also shown are the limits of the right hand side of Eq. (1.101) associated to
Dirichlet (blue) and Neumann (red) problems. While solutions for larger k tend toward the Neumann
problem typical of ‘open boundary’ systems, solutions for j = 1 resemble more to the Dirichlet problem
characteristic of total reflection phenomenon.

As noted in [68], the semi-classical approximation yields surprisingly accurate results
even for small values of the wavenumber. The use of the semi-classical result (1.101)
provides a good approximation of the disc’s high quality resonant peak positions while
being easy to evaluate in comparison to peak delay detection or identification of poles
of S near the real axis as indicated by Eqs (1.63) and (1.64) respectively. Also, the
normalized component of the linear momentum (1.88) that is tangential to the disc
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1.3. A solvable case: The homogeneous cavity

Mode (m, j) kR0 from peaks of Q kR0 from Eq. (1.101) % difference
(21, 1) 16.60 16.69 0.5%
(21, 2) 19.48 19.58 0.5%
(31, 1) 23.76 23.81 0.2%
(31, 2) 26.98 27.06 0.3%
(31, 3) 29.99 29.62 1.2%

Tab. 1.2 Comparison of exact peak position of selected resonances from the delay matrix and solutions
of the semi-classical approximation Eq. (1.101) for the disc cavity of radius R0 = 1 and refractive
index nc = 1.5 and no = 1.0. The decreasing relative difference from m = 21 to m = 31 for a given
j is expected from the semi-classical approximation.

boundary is readily linked to the incidence angle χ

p =
m

nckR0

= sinχ . (1.102)

This last relation will often be recalled throughout the thesis as it provides a direct
relation from the wave picture to the classical billiard model.

Although extremely appealing at first, the semi-classical approximation of the field fails
rapidly for geometries departing from the disc. The reason is that the sum (1.91) needs
a finite number of terms to converge. This predicament is discussed in [140] where
the case for chaotic cavities - or cavities showing some degree of chaos - is explained
to be especially pathological with regards to the semi-classical model. For these often
encountered cavities, an infinite number of contributions to (1.91) is expected.

Nevertheless, we shall use the classical picture of propagating rays provided by (1.76) to
gather dynamical properties of large sets of trajectories. The idea behind this convenient
theoretical shortcut is that a wave is expected to have a certain resolving power at a
given finite wavelength. It may not be enough to identify minute trajectories, but large
ensembles of trajectories might be within the modeling scope. Chapter 4 explores an
application of the concept.
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Chapter 2

Formalism I: Theoretical and
numerical approach

We develop in this Chapter a scattering description of the resonant modes
of 2D dielectric cavities. The first Section is concerned with the formal
development of the method together with its fundamental properties and
idiosyncrasies. The scattering matrix S and the Wigner-Smith delay matrix
Q are introduced and special attention to their numerical implementations
are discussed in Section 2.2 and 2.4 respectively. Section 2.3 is devoted
to the reconstruction of the wavefunction over all space and we propose a
hybrid method composed of our scattering approach and a Finite Element
Method for completing this task. The homogeneous disc and the annular
cavity (both of which have a closed-form S matrix) are used extensively for
numerical calibrations of our computations. The benchmark calculations
serve to insure the reliability of the numerical results to be presented in the
subsequent Chapters. Two Appendices (C and D) complete the theoretical
and numerical descriptions.

The dielectric cavities investigated in this Chapter are assumed to be of finite volume
with a small thickness along the Oz axis. The field dynamics is then essentially confined
to the OxOy plane, and a convenient separation of the two polarization states relative
to that plane is possible. Despite recent concerns about the quantitative predictions of
this model [17, 18, 19], we argue that a qualitative (in all cases) or semi-quantitative
(in most cases) agreement with experiment can readily be achieved as validated by a
number of experimental realisations of quasi-2D cavities (see [56] for a recent review
and references therein). For the sake of simplicity, we concentrate on TM polarization
only (electric field along Oz axis).



2.1. An energy description of the modes

The electromagnetic resonant modes of a cavity are usually defined through the complex
wavenumber poles of the scattering matrix, the emission viewpoint. Poles located in the
lower half of the complex wavenumber plane are associated with emission modes of the
cavity (the field exponentially increasing in the far-field) while zeros in the upper half
of the complex plane describe completely absorbing resonances (the field exponentially
decreasing in the far-field). In this Chapter however, we will focus on a scattering
viewpoint and will present an alternative way of defining the modes of a cavity. At
times, we will oppose and compare the results obtained from the emission and the
scattering point of view.

The original content of this Chapter revolves around the use of the characteristic modes
of a dielectric cavity obtained through the diagonalisation of the delay matrix to describe
the behaviour of the electromagnetic field resulting from the interaction with the said
cavity. The derivation of the energy matrix/delay matrix Eq. (2.14), based on the one
of Smith [135], and the related consequences to its use, Sections 2.1.2 and 2.1.3, and the
comparison between characteristic modes and emission modes of Sections 2.1.3 and 2.4,
are understood to be original [95, 96, 94]. Also, an important simplification leading to
Eq. (2.71) in the numerical algorithm used to compute the scattering matrix [113, 112]
may be considered original as well [103, 96, 94].

2.1 An energy description of the modes

2.1.1 Main derivation

The time-averaged electromagnetic energy inside a volume V occupied by a monochro-
matic real electric field Ẽ(r, t) = 1

2
[E(r)e−iωt + E∗(r)e+iωt], ω ∈ R, and its associated

magnetic field, H̃(r, t) = 1
2

[H(r)e−iωt + H∗(r)e+iωt] is

EV =

∫

V

d3r

[
1

4
εE∗ · E +

1

4
µH∗ ·H

]
(2.1)

where ε = ε0n
2(r) ∈ R is a time/frequency independent permitivity and µ = µ0 is the

magnetic permeability of vacuum. The speed of light in vacuum, c = 1/
√
ε0µ0, relates

the angular frequency ω to the wavenumber k via the dispersion relation ω = ck. For Eq.
(2.1) to be useful, one must specify the electromagnetic field that satisfies propagation
properties in a medium of refractive index n(r) with appropriate boundary conditions.

The cavity may always be enclosed in a cylindrical volume Vc of radius Rmax and ‘small’
width w, itself contiguous to a larger annular cylindrical volume V −Vc of exterior radius
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2.1. An energy description of the modes

Fig. 2.1 Top view of the dielectric cavity and its surroundings. The cavity itself is a thin slab of
dielectric material of width w along the Oz axis (close-up box) and is restricted to a cylindrical domain
of radius Rmax. This cylinder is placed inside a large coaxial annular cylinder whose radius RV shall
eventually reach infinity.

RV (see Fig. 2.1). Inside the latter domain of dielectric constant no, a component of
the electric field E(r) = ψ(r)ẑ solving Helmholtz’ equation

[
∇2 + n2

ok
2
]
ψm(r) =

[
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2
+ n2

ok
2

]
ψm(r, φ) = 0 (2.2)

may be written as

ψm(r) = H(2)
m (nokr)e

imφ +
+∞∑

m′=−∞
Sm′m(k)H

(1)
m′ (nokr)e

im′φ (2.3)

where H(1,2)
ν (ξ) are Hankel functions and {Sm′m} are the cavity scattering matrix el-

ements in an angular momentum basis. The infinite summation will be practically
truncated to a finite symmetric range from −M to +M for numerical implementation.
For real k, the scattering matrix S is unitary (S−1 = S†) due to flux conservation, and
satisfies ‘time reversal symmetry’ through the complex transpose operation † on the
wavefunction. This property enables one to deduce a special characteristic of the S

matrix that will be useful in the numerical implementation of Section 2.2.

Consider the outgoing wave components labeled {m′} resulting from incoming wave
component m. Outgoing/Incoming wave convention refers to the asymptotic expan-
sions of Hankel functions found in [1] (or see Appendix A) relative to an implicit time
dependence e−iωt. The following succession of operations lead to a particularly useful
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property of the S matrix elements:

H(2)
m (z)e+imφ →

∑

m′

Sm′mH
(1)
m′ (z)e+im′φ initial reaction

∑

m

S∗m′mH
(2)
m (z)e+imφ → H

(1)
m′ (z)e+im′φ unitarity of S

∑

m

Sm′mH
(1)
m (z)e−imφ ← H

(2)
m′ (z)e−im

′φ time-reversed reaction (∗)

Finally, using the property H
(1,2)
−m (z) = (−1)mH

(1,2)
m (z) [1] and comparing the time-

reversed reaction with the initial one, we conclude that (see Notation for angular mo-
mentum ordering of S)

Sm′m = (−1)m
′
S−m−m′(−1)m (2.4)

or, in matrix notation,
S = P ST P , (2.5)

where {P}mm′ = (−1)mδ−mm′ and superscript T denotes the (non-complex) transpose
operation. Matrix P is simultaneously its own inverse (P2 = 1) and transpose.

Although the field inside Vc is not simply expressible as in Eq. (2.3), we will retain the
label m to identify the field ψ(r) inside r < Rmax as well. Recalling expression (2.1),
we define a (complex) energy matrix inside volume V , whose elements are

EVmm′ =

∫

V

d3r

[
1

4
εE∗m · Em′ +

1

4
µH∗m ·Hm′

]
. (2.6)

Using Maxwell’s equations for a monochromatic electric field along the Oz axis, we
obtain

EVmm′ =
ε0

2

∫

V

d3r

[
ψ∗mψm′ +

1

2k2
∇·(ψm′ ẑ ×∇× ψ∗mẑ)

]
. (2.7)

From the parametric derivative of Helmholtz’ equation, we can show that [135]

n2(r)ψ∗mψm′ =
1

2k
∇ ·
[
∂ψm′

∂k
∇ψ∗m − ψ∗m∇

∂ψm′

∂k

]
(2.8)

transforming (2.7) to

EVmm′ =
ε0

4k

∫

V

d3r ∇ ·
(
∂ψm′

∂k
∇ψ∗m − ψ∗m∇

∂ψm′

∂k

)

+
ε0

4k2

∫

V

d3r ∇ · (ψm′ ẑ ×∇× ψ∗mẑ) . (2.9)

Equation (2.9) is then integrated over the thin cylindrical volume V using the divergence
theorem, resulting in

EVmm′ =
ε0wRV

4k

∫ 2π

0

dφ

(
∂ψ∗m
∂r

∂ψm′

∂k
− ψ∗m

∂2ψm′

∂k∂r

)

+
ε0wRV

4k2

∫ 2π

0

dφ
∂ψ∗m
∂r

ψm′ . (2.10)
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Inserting (2.3) in the preceding expression solves the integration over angle φ. Taking
the limit RV → ∞ permits the use of asymptotic expressions for the different Hankel
functions (Appendix A) and the complex energy matrix element now takes the form

E∞mm′ = lim
RV→∞

EVmm′ (2.11)

= lim
RV→∞

[
4ε0noRVw

k
+O(R−1

V )

]
δmm′ +

2ε0w

k

(
−i
∑

j

S∗jm
∂Sjm′

∂k

)
(2.12)

≡ E0
mm′δmm′ + Emm′ . (2.13)

The first term E0
mm′ is associated with the linearly increasing energy inside a large

cylinder of refractive index no. This diverging ‘free-space’ energy is denoted by E0. The
second term Emm′ however is independent of RV and represents the excess energy inside
the volume V and attributed to the presence of the cavity. We then write the excess
energy matrix

E =
2ε0w

k

(
−iS†∂S

∂k

)
. (2.14)

Since S is unitary for real wavenumbers, E is hermitian symmetric.

Of course, any electromagnetic field substituted into (2.1) should yield a real energy.
One then looks for a fundamental set of fields {Ep} = {ψpẑ} such that

E∞pp′ =

∫

V

d3r

[
1

4
εEp∗ · Ep′ +

1

4
µHp∗ ·Hp′

]
≡ e∞p δpp′ . (2.15)

This expression states our intention of finding a set of non-interacting characteristic
modes. These modes in turn may always be represented outside Rmax in the angular
momentum basis by an expression of the form

ψp(r) =
∑

m

[
ApmH

(2)
m (nokr) +Bp

mH
(1)
m (nokr)

]
eimφ (2.16)

where Bp
m =

∑
m′ Smm′A

p
m′ . Equation (2.15) is simply the expression of the eigen-

decomposition of total energy equation (2.12). Because E0 is independent of the angular
momentum basis, however divergent it might be, any field satisfying Ap† ·Ap′ ∝ δpp′ in
expression (2.15) automatically yields a real free-space energy component. And since
the only relevant physical quantity is the excess energy matrix (2.14), it will easily be
diagonalized in an orthogonal basis conveniently chosen to satisfy the reality of the
free-space energy E0.

2.1.2 Energy modes as stationary scattering states

The scattering matrix found in the expression of excess energy (2.14) satisfies the time
reversibility condition (2.5). Using this relation and letting Ap be an eigenvector of
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matrix E with eigenvalue ep, it is found that vector S†PAp∗ is also an eigenvector of E
with the same eigenvalue ep, i.e.

EAp = epA
p (2.5)−−−−−−−−→ E

(
S†PAp∗) = ep

(
S†PAp∗) . (2.17)

For normalized Ap, the vectors S†PAp∗ are also normalised (P = P−1 = P† and S is
unitary), and they can only be related to each other by a phase factor, i.e.

Ap = e−iθpS†PAp∗ . (2.18)

As it stands, this relation is also retrieved considering that the channel wavefunction
ψp(r), for r ≥ Rmax, is made up of an incoming ψpin(r) and an outgoing ψpout(r) part

ψp(r) = ψpin(r) + ψpout(r) (2.19)

=

(∑

m

ApmH
(2)
m (nokr)e

imφ

)
+

(∑

m

Bp
mH

(1)
m (nokr)e

imφ

)

leading to
[ψpin(r)]∗ = e−iθpψpout(r). (2.20)

The eigenvectors of the excess energy matrix are then understood as self-replicating
waves through the interaction with the cavity. Relation (2.18) itself represents the
action of an anti-unitary operator on vector Ap, a property revealing the reversibility
of the associated wavefunction [52]. Vectors {Ap} define a fundamental set of electro-
magnetic modes that are captured by the cavity in the exact same fashion as they are
released, hence the name characteristic modes of the cavity. The phase factor e−iθp ,
due to the cavity, embodies the lag between incoming and outgoing parts of a given
reference angular momentum channel. It may always be eliminated by a suitable choice
of phase for Ap. This implies that the complete wave function ψpin +ψpout may always be
taken real. One observes further that the reversibility property of characteristic modes
are closely related to the duality of absorption zeros/emission poles in the complex k
plane (see Fig. 2.2 for instance). This specific topic is discussed in the next subsection.

The delay associated with the presence of the cavity with respect to free-space propa-
gation may be understood as the ratio of the excess energy to the incoming/outgoing
total power. This calculation is needed to properly normalize the overall excess energy
(i.e. the delay must be independent of the amplitude of the field). The incoming power
is computed over the external boundary of the large cylinder (see Fig. 2.1). The mod-
ulus of the incoming/outgoing electromagnetic power for a characteristic mode may
be shown to be (Ap†Ap)2w/ckµ0. Assuming normalization of the Ap coefficients, the
channel delay cτp (in length units) of a characteristic mode of the cavity is then

cτp = Ap†
(
−iS†∂S

∂k

)
Ap ≡ Ap†Q Ap . (2.21)
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One recognizes the matrix Q as the celebrated lifetime matrix of Felix Smith [135] intro-
duced in the context of quantum mechanical multichannel scattering. It is also referred
to as the Wigner-Smith time-delay matrix by some authors [26, 131]. We will adopt the
denomination delay matrix or sometimes time-delay matrix. The characteristic modes
1 are therefore simply the eigenvectors of Q.

Assuming θ = θp being fixed relative to a given angular momentum channel, expression
(2.20) may also be used as a starting point leading to the usual definition of group delay.
Suppose that one knows an incoming wave ψin(r) as defined above satisfying relation
(2.20). From this expression, we obtain the identity

[
ψ∗out

∂ψout

∂k
− ψout

∂ψ∗out

∂k

]
+

[
ψ∗in

∂ψin

∂k
− ψin

∂ψ∗in
∂k

]
= 2iψ∗inψin

∂θ

∂k
. (2.22)

This equation is then integrated over φ and the large argument expansions of the Hankel
functions are used (see Appendix A). Once the limit r →∞ is taken, we find to leading
order an equivalence between the definition of the group delay and Smith’s lifetime
matrix,

∂θ

∂k
= A†

(
−iS†∂S

∂k

)
A. (2.23)

This expression does not specify however the exact nature of the vector A: it only
establishes that the group delay between two waves, defined as the derivative of the
phase offset relative to k, is measured by the delay matrix.

Finally, note that not every linear superpositions of vectors in the set {Ap} satisfy the
reversibility property (2.20). An intuitive example is the scattering of an incident plane
wave: although the incoming wave may be projected into the characteristic modes, the
outgoing wave is unlikely to satisfy the self-replication condition (2.20).

2.1.3 Some properties of the Q matrix

• The fundamentals

Since the S and the Q matrices occupy central stage in our discussion, it is perhaps
interesting to present some of their basic properties. We will focus on a formulation
that sheds some light on their physical interpretation. Let the matrix

Sj(k) = 1− iΓj
k − kj

Pj (2.24)

1Shimamura [131] has recently coined the term Q-eigenchannels to refer to the eigenvectors Ap.
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Fig. 2.2 Dichotomy in the positions of the zeros and poles of the S matrix. The scattering description
presented in this chapter extracts the system’s information from the complex k plane as one moves
along the real k axis.

where Pj =
∣∣ pj

〉〈
pj
∣∣ is a projector (rank 1 matrix) independent of k, and

kj = Re{kj} − iΓj/2 (2.25)

are the complex resonance positions. The set of resonance channels {
∣∣ pj

〉
} are eigen-

vectors of the channel matrix Sj such that

Sj(k)
∣∣ pj

〉
=
k − k∗j
k − kj

∣∣ pj
〉
. (2.26)

The usefulness of these channel matrices resides in the observation made by Simonius
[134] that the full scattering matrix takes a product form

S(k) =
∞∏

j=1

Sj(k) , (2.27)

that will make explicit the contributions of the individual resonances kj. Clearly, this
partition of the S matrix assumes that the scattering matrix possesses only simple poles
located at positions {kj}. Since Pj is a rank 1 projector with one eigenvalue equal to
1, the others being zero, taking the determinant of this expression yields

det{S(k)} =
∞∏

j=1

(
k − k∗j
k − kj

)
. (2.28)
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The formulation (2.27) has the interesting property that the scattering matrix displays
explicitly its simple poles and their corresponding complex conjugate zeros.

For complex k, the product S†jSj loses its unitarity according to

S†jSj = 1− 2Im{k} Γj

|k − kj|2
Pj . (2.29)

The unitarity deficit of the complete scattering matrix reads

S†S− 1 = −2Im{k}
∞∑

j=1

Γj

(k − kj)
(
k∗ − k∗j

)
(
S†Λ†j

−1∣∣ pj
〉)(

S†Λ†j
−1∣∣ pj

〉)†
(2.30)

where

Λj(k) =

j∏

j′=1

Sj′(k) . (2.31)

Loss of unitarity indicates overall loss of flux conservation directly proportional to the
imaginary part of the wavenumber. Singularities appear again at the positions of the
poles of the scattering matrix.

In general, the projection matrices {Pj} do not commute. When they do however, this
is a manifestation of underlying symmetries. Expansion (2.27) may then be broken
down into symmetry groups, each behaving independently from the others.

With this description of the S matrix, the delay matrix (k ∈ R) takes the form

Q =
∞∑

j=1

Γj

(k − kj)
(
k − k∗j

) (S†Λj

∣∣ pj
〉) (

S†Λj

∣∣ pj
〉)†

. (2.32)

It can be seen as a continuation onto the real k line of the defect matrix 2 (2.30) (omitting
the obvious 2Im{k} prefactor), emphasising the relation between losses in the complex
k-plane and modes obtained from the delay matrix on the real k line, as illustrated in
Fig. 2.2.

Letting
∣∣ vj

〉
= S†Λj

∣∣ pj
〉

=
∑

p c
j
p

∣∣ qp
〉
where the vectors {

∣∣ qp
〉
} are eigenvectors of

the hermitian delay matrix, the eigenvalues of the delay matrix are

qp =
∑

j

Γj

(k − kj)
(
k − k∗j

) |cjp|2 , (2.33)

where the expansion coefficients are such that
∑

p |cjp|2 = 1 since S†Λj is unitary.
The channel delays are then understood as a superposition of many Lorentzian curves,

2On the real k line, Λj
†−1

(k) = Λj(k).
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a property inherited from the scattering matrix, each of which weighted by a factor
|cjp|2 ≤ 1. This is in conformity with the theory of the S matrix stating that the phase
shift is the cumulative effect of many individual resonances (poles) [57]. On the real k
axis, the eigenvalues {qp} are composed of symmetric contributions from the resonant
poles and zeros of the scattering matrix,

qp =
∑

j

[
i

k − kj
− i

k − k∗j

]
|cjp|2 . (2.34)

Our result concerning the reversible character of the energy modes is then rooted in the
complex plane singularities, {kj}, and zeros, {k∗j}, of the S matrix contributing equally
on the real k line to the modes of the delay matrix.

• Equivalent forms of the Q matrix

There exist in the literature 2 different expressions for the Q matrix: the one that we
are using (see also [118])

Q = −iS†∂S

∂k
= i

∂S†

∂k
S (2.35)

and the expression originally derived in [135] (see also [131])

Q = iS
∂S†

∂k
= −i∂S

∂k
S† . (2.36)

Clearly both matrices are hermitian with real eigenvalues. They are also related to each
other by a similarity transformation

Q = S†Q S (2.37)

meaning that their eigenspectrum is identical. Furthermore, if {Ap} denote the eigen-
vectors of Q with eigenvalues qp,

QAp = qpA
p (2.38)

then the eigenvectors of Q are simply related to those of Q by

Q(SAp) = qp(SAp) = qpB
p . (2.39)

In other words, Q is to the outgoing eigenvectors {Bp} what Q is to the incoming
eigenvectors {Ap}. Both objects are completely equivalent.

An interesting relation was previously presented in Eq. (2.17) stating that Ap and
S†PAp∗ are simultaneous eigenvectors of Q. We now derive this property as a com-
mutation relation between Q and a matrix (operator) Ω = S†PK where K is the
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anti-unitary matrix (operator) of complex conjugation (K2 = 1, KO = O∗K):

[Q,Ω] = QS†PK− S†PKQ

= QS†PK− S†PQ∗K

= QS†PK− S†P

(
iST

∂S∗

∂k

)
K (2.40)

Then, using reversibility property Eq. (2.5) and P2 = 1,

[Q,Ω] = QS†PK− S†P

(
iPSP

∂PS†P

∂k

)
K

= QS†PK−
(
i
∂S†

∂k

)
PK (2.41)

Finally, since for real k, S† = S−1, and that for the derivative of an inverse matrix, we
find dO−1/dk = −O−1 dO/dkO−1,

[Q,Ω] = QS†PK−
(
−iS†∂S

∂k

)
S†PK

= QS†PK−QS†PK

= 0 . (2.42)

This immediately implies that if Ap is eigenvector of Q, ΩAp is also eigenvector with
the same eigenvalue. This is precisely the result presented in Eq. (2.18). Similarly, one
can show that [Q,Ω] = 0 where Ω = SPK. And again if Bp is eigenvector of Q, ΩBp

is also eigenvector with the same eigenvalue.

There seems to have been renewed interest of late on the properties of the Q matrix
in different contexts, and we refer the reader to some recent publications for further
details [31, 118, 127, 131].

• Effect of the reference frame on the delay spectrum

Suppose now that we have obtained the scattering matrix S′ of a cavity in a given
reference frame having origin O, and that we want to obtain the scattering matrix S for
the same cavity, but displaced a distance d from O. It is shown in Appendix D that the
matrix S is simply related by a similarity transform to the original scattering matrix,
namely

S = T(nokd) S′ T†(nokd) (2.43)

where no is the refractive index of the medium in which the cavity has been displaced
and T(nokd) is a unitary matrix composed of Bessel functions. That S and S′ are related
by a similarity transformation is of course the expression of translation invariance of
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the system under study. For the sake of simplicity, we assume that the cavity is only
displaced and not rotated about O (hence φ0 = 0 in Eq. (D.8)). It is then easy to show
(see Appendix D) that the displaced delay matrix Q takes the form

Q = T [Q′ + D] T† (2.44)

with Q′ = −iS′†∂S′/∂k is the delay matrix for the unmoved cavity (original system),
and D is a displacement matrix proportional to nod. In contrast to the scattering
matrix, the effect of the displacement in this case is not simply a similarity transform:
there is an additional term D, a displacement term, that must be added to Q′. However,
since the eigenvalues of a matrix are invariant under a similarity transform, Q and
Q′+D have an identical spectrum and we will focus on the properties of the main term
Q′ + D.

In Appendix D, we have shown that the matrix D has zero trace. This result stems from
the observation that D is composed of a sum of matrices having eigenvalues coming in
pairs of opposite signs, and one eigenvalue equals to zero. This in turn is indication
that we did not change anything to the physical system: the cavity retains its mean
properties independent of the reference frame, as it should.

Although the matrix D has trace zero, hence preserving the overall physics of the
system, it may still affect individual eigenvalues of the initial Q′ matrix. Moving the
cavity while maintaining the reference frame for the wavefield modifies the S′ matrix
into a physically new S matrix having a different behaviour, see Fig. 2.3.

(a) (b)

Fig. 2.3 Description of the scattering event (a) in the centered scenario and (b) in the displaced
scenario. It is clear that, although both situations hold the same amount of dielectric material, the
effective cavities inside the dashed circles are qualitatively different.

The effect of the displacement is analytically tractable, meaning that the sole knowledge
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of S′ and its wavenumber derivative is sufficient to compute the delay matrix Q of the
displaced cavity. In view of this, the displaced cavity is an excellent test bed for
validating both the theoretical development and the numerical computation methods.

Note that the spectral radius of Q, ρ(Q), is smaller or equal to the individual spectral
radius of Q′ and D,

ρ(Q) ≤ ρ(Q′) + ρ(D) . (2.45)

We can even go further by the use of Weyl’s inequality [15]. Letting the decreasing
ordered eigenvalues of Q′ + D and Q′ be {qj}, and {q′j} respectively, Weyl’s inequality
applied to our system asserts that

q′j − ρ(D) ≤ qj ≤ q′j + ρ(D) (2.46)

where ρ(D) is the spectral radius of D. Since ρ(D) ∼ O(nod), roughly the extra optical
length, we expect that most of the effect of the displacement is captured by low lying
modes having an initial undisplaced delay value of comparable magnitude.

An illustration of these results is presented in Fig. 2.4 for two displacements of an
homogeneous disc cavity having refractive index nc = 1.5 and radius R0 = 1 immersed
in a medium of index no = 1. The eigenvalues of Q′ (geometrically centered disc) are
represented by gray lines and the eigenvalues of Q (displaced disc) are represented by
black lines. The gray portions of the spectrum corresponds to the application of Weyl’s
inequality Eq. (2.46) on the unmoved homogeneous disc cavity spectrum. Although
this rule seems to provide a somewhat conservative uncertainty envelope around the
unmoved eigenvalues, it captures the overall extent of the perturbation on the delay
spectrum by showing the gradual flooding of its base. For ‘large’ delay resonant modes
however, modifications of the delay are insignificant; see, for instance, the three iden-
tified peaks on Figs. 2.4(c). The delay value of the resonant modes are only weakly
affected by the choice of reference frame, or to any ‘reasonably misplaced’ system’s
origin.

The discussion presented here may seem like a technical curiosity of the method sup-
ported in this work. Although the setup of the system reference frame seems straight-
forward for highly symmetrical geometries 3 4, it may become difficult to define even for
simple geometries such as the scalene triangle, not to mention ‘potatoid’ shape cavities
like the one in the schematics of Fig. 2.3. We would like to point out that this problem
is not solely an artifact of the characteristic modes description of the field presented

3e.g discs, squares, rectangles, ellipses, quadrupoles, stadia, or other single-disc-based geometries
like the annular cavity

4Notable reference frame determination methods: searching the circle of minimal radius completely
enclosing the cavity, or maximization of the number of symmetries.
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(b) d/R0 = 0.1
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(c) d/R0 = 0.5

Fig. 2.4 (a) Centered homogeneous disc cavity spectrum, (b) displaced homogeneous disc cavity
spectrum d/R0 = 0.1 and (c) displaced homogeneous disc cavity spectrum d/R0 = 0.5. Gray lines:
centered disc; black lines: displaced disc; gray areas: application of Eq. (2.46) on the unmoved disc
eigenvalues.

here, but also exists in the usual complex wavenumber pole emission representation
of the field. Although in this latter scenario, the pole positions are not affected by
the choice of reference frame, the field profile, especially the far-field, will be affected.
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This apparent problem appears to be the result of an absolute definition of the system:
in both descriptions, the only inputs defining the system are the distribution of the
refractive material and the wavenumber. Placing the system in context, for instance,
relative to a well defined field, fixes the coordinate reference frame and eliminates the
ambiguous nature of the system’s origin. In this case of figure, one may then proceed
to interpret the response of the cavity through the use of the ‘absolute’ characteristic
modes or their related emission modes.

This being said, in any given calculation, there is a natural choice that should prevail.
e.g. we have adopted the position of the centroid of the cavity (or more generally a com-
bination of cavities) as the origin for our coordinate system. The centroid coordinates
(Cx, Cy) of an object of any shape or form can be calculated from the expressions

Cx =
1

A

∫

R
xSy(x) dx , Cy =

1

A

∫

R
ySx(y) dy (2.47)

where A is the area of the regionR and Sy(x) (Sx(y)) is the vertical (horizontal) distance
to the boundary of R measured from the point (x, y) ∈ R. This prescription is easily
applicable, coincides with the geometric center for symmetric cavities and removes the
arbitrariness just discussed.

• Delay levels anti-crossings

Notable features becoming prominent as the distance d grows larger are the avoided
crossings that can be seen in Figs. 2.4(b)-(c). In this case, the avoided crossings are
between accidentally degenerate levels of the undisplaced cavity. One avoided cross-
ing (highlighted with a red square) is clearly seen in the neighborhood of position
(20.14, 0.48). As it turns out, avoided crossing events are not restricted to reference
frame change, but appear generically for any deformation of the disc. More on this
matter in Section 2.4.

As an illustration, we focus on the displaced cavity system previously discussed. Sup-
pose that the delays of two different modes of the centered disc cavity (d = 0) having
angular momenta m1 and m2 cross at position (k0R0, cτ0/R0). As the cavity is dis-
placed a small distance d from its initial origin, we may assume that the local slopes
µm1 and µm2 of the two modes delay level remain essentially constant with respect to
d. However, small interaction terms scaling with d will appear and affect the delays
computed through the diagonalization of Q. Considering these conditions, we define a
local delay hermitian matrix

Qloc =

(
Qm1m1 Qm1m2

Qm2m1 Qm2m2

)
=

(
µm1(k − k0)R0 + cτ0/R0 dκm1m2

dκm2m1 µm2(k − k0)R0 + cτ0/R0

)

(2.48)
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whose eigenvalues are

cτ±/R0 =

[
µm1 + µm2

2
(k − k0)R0 + cτ0/R0

]
±
√(

µm1 − µm2

2
(k − k0)R0

)2

+ d2|κm1m2|2

(2.49)
Exactly at the crossing, k = k0, we get

cτ+/R0 = cτ0/R0 + d|κm1m2| (2.50)

cτ−/R0 = cτ0/R0 − d|κm1m2 | . (2.51)

while far from it, the eigenvalues return to their d = 0 values,

cτ+/R0 ∼
{
µm1(k − k0)R0 + cτ0/R0 , k < k0

µm2(k − k0)R0 + cτ0/R0 , k > k0

(2.52)

cτ−/R0 ∼
{
µm2(k − k0)R0 + cτ0/R0 , k < k0

µm1(k − k0)R0 + cτ0/R0 , k > k0

. (2.53)

This shows that the accidental degeneracy is lifted by the cavity displacement. The
size of the level splitting at k = k0 is about the same magnitude as that of the coupling
term. Also, the eigenvectors of Eq. (2.48) show that the states labeled m1 and m2

mix in a 1/1 ratio at the crossing. This idealization of the delay matrix behaviour is
closely related to the Landau-Zener model of the time dependent quantum mechanical
interaction between two states [168]. The difference here is that the time variable
is replaced with the wavenumber k. This model is an example of application of the
adiabatic theorem, from which we shall keep the terminology:

Diabatic levels are associated with ‘rapid’ (instant) evolution of a time dependent
Hamiltonian where the system goes through the anti-crossing as if there weren’t
any;

Adiabatic levels are associated with ‘slow’ (zero velocity) evolution of a time depen-
dent Hamiltonian where the system is allowed to adjust completely after each
change in time.

In our system however, since every diagonalization of Q at a position k is independent
of those at neighbouring values of k, we invariably find the adiabatic levels of delay.
The overall picture of this simple model for the displaced cavity is illustrated on Fig.
2.5.

The picture becomes more complicated as the external parameter d is increased beyond
the perturbation regime. In this case, the local slopes µm1 and µm2 may become de-
pendent on d, consequently displacing the crossing position (k0R0, cτ0/R0). Moreover
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Fig. 2.5 Schematics of the avoided-crossing of two delay levels for a displaced cavity following Eqs.
(2.49)-(2.53) and the ensuing discussion.

many avoided crossings tend to overlap each other. With respect to Eq. (2.48), the
local delay model becomes larger than a 2 × 2 matrix, and a complicated pattern of
avoided-crossings forms. Depending on the wavenumber density of avoided-crossings,
it may even become impossible to identify ‘true modes’ away from the crossover region
(see Eqs. (2.52)-(2.53)). An illustration of this developing non-perturbative regime is
pictured on Fig. 2.4(c): most low-lying delay modes have already changed consider-
ably from the d = 0 level (gray lines), and some regions, having closely packed d = 0

crossings, are turning to a ‘forbidden’ band emptied of levels in the d/R0 = 0.5 regime.

The appearance of avoided-crossings is not restricted to the displacement of the cavity:
it is actually generic to cavity shapes having a finite number of symmetries, or even no
symmetry at all. We will show in Chapter 3 that a perturbative geometrical deformation
leads to a removal of the degeneracy of the modes of the disc cavity. The perturbed
modes then orient themselves on the cavity symmetry axis. The investigation of the
perturbation of accidental degeneracies of the disc cavity shows that modes sharing the
same symmetry undergo a local avoided-crossing, but do not interact in any other way
with other symmetry modes.

We illustrate these assertions with the square cavity as an example. The square cavity
possesses a total of 4 symmetry axes, φ = {0, π/4, π/2, 3π/4}, each having 3 possible
parity states: even, odd or none. The parity state identifies whether the field has a
zero on a given symmetry axis (odd parity), a local extremum (even parity), or none.
Cavities having an undefined symmetry state along a given symmetry axis usually
exhibit delay levels degeneracy. In the square cavity, 4 mode symmetries are well
defined, and 2 remain degenerate (see Tab. 2.1). For comparison, we also display the
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Mode 0 π/4 π/2 3π/4

1a even none odd none
1b odd none even none
2 even odd even odd
3 odd even odd even
4 odd odd odd odd
5 even even even even

Tab. 2.1 The mode symmetries of the square cavity. Note that the parity of degenerate modes 1a and
1b is indicative only: because of the degeneracy, any linear combinations of these modes, at a common
wavenumber, are acceptable. Most of these linear combinations result however in a field not having
the expected symmetry axis of the square cavity.

far-field distribution defined by

|ψFF |2 = lim
r→∞
|ψpout(r, φ)|2 ∝

∣∣∣∣∣
∑

m

Bp
meim(φ−π/2)

∣∣∣∣∣

2

. (2.54)

For a given field defined by the incoming vector Ap, obtained by the diagonalization of
the delay matrix, we identify the symmetry axis by looking at the position where the
norm of the far-field autocorrelation function is 1 (numerically, a maximum close to 1),

∣∣∣∣
1

2π

∫ 2π

0

dχ lim
r→∞

ψp∗(r, φ− χ)ψp(r, φ+ χ)

∣∣∣∣
2

∼
∣∣∣∣∣
∑

m

Ap∗mA
p
−meim(π−2φ)

∣∣∣∣∣

2

= Cp(φ) .

(2.55)
Once the symmetry axes are defined, we readily verify whether the field has a zero (odd
parity) or an extremum (even parity) about each one. Examples are provided in Fig.
2.6.

Putting the same mode symmetries in a common set enables us to draw partial delay
spectra. The partial spectra for mode symmetries 2 and 3 are pictured in Fig. 2.7 for
a square cavity having nc = 1.5 and side wall size 2×

√
2R0/2

5, R0 = 1, immersed in
a medium no = 1. As expected, delay levels of modes of a specific symmetry do not
overlap, but may still cross over delay levels of other symmetries.

A word of caution here: a numerical artifact may occur for avoided-crossings having a
size smaller than the finite wavenumber step size used to carry out the computation of
the spectrum, causing an apparent crossing. Crossings of this type are easily handled
by using a smaller step size. With regards to the diabatic/adiabatic dichotomy, this

5The length of half the diagonal of the cavity is then equal to 1: the square may be embedded in a
circle of radius 1.
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Fig. 2.6 Autocorrelation as defined in Eq. (2.55) and far-field for two mode symmetries of the square
cavity, see Tab. 2.1. Although the maxima of Cp(φ) indicate the same symmetry axis (autocorrelation
reaches 1 at φ = {0, π/4, π/2, 3π/4}), it is observed that the behaviour of the field differs at these
specific locations, hence the different symmetries.

may be viewed as a rapid process showing the local diabatic levels only. Also, the size
of the avoided-crossings vary considerably along a single delay level. This is due to
the state exchange undergone at the avoided-crossing (see Fig. 2.5), which alters the
state supported along the adiabatic level, itself having a varying interaction strength
with other states. Note that the complete spectrum superimposes three other different
partial spectra (two symmetries are degenerate), which then appears as a very com-
plicated structure of interlaced levels. Separating the symmetries simplifies the overall
appearance of the level structure without loss of information.

We take the time here to also illustrate the effect on degenerate states of the symmetry
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Fig. 2.7 Partial spectra of two sets of mode symmetries of the square cavity. See Tab. 2.1 for the
description of the symmetries.

breaking by a 10% squeeze (in the x-direction) of the square cavity. Two sets of near-
fields are displayed on Fig. 2.9 for the resonant modes identified by the circle marks
on Fig. 2.8. We estimate, by computing the inner product of the vector A for the
square and the rectangular cavity of one symmetry, that the modes pictured in Figs.
2.9(a)-(c) are 88% alike, while the modes in Figs 2.9(b)-(d) overlap at only about 56%.
This discrepancy in the projection values is due to a local interaction with another
resonance near kR0 = 24.5 for mode symmetry 1b. This secondary resonance appears
as a bump on the right side of the purple resonant peak in Fig. 2.8(b). The whole
peak structure is in fact composed of two resonances undergoing an avoided crossing
in close proximity. The resonance having the highest quality then loses part of its
field containment capacity, as seen in Fig. 2.8(b) with reference to the 1a symmetry
peak. This aspect of the resonance behaviour is important for engineering robustness
concerns: one does not want to inadvertently couple together two resonances resulting
in the loss of some important properties. Remember that the difference between the
square and the rectangle here is only 10% in sidewall length. This specific issue of
resonance coupling will be addressed in Chapter 4.
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Fig. 2.8 (a) Degenerate delay levels of the square cavity and (b) the corresponding levels in the
rectangular cavity. The circles indicate the position of the modes presented on Fig. 2.9.

2.2 Numerical calculation of the S matrix

2.2.1 A transfer matrix algorithm

We have seen in the last Section that the relevant object for the modal characterization
of the cavity is the scattering matrix. Unfortunately, there exist only a few cavity
geometries allowing closed form calculation of S. Computation is therefore usually
carried through by intensive numerical methods. We review, extend and upgrade a
method [111, 113] recently introduced that has the potential to treat a wide variety of
geometrical and refractive index deformations.

As mentioned above, the field ψ(r) must satisfy Helmholtz’ equation,
[
∇2 + n2(r)k2

]
ψ(r) = 0 (2.56)

which, in polar coordinates, takes the form
[
r2 ∂

2

∂r2
+ r

∂

∂r
+

∂2

∂φ2
+ n2(r, φ)k2r2

]
ψ(r, φ) = 0. (2.57)

Although there exist general conditions under which the Helmholtz equation is separable
[5], exact solutions are scarce and far between. For demonstration and calibration
purposes, we will concentrate essentially on the homogeneous disc (hd) and the annular
cavity (ac), two special cases for which closed form expressions are available. Needless
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(a) Square 1a (b) Square 1b

(c) Rectangle 1a (d) Rectangle 1b

Fig. 2.9 Near-field patterns for resonant degenerate modes of (a)-(b) the square cavity and (c)-(d)
corresponding symmetry modes of the rectangular cavity. The degeneracy of mode symmetries 1a and
1b of the square cavity is easily understood from Figs. (a)-(b): only a π/2 rotation separates these
modes, a geometrical change that does not alter the quality factor (capacity of energy containment)
of any of the modes having symmetry 1a and 1b.

to say that the methodology developed is much more general and readily applicable to
homogeneous or inhomogeneous media within regular or irregular geometries.

To set up the procedure, let us focus our attention on a thin annular region of width 2ε

and central radius rj, j = 1, 2...N , covering part of a generic cavity (see Fig. 2.10). Over
this region, we assume the refractive index to be dependent upon φ only. Expression
n2(r, φ)r2 is then evaluated at rj for all φ. Turning to (2.57), we obtain an approximate
local expansion of the differential equation over |r − rj| ≤ ε,

[
r2 ∂

2

∂r2
+ r

∂

∂r
+

∂2

∂φ2
+ n2(rj, φ)k2r2

j

]
ψj(r, φ) = 0. (2.58)

This differential equation is separable for the local wavefunction ψj(r, φ). Under the
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2.2. Numerical calculation of the S matrix

Fig. 2.10 Conceptual view of the annular decomposition of the cavity. Two adjacent annular domains
of thickness 2ε are displayed. Incoming and outgoing coefficients with respect to the circular interface
located at rj + ε = rj+1 − ε are also shown. Dashed circles indicate the mean radius of the annular
domains.

Ansatz ψj(r, φ) = Rj(r)Φj(φ), we obtain two exact differential equations

[
ρ2
j

d2

dρ2
j

+ ρj
d

dρj
− ξj

]
Rj(ρj) = 0 (2.59)

[
d2

dφ2
+
(
n2(rj, φ)k2r2

j + ξj
)]

Φj(φ) = 0 (2.60)

where ρj = r/rj and ξj is a separation constant. Imposing periodic boundary conditions
on Eq. (2.60) and expanding Φj(φ) and n2(rj, φ) in a Fourier series, we end up with
an eigenvalue problem of an hermitian symmetric matrix. Its eigenvalues specify the
set of constants {ξjµ}, and the associated eigenvectors define a basis of normalized
eigenfunctions {Φj

µ(φ)}. We may then solve the Cauchy-Euler differential equation
(2.59) exactly,

Rj
µ(ρj) = ajµρ

+
√
ξjµ

j + bjµρ
−
√
ξjµ

j (2.61)

where ajµ and bjµ are constants to be obtained from the boundary conditions. The sign
of ξjµ renders Rj

µ(ρj) evanescent (+ sign) or propagating (- sign).

This procedure is propagated to an adjacent thin annular domain of thickness 2ε cen-
tered on rj+1 = rj + 2ε. Boundary conditions for TM polarization assume continu-
ity of ψj and ψj+1 and their normal (radial) derivative at their common boundary
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2.2. Numerical calculation of the S matrix

ρj+ = 1 + ε/rj and ρj+1− = 1− ε/rj+1. Once applied, these lead to the set of equations
[
ajµ′ρ

√
ξj
µ′

j+ + bjµ′ρ
−
√
ξj
µ′

j+

]
δµµ′ =

∑

µ′

[
bj+1
µ′ ρ

√
ξj+1

µ′
j+1− + aj+1

µ′ ρ
−
√
ξj+1

µ′
j+1−

]
U j
µµ′

[
ajµ′ρ

√
ξj
µ′

j+ − bjµ′ρ
−
√
ξj
µ′

j+

]
δµµ′ =

∑

µ′

√
ξj+1
µ′√
ξjµ

[
bj+1
µ′ ρ

√
ξj+1

µ′
j+1− − aj+1

µ′ ρ
−
√
ξj+1

µ′
j+1−

]
U j
µµ′

where U j
µµ′ =

∫ 2π

0
dφ Φj∗

µ (φ)Φj+1
µ′ (φ). We use the convention that the coefficients {aj}

define waves incident / evanescent on the interface and the coefficients {bj} define waves
leaving / evanescent from the interface.

}
}

Fig. 2.11 Conceptual view of the assembly process leading to matrix Sj,j+2. The boundaries between
the annuli are represented by vertical lines. Matrices Sj and Sj+1 are first blended into a matrix
Sj,j+1, which in turn is combined with Sj+2to yield Sj,j+2. This cumulative matrix shares the same
status with respect to the pairs {bj ,bj+3} and {aj ,aj+3} as the matrix Sj has between {bj ,bj+1}
and {aj ,aj+1}

The outgoing coefficients bj and bj+1 are written as a linear combination of incoming
coefficients aj and aj+1 using the general scattering block matrix Sj on annular boundary
j, (

bj

bj+1

)
= Sj

(
aj

aj+1

)
=

(
Sj11 Sj12

Sj21 Sj22

)(
aj

aj+1

)
(2.62)
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2.2. Numerical calculation of the S matrix

Individual submatrices of Sj are computed using a well-known formula for the inverse
of a block-matrix that uses Schur’s complement [85]. Careful algebraic manipulations
enables ones to ‘skip’ one annular region, keeping only the expansion coefficients of
rings j and j + 2 (see Fig. 2.11 for a visual description)

(
bj

aj+2

)
=Sj,j+1

(
aj

bj+2

)
=

(
Sj,j+1

11 Sj,j+1
12

Sj,j+1
21 Sj,j+1

22

)(
aj

bj+2

)
(2.63)

where the different submatrices are obtained from Sj and Sj+1,

Sj,j+1
11 = Sj11 + Sj12

(
1− Sj+1

11 Sj22

)−1
Sj+1

11 Sj21 (2.64)

Sj,j+1
12 = Sj12

(
1− Sj+1

11 Sj22

)−1
Sj+1

12 (2.65)

Sj,j+1
21 = Sj+1

21

(
1− Sj22S

j+1
11

)−1
Sj21 (2.66)

Sj,j+1
22 = Sj+1

22 + Sj+1
21

(
1− Sj22S

j+1
11

)−1
Sj22S

j+1
12 . (2.67)

Following the procedure again on the next interface, but using the ‘one-layer-equivalent’
Sj,j+1 as the starting matrix instead leads to a ‘2-layers-equivalent’ coupling block-
matrix Sj,j+2, (

bj

bj+3

)
= Sj,j+2

(
aj

aj+3

)
. (2.68)

Note that Sj,j+2 correctly satisfies the incoming and outgoing waves convention regard-
ing the a and b coefficients (Fig. 2.11). This proves to be a useful result since we can
reuse the procedure leading from (2.62) to (2.68), only now with proper replacement
of Sj,j+2 in place of Sj in expression (2.62). One keeps on going until all the surface
of interest is covered by N annular layers. Obtaining the final scattering matrix still
remains a daunting computational task and the following additional remarks are meant
to alleviate the necessary labour.

The region under study is divided in an innermost disc of a homogeneous medium of
refrative index nin and radius r0 and N circular domains of width 2ε extending to a
maximum radius Rmax = rN +ε. There are therefore (N+1) interfaces (j = 0, 1, . . . , N)
located a distance Rj = r0 + 2jε from the chosen origin (Fig. 2.12).

The field inside this inner region is composed of Bessel functions of the first kind,

ψ0(r, φ) =
∑

m

a0
mJm(ninkr)e

imφ, r ≤ r0 . (2.69)

Application of boundary conditions at interface r = r0 between the disc region and the
first annular region, itself connected to the second annular region, yields the S0,1 matrix,
as defined by expressions (2.64)-(2.67). However, two submatrices of S0 have special
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2.2. Numerical calculation of the S matrix

Fig. 2.12 Circular innermost domain of radius r0 and outermost limit of the cavity at Rmax = rN + ε.
The disc shaped region inside the cavity is considered to be of constant refractive index nin, and the
outer domain r > Rmax, of index no.

forms: S0
11 = −1, and S0

21 = 0. With respect to the iterative procedure described above,
this implies that all other coupling matrices S0,j, j > 0, possess the same submatrices
up to the last interface,

S0,j
11 = −1 , S0,j

21 = 0 . (2.70)

Furthermore, the S0,j
22 matrices are ‘self-contained’,

S0,j
22 = Sj21

(
1− S0,j−1

22 Sj11

)−1
S0,j−1

22 Sj12 + Sj22 (2.71)

that is, only submatrix S0,j−1
22 from the preceding interfaces is required for the compu-

tation of S0,j
22 .

The solution outside the cavity (r ≥ Rmax) is a superposition of Hankel functions,

ψ(r, φ) =
∑

m

[
AmH

(2)
m (nokr) +BmH

(1)
m (nokr)

]
eimφ. (2.72)

Given that the interfaces are labeled from 0 to N , the scattering matrix S0,N+1 is finally
obtained as (

a0

B

)
= S0,N+1

(
a0

A

)
. (2.73)

Since we are only interested in the linear relation between the A and B coefficients,
and from the preceeding considerations on the submatrices of cumulative matrix S0,j,
it then appears that the only submatrix of interest is S0,N+1

22 .

Further details of the precise numerical implementation of the procedure are described
in Appendix C together with further remarks in the following examples.
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2.2. Numerical calculation of the S matrix

2.2.2 Testing the main approximation

The homogeneous disc (hd) cavity is a straightforward test for the segmentation approx-
imation of (2.58). Since the refractive index nc is everywhere constant inside the disc
cavity of radius R0, truncation related issues for the different matrices are irrelevant as
the annular domains share the same geometrical center as that of the cavity. We may
then focus strictly on the effect of decomposition into finite size annular regions. The
numerical scattering matrix S̄ may then be compared with the exact expression Shd

{Shd}mm′ = −∆
(2)
m

∆
(1)
m

δmm′ (2.74)

where
∆(i)
m = ncH

(i)
m (Zo)J

′
m(Zc)− noH(i)′

m (Zo)Jm(Zc) (2.75)

and Zc = nckR0, Zo = nokR0, and ′ denotes the derivative with respect to the argu-
ment. The measure adopted is the maximal termwise deviation between the numerical
approximation of the scattering matrix, S̄, following the procedure described above,
and the exact solution, Shd, from expression (2.74)

emax = max

{√∣∣S̄− Shd
∣∣2
}
. (2.76)

We study the approximate discretisation of space with a small number of N = 2 annular
layers (3 interfaces) sufficient to complete the assembly process of Fig. 2.11, as a
function of the annular width 2ε, and look at the deviation from the analytic result as ε
is decreased. The annular domains cover the radii from r0 = R0−4ε to R0 = Rmax = 1.
Also, because the underlying resolution changes with wavelength, we use a normalised
wavenumber 2εk to compare the different sets of calculations performed at different
wavelengths. Finally, the truncation of the angular decomposition is also wavenumber
adjusted to M = [nckRmax], where [x] denotes the integer part of x plus 1.

Results presented on Fig. 2.13 show that modelization needs are met at a value k2ε ≈
0.33 for all investigated wavenumbers. From then on, any decrease in annuli thickness
is associated with a monotonic descent of the maximum deviation emax. One finds a
power law dependence of the form emax ∝ (2εk)α where α is estimated at ∼ 3.2. A
saturation level is eventually reached at very low annuli thickness values.

2.2.3 Testing a non-diagonal case

The previous benchmark has ascertained the convergence of the method with respect
to spatial discretisation for a diagonal case for which an analytic expression is available.

67



2.2. Numerical calculation of the S matrix

 

 

k2ε

e m
a
x

10−810−610−410−2100102
10−16

10−12

10−8

10−4

100

2.5

5

10

20

40

80

Fig. 2.13 (Color online) Maximum deviation, expression (2.76), for the homogeneous disc cavity
separated in 2 annular regions (inset) of thickness 2ε. Computations are carried out with nc = 3.2,
no = 1 and R0 = 1 for six wave numbers, kR0 = {2.5, 5, 10, 20, 40, 80}. The maximum deviation
decreases uniformly from a value k2ε ≈ 0.33 common to all wave numbers until a saturation limit is
reached at small ε values.

The annular cavity (ac) with an off-centre inclusion of refractive index nh offers an
example of interest since its S matrix is highly non-trivial, non-diagonal6, but still with
a closed-form solution ideal for testing of our numerical approach. The derivation of
the annular cavity scattering matrix, Sac, is reviewed in Appendix D. This is but one
example of non-diagonal S matrix where different angular momentum channels interact,
and in generic cases matrix truncation (the value of M) will become a concern. This
question is pursued in the following calculations.

For comparison purposes, we will consider the scattering matrix of the displaced inclu-
sion Sc expression (D.40). Attention is then put on a circular inclusion of radius R0

and index nc embedded in a dielectric medium no at a distance d from the origin.

Our first observation is directed to an inherent difficulty/instability common to all
methods involved in the present type of calculations. Numerically, obtaining S̄ = S0,N+1

22

6Clearly, if the inclusion is moved to the centre of the enclosing circular cavity, the resulting S is
again diagonal.
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Fig. 2.14 (Color online) Example of matrices involved in termwise product (2.78); log of absolute
value of matrix elements. Color scale is logarithmic, spanning from white (low) to dark (high). White
dash lines indicate the |m′| = dnckRmaxe limits. The product of exponentially increasing elements in
(a) with saturation terms due to numerical roundoff in (b) yields an ill-behaved scattering matrix.

from (2.73) involves the product

S0,N+1
22 =

{
H1
}−1 S0,N+1

22 H2 (2.77)

where {H1,2}mm′ = H
(1,2)
m (nckRmax)δmm′ , Rmax = d+ r0, and where the complete trans-

fer matrix S0,N+1
22 is defined in Appendix C. This expression may be written otherwise

as a Hadamard product (i.e. termwise product)

S0,N+1
22 = H ◦ S0,N+1

22 (2.78)

with {H}mm′ = H
(2)
m′ (nckRmax)/H

(1)
m (nckRmax). Terms in the matrix H are exponen-

tially increasing for |m′| > |m| ≥ nckRmax and exponentially decreasing for |m| >
|m′| ≥ nckRmax (see example Fig. 2.14(a) and reference [1]). However, because of
numerical roundoff in the computation of S0,N+1

22 , some elements of S0,N+1
22 that should

be the product of rapidly decreasing {S0,N+1
22 }mm′ terms and increasing {H}mm′ terms

are computed from the product of saturated {S0,N+1
22 }mm′ terms and increasing {H}mm′

terms. The term saturation denotes the fact that decreasing terms have reached the
numerical zero (∼ 10−15 − 10−16in double precision artihmetic). This inevitably leads
to incorrect terms in S0,N+1

22 . However, since saturation terms in S0,N+1
22 are located in

vertical bands of angular momentum |m′| > nckRmax (see Fig. 2.14(b)), relation (2.4)
may then be used to replace elements in pathological regions with terms unaffected by
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2.2. Numerical calculation of the S matrix

numerical roundoff. This solution has shown to be quite effective in stabilising the final
results.

We proceed as previously with evaluation of the maximum deviation emax (2.76), only
this time with Shd being the displaced matrix Sc found in Appendix D. Computations
are carried with physical parameters nc = 3.2, nh = 1, R0 = 1, d = 0.15R0, r0 = 0.1R0

and kR0 = 10. The number N of thin annular regions covering the large annular domain
ranging from r = d − R0 to r = d + R0 (see inset of Fig. 2.15) is used as a variable
to adjust the annuli thickness 2ε. The computed scattering matrix is defined over a set
of angular momenta ranging from −M to +M . The total number of angular channels
2M + 1 is then a control parameter. Although emax is obtained for five truncation
numbers, we shall consider only the square subset of angular momenta [−8, 8] so that
emax is effectively computed from comparable elements of the scattering matrix in every
cases.
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Fig. 2.15 (Color online) Maximum deviation emax, expression (2.76), for the circular inclusion of the
annular cavity (inset) with respect to wavenumber-normalized annuli thickness k2ε. Computation is car-
ried out for five truncation sizes,M = {8, 16, 32, 64, 128}. For constantM , the maximum deviation
decreases uniformly at first, then settles on a plateau. The plateau levels, ēmax(M), decrease by approx-
imately an order of magnitude with a doubling of the truncation size, i.e. ēmax(M)/ēmax(2M) ∼ 10.

The results of Fig. 2.15 show that truncation size affects the overall convergence in
thickness 2ε: a mimimum achievable deviation emax is reached for every M , the larger
M the smaller the value of the deviation. By verifying the unitarity of S̄ for all trun-
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cation sizes (max{|S̄†S̄−1|} ∼ 10−10), we conclude that flux is conserved, as it should,
and it is not the source of this leveling behaviour. Satisfying unitarity with a matrix
too small for an adequate modeling means that some channels will be contaminated
(overestimated) and diminishing the annulus sizes is not going to solve this issue. On
the other hand, the increase of the truncation size releases the erroneous contributions
to higher channels and allows for further improvement in precision until another plateau
is reached. Doubling the truncation size results in a decrease of ēmax(M) by about one
order of magnitude, but then, computations become 4 times more costly.

These sets of computations (for the diagonal and non-diagonal cases) are two represen-
tative samples of a battery of tests that have been performed to assert the reliability
and accuracy of our approach. In every calculations to appear in this thesis, care has
been taken to insure convergence in angular space decomposition (large enoughM) and
spatial discretisation (small enough 2εk).

2.3 Wavefunction reconstruction

The implementation of our propagation method is specifically geared for an efficient
calculation of the scattering information coded in the S matrix and the associated A

and B coefficients. In most instances, this is all one needs since this gives direct access
to the far-field (R � Rmax) for microlaser applications and the near-field (R = Rmax)
for microsensing applications. However, the coefficients {aj} and {bj} are not kept
during the computation as one moves from the inner circle to the outermost shell,
i.e. the information necessary to reconstruct the local wavefunction within the cavity
(R ≤ Rmax) is not directly available.

Since it may be useful to look at the complete wavefunction, if only for comparison
purposes, we have looked at different approaches to extract the missing information.
Most approaches have failed because of inherent numerical instabilities - we mention
briefly some of these attempts in the next sub-section - and we have finally settled for
a hybrid method to be described shortly.

2.3.1 Early and failed attempts

• Direct reconstruction (Take 1)

The first attempt was native to the propagation method in that we have recuper-
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ated the coefficients {aj} et {bj} of the different shells for a local construction
of the field. This demands a backward propagation of the connecting matrices
and turned out to be only feasible for S matrices of small dimension due to nu-
merical instabilities. This limits the applicability to dimensions of the order of
Mmin = nmaxkRmax.

One first recalls that the number of angular harmonics 2M + 1 necessary to ade-
quately construct the S matrix is greater than 2Mmin +1. Second, since the radial
differential equation is in polar coordinates, 2 solutions are possible: a regular
and physical solution behaving as ∼ (nkr)m for each angular momentum m and
an irregular solution behaving as ∼ (nkr)−m. In moving backwards, the numer-
ical approximations feed a small part of the irregular solution into the physical
solution and if one is not careful this unphysical piece completely overwhelms the
regular solution7. This behaviour towards the origin is then such that increasing
Mmin (for example by increasing k) decreases the radius of convergence of the
method.

To alleviate this divergence, we have then tried a ‘shooting’-like method, starting
a regular solution at the origin towards an intermediate value of r and matching
at that value with a solution propagating from the boundary towards the centre.
The gain in stability varied from one geometry to the other, but reliable results
were not obtained above Mmin ∼ 25.

• Direct reconstruction (Take 2)

We have then looked at a complete numerical integration of the radial partial
differential equations transformed into 2M + 1 coupled ordinary differential equa-
tions by separation in angular harmonics where the coupling is provided by the
index of refraction. An adaptive Runge-Kutta of order 4-5 was used for this task.

Unfortunaltely, the approach shares the instabilities of the previous method. It is
very difficult to try to control each m channel, because the large m diverge faster
(earlier) than the small ones. Since one imposes the behaviour at the origin, the
numerical parameters are very much dependent on the initial conditions (values
and slopes) and this sensitivity makes the approach unreliable. Several tests of
the simplest case (an homogeneous disc) reveal that the parameters turn out to be
quite different from those expected on theoretical grounds (Frobenius expansion
at the origin for instance). In this case, although the solutions appeared similar
to the analytical Bessel functions Jm, their behaviour at the origin was quite dif-
ferent.

7Since our method used a normalised radial coordinate whitin each shell, the divergence appears
only in the coefficients {aj} et {bj}, but not in the connecting matrices.
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2.3. Wavefunction reconstruction

• Basis set reconstruction: Spectral and pseudo-spectral methods

The next thought was to select a basis set and develop the solution over the entire
domain, a solution which is after all a smooth function. Spectral or pseudo-spectral
methods [24], as they may be called, build ‘matrices of matrices’ no matter what
the chosen basis set. The wavefunction is then obtained through the solution of
a large linear system of equations.

The spectral method involves the calculations of double integrals for each element
of the projection matrix. Since the number of basis functions increase with k, this
method becomes prohibitively time consuming making it less attractive than the
‘dangerous’ methods previously discussed under the caveat already discussed. No
in depth attempts have been made to make this approach viable.

The pseudo-spectral method on the other hand replaces the explicit integration by
an evaluation of the basis functions on a discrete mesh. By an appropriate choice
of the mesh, one obtains an equivalent quadrature instead of a direct integration
as in the spectral method. For a unique solution, the number of collocation points
of the mesh must be equal to the number of basis functions. One may also force
overdetermination (more collocation points that basis functions), in which case
the solution is obtained with a pseudo-inverse of the collocation matrix. This
demands in turn that small singular values be eliminated beforehand. The few
tests performed have indicated that the final results are quite dependent on which
singular values are indeed removed.

In fact, both methods suffer from the same predicament, namely that the associ-
ated matrices (projection or collocation) are ill-conditioned, mainly caused by the
second derivatives of the Laplacian being applied to polynomials of high orders.
Moreover the dimension of these matrices grows rapidly (e.g. for the pseudo-
spectral method: (Nb points y×Nb points x)× (Nb bases y×Nb bases x)) mak-
ing computer memory management a further task to be addressed.

2.3.2 The adopted procedure: A hybrid finite element approach

Faced with the difficulties just described, we have searched for a new strategy. In this
thesis - except otherwise stated - whenever a wave function is represented (for example
at the end of sub-section 2.1.3) in the entire domain of interest, we have adopted
a hybrid method combining the scattering information obtained from our approach
together with a Finite Element Method (FEM) algorithm provided by the commercial
software COMSOL Multiphysics [37]. This procedure has proven to be accurate, fast,
flexible, and reliable.
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2.3. Wavefunction reconstruction

Specifically, the procedure goes like this. The field at a given wavenumber k with incom-
ing A and outgoing B coefficients at the last interface is used as boundary condition on
a circular region of radius R ≥ Rmax for the FEM algorithm. The FEM solver is then
applied to build the wavefunction on a discrete mesh over the entire region. We do not
impose continuity of the normal derivative, since it would lead to an overdetermined
differential equation, but instead we use the discrepancy with the expected derivative
as a measure of the accuracy of the FEM reconstruction. The normal derivative at a
circular region ∂D of radius R can be written as

∂

∂r
ψ̄
∣∣
∂D

= nok
∑

m

[
AmH

(2)
m

′
(nokR) +BmH

(1)
m

′
(nokR)

]
eimφ . (2.79)

Our measure of the difference between the propagation result ψ̄ and the FEM recon-
struction ψFEM is chosen as

C1 =
1

2π

∫ 2π

0
dφ
[
∂
∂r

(
ψ̄ − ψFEM

)∗ · ∂
∂r

(
ψ̄ − ψFEM

)] ∣∣
∂D

1
2π

∫ 2π

0
dφ
[
∂
∂r
ψ̄∗ · ∂

∂r
ψ̄
] ∣∣
∂D

. (2.80)

The integrals are calculated with a Fast Fourier Transform (FFT) and the result is
then compared to that of C0, which reveals to what extent the boundary condition is
satisfied:

C0 =
1

2π

∫ 2π

0
dφ
[(
ψ̄ − ψFEM

)∗ ·
(
ψ̄ − ψFEM

)] ∣∣
∂D

1
2π

∫ 2π

0
dφ
[
ψ̄∗ · ψ̄

] ∣∣
∂D

. (2.81)

The maximum size of the longest side of the finite elements (triangular or quadratic)
is limited to λ/10, where λ is the wavelength in the corresponding medium. The FEM
algorithm has proven quite robust and the automatic mesh construction has made it
possible to obtain very accurate (imposed) continuity in the function (the C0 measure)
and its (not-imposed) normal derivative (the C1 measure).

A sample mesh is shown in Fig. 2.16. The figure of merit for the quality of the mesh is
calculated according to the following expression [37]

q =
4
√

3A

h2
1 + h2

2 + h2
3

(2.82)

where A is the area of the triangle and {hi} are the lengths of the the sides of the
triangle. Recalling Heron’s formula for the area of a triangle in terms of {hi}

A =

√
1

16
(h2

1 + h2
2 + h2

3)2 − 1

8
(h4

1 + h4
2 + h4

3), (2.83)
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Fig. 2.16 Mesh for the annular cavity with a hole of radius r0 = 0.1R0 at d = 0.15R0. Cavity radius
is R0 = 1 and the mesh size follows the refractive index of the media. For instance, in this figure the
typical mesh element has a length ratio 3.2 to 1 in the hole region where the index is nh = 1 with
respect to the cavity domain having nc = 3.2.

we find that q = 1 for an equilateral triangle. For the system whose mesh is presented in
Fig. 2.16, the elements of least quality (most asymmetric) are found along the junction
of the 2 domains (at the centre and the right-hand side of the figure).

Various tests - not presented here - have been performed to assert the effectiveness
and reliability of the procedure and have confirmed the usefulness and generality of
the approach. As mentioned earlier, whenever a wavefunction will be presented in the
next Chapters, one should assume that it has been constructed with the present hybrid
method.

2.4 Numerical calculation of the Q matrix

This Section deals with the evaluation of the delay matrix

Q = −iS†∂S/∂k
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2.4. Numerical calculation of the Q matrix

and the comparison with results from the usual resonant pole description of the cavity
modes. Again we will use the annular cavity as a benchmark for our calculations (see
Appendix D). Some of the discussion here is an extension of the remarks made towards
the end of the sub-section 2.1.3.

The evaluation of the derivative of S with respect to wavenumber k is carried out
numerically following Ridder’s method [107]. Convergence of the differentiation is set
by the comparison of the trace of the direct centered difference scheme,

∂S

∂k
≈ S(k + δk)− S(k − δk)

2δk
(2.84)

with an extrapolated value for δk → 0 obtained from data gathered beforehand with
δk′ > δk. The numerical differentiation scheme is terminated as soon as the difference
between S(k + δk) and S(k − δk) becomes comparable in magnitude with the error on
the unitarity of S.

The eigenvalue decomposition of the delay matrix yields a basis of orthogonal vectors
{Ap} for every real wavenumber k. In generic cases, for two sets of orthogonal vectors
{Ap(k)} and {Ap(k+ ∆k)} separated by a small wavenumber distance ∆k, we are able
to follow individual characteristic modes since the basis at k + ∆k is only a minute
rotation away from the basis at k. This may be understood as an adiabatic process on
the characteristic modes where the wavenumber k acts as the external parameter.

Since the annular cavity is a deformation of the homogeneous disc cavity, a few prelimi-
nary comments on the latter are appropriate at this point. First, like the S matrix, the
delay matrix of the disc cavity is diagonal in the angular momentum representation.
Moreover, because of rotational symmetry, all characteristic delays are degenerate at
least two times. Accidental degeneracies between levels of different angular momenta
are also common. A typical disc cavity delay spectrum is presented in Fig. 2.17(a).

The insertion of a circular scatterer inside a disc cavity has dramatic consequences
for the delay spectrum. Breaking the rotation symmetry by restricting modes to be
either even or odd relative to the annular cavity’s symmetry axis lifts the twofold
degeneracy of same angular momentum modes. However, it is near the accidental
degeneracies found in the disc cavity delay spectrum that the effect of the inclusion
is most important (compare spectra 2.17(a) and (b)). In the neighbourhood of these
accidental degeneracies, the adiabatic delay level switches from a crossing pattern to
an anti-crossing pattern between modes of the same symmetry. In the figure, these
are traced in red for the odd-symmetry and green for the even-symmetry with respect
to the Ox axis. The extent of the anti-crossing depends on the interaction strength
between the involved modes as already discussed in sub-section 2.1.3.
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Fig. 2.17 Delay spectra of (a) the homogeneous disc (hd) cavity (nc = 3.2, no = 1, R0 = 1) and
of (b) the annular cavity (ac) (nc = 3.2, no = 1, R0 = 1, nh = 1, r0 = 0.1R0, d = 0.25R0). The
resonant modes are identified by 2 integers, (m,n): m is the azimuthal angular number, and n is the
number of radial nodes inside the cavity. This nomenclature is used in both spectra, although one
must regard the labels in the annular cavity spectrum as adiabatical remnants of the hd cavity modes
through the parametric deformation.

Computation of the annular cavity spectrum is carried out with the algorithm of Section
2.2 (500 layers over the inclusion region, 70 positive angular channels (141 total)).

The annular cavity model discussed in Appendix D may also be used to find resonant
poles of the scattering matrix in the complex wavenumber plane. Setting A = 0 in
(D.10) defines a complex wavenumber root search for emission modes (Im{k} < 0) .
Since B = SA, or equivalently S−1B = A, setting A = 0 implies that det S−1 must be
equal to zero for a non-trivial B solution. And the zeros of the det S−1 are the poles of
det S as illustrated in Fig. 2.2.

Some singular modes lying in the complex plane are displayed in Fig. 2.18 along with
comparable modes retrieved from the characteristic modes description. The resem-
blance between the near-field and (outgoing) far-field representations from the two
descriptions is notable. Numerical values of wavenumber resonant pole positions and
delay values at resonance (maximum delay) agree as well (see Table 2.2). Discrepancy
in the field distribution and the resonance positions between the two descriptions are
attributed to the many avoided-crossings in the neighbourhood of a given maximum
delay wavenumber position.
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(a) (b)

(c) (d)

Fig. 2.18 Comparison of two annular cavity resonances field distributions |ψ(r)|2: (a)-(c) for the
resonant wavenumber pole description and (b)-(d) for the characteristic modes definition (maximum
of delay; see delay spectrum 2.17(b)). Color scale is linear from white/bright (low) to black/dark (high).
The external ring refers to the outgoing far-field distribution. The modes investigated are perturbed
versions of modes (14, 5), (a)-(b), and (7, 8) , (c)-(d). The outgoing coefficients B collected from
resonant pole and characteristic modes descriptions overlap nicely to a value of 0.9999987 for the
(14, 5) mode , and 0.985 for the (7, 8) mode.
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Mode Re{kR0} |Im{kR0}|
(20, 3) e 10.226504923 (10.226504925[6]) 5.7× 10−9 (6.2× 10−9)

(20, 3) o 10.226504923 (10.226504925[6]) 5.7× 10−9 (6.2× 10−9)

(17, 4) e 10.2599778 (10.259978[2]) 6.39× 10−6 (6.40× 10−6)

(17, 4) o 10.2599778 (10.259978[2]) 6.40× 10−6 (6.42× 10−6)

(14, 5) e 10.1757 (10.1757[2]) 1.255× 10−3 (1.256× 10−3)

(14, 5) o 10.1757 (10.1757[2]) 1.2491× 10−3 (1.2492× 10−3)

(9, 7) e 10.1888 (10.1801[2]) 6.9× 10−2 (7.3× 10−2)

(9, 7) o 10.2311 (10.2311[2]) 6.4× 10−2 (6.5× 10−2)

(7, 8) e 10.2676 (10.2647[2]) 8.1× 10−2 (8.3× 10−2)

“Y” e 10.2959 (10.2932[2]) 9.4× 10−2 (9.9× 10−2)

Tab. 2.2 Comparison of resonant wavenumber positions for the modes displayed in Fig. 2.18; numbers
in parentheses belong to the characteristic modes description and the bracketed digits indicate the
uncertainty on the last digit (stepsize of k). The label e/o stands for even or odd parity with respect
to the Ox axis. The equivalent of the ‘imaginary part’ of the wavenumber in the case of characteristic
modes is calculated using relation 2R0/cτ . The total delay is composed of an entrance delay and of an
escape delay; for characteristic modes, because of incoming/outgoing symmetry, these are of the same
magnitude, hence the factor 2. See Eq. (2.33) and the associated discussion for further explanations
using Simonius’ model.
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Chapter 3

Formalism II: Perturbation series

In this Chapter, we present a perturbation approach for the description of
the wavefield produced by the modification of the refractive index of an
homogeneous disc cavity. We do so in the perspective of the results of
Chapter 2. We first use the Born approximation in the near field of the disc
cavity to obtain a first order correction to its scattering matrix. Then, we use
matrix perturbation theory to obtain the perturbed first order eigenvalues
and eigenvectors of the delay matrix presented in the previous Chapter.
Finally, we illustrate the method for two perturbation scenarios: boundary
deformations and inclusions. The inclusion arrangement is discussed in great
details and will lead to further investigations in the following Chapter.

Before moving on to a complete application of the numerical method presented in
the previous Chapter, we will take some time to explore the possibilities of analytical
solutions to the perturbed homogeneous disc cavity. To the author’s knowledge, outside
of the disc geometry, only the elliptic cavity permits an exact solution to Helmholtz
equation in terms of Mathieu functions [154]. This is the reason that a perturbation
solution for a small refractive index deformation of the disc cavity is investigated. The
idea is to guide, through analytically tractable means, the investigation towards high
quality cavities with high directional emission properties. Also, as a side product of the
analysis, the results will show just how the theory developed in Chapter 2 is accurate
on a perturbation level.

The method developed next is inspired by the work of Dubertrand et al. [41]. However,
unlike the usual complex wavenumber poles description followed by these authors and
others [144, 145, 38, 39], we will rely on our delay matrix to obtain significant and
reliable results about the modes of the cavity system.



3.1. Small deformations of the disc cavity

This Chapter is organized in a two-step scheme, development of the theory followed by
its applications to specific problems. First, we define the refractive index perturbation
on an abstract level and derive the associated first order correction to the scattering
matrix. In line with the theory of Chapter 2, we then seek a matrix perturbation solution
to the delay matrix eigen-decomposition. Finally, using our general expressions, we
obtain the perturbation solution to two important classes of deformations: boundary
deformations and inclusions. The latter case will be studied in depth and will provide
useful information for further study in the coming Chapter.

The original contributions of this Chapter are in line with the theoretical developments
presented in Chapter 2. The use of a first perturbation series applied on the scattering
matrix of the disc cavity, eventually leading to Eq. (3.15), and the computation of a
perturbed delay matrix Eq. (3.25) may be considered original to the field. The manner
the characteristic delays of the delay matrix are extracted, eventually leading to Eq.
(3.62), is also perceived as original, as well as the illustrative examples provided in Sec-
tions 3.2 and 3.3. Particularly, the analytical comparison of one case of inhomogeneous
cavity with the boundary deformed cavity presented in Section 3.3.3 is a new result.

3.1 Small deformations of the disc cavity

In this Section we obtain a first order approximation of the scattering matrix for a
slightly modified homogeneous disc cavity, and present a perturbative treatment of
its characteristic modes. The full procedure consists of two consecutive perturbative
treatments of a different nature:

• the first one, for the scattering matrix, uses the standard Born approximation,
while

• the second one, for the eigenmodes of the perturbed delay matrix, applies the
usual matrix perturbation theory.

What is meant here by perturbation involves the slight modification of the wavefield in
the near-field region of space, i.e. close to the cavity. The reason for this stems from our
intention to deform the disc, affecting in the first place the near-field. This description is
especially suited for large delay modes (high quality modes) having a dominant angular
momentum component m0. However, because of the dichotomy between the near-field
and the far-field of the characteristic modes of the cavity, we will see that the overall
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3.1. Small deformations of the disc cavity

aspect of the latter may be even more affected by low magnitude deformations than the
former.

The alteration of the disc cavity is embodied in a perturbative index, ñ(r; ε), where the
dimensionless parameter ε governs the size of the perturbation. The smallness of ñ(r; ε)

prescribes the decomposition of the wavefield into two contributions. This results in a S

matrix having a zeroth order part from the disc cavity, S(0), and a first-order correction
part, S(1), arising from the additional refractive index (see Fig. 3.1).

Fig. 3.1 Schematic decomposition of the complete cavity S matrix into two contributions, one due to
the main disc cavity, S(0), and the other, S(1), due to the effect of the extra medium ñ(r; ε). A test
channel of angular momentum m′ is impinging on a cavity, which responds by releasing a number of
coefficients affecting many outgoing channels m.

Once the approximate scattering matrix is known, we may readily compute a perturbed
delay matrix. We shall rely on the reciprocal property between incoming and outgoing
modes of the delay matrix Q, see Chapter 2,

ψin∗ = e−iθψout

to obtain a supplementary phase factor, θ(1)
m0 , to the already known disc cavity phase

θ
(0)
m0 (see Fig. 3.2). The perturbed delay is computed by the wavenumber differentiation
of the full phase factor −θm0 ' −θ(0)

m0 + θ
(1)
m0(ε).
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(a) (b)

Fig. 3.2 Phase factor between incoming and outgoing waves having an angular momentum m0, (a)
in the homogeneous disc case, and (b) in the perturbed disc scenario. Although the composition on
the perturbed wavefield consists in many angular channels, the effect on the phase θ appears mainly
in the unperturbed channel m0 component.

A series of assumptions will be made all along the perturbative developments. They will
be summarized at the end of the Section and fully justified in the illustrative examples
of the following Section. The perturbation approach presented provides a series of non-
trivial analytical results for the theory of Chapter 2, and will spur further investigations
in Chapter 4.

3.1.1 Perturbation correction of the S matrix

The refractive index of the cavity may be separated into two contributions

n2(r) = n2
(0)(r) + η ñ2(r; ε) (3.1)

and
n2

(0)(r) = n2
c +

[
n2
o − n2

c

]
U(r −R0) (3.2)

is the refractive index of a disc cavity of radius R0, and U(x) is the Heaviside step
function: U(x) = 0 for x < 0, and = 1 for x > 0. The compensation refractive index
ñ2(r; ε) adds and/or subtracts dielectric material from the main disc cavity. Notice that
η will serve to order the perturbation series whereas ε will act as a (small) parameter
to control the size of the perturbation.

We rewrite Helmholtz’ equation as
[
∇2

r + n2
(0)(r)k2

]
ψ(r) = −η ñ2(r; ε)k2ψ(r) (3.3)

whose formal solution is

ψ(r) = ψ(0)(r)− η
∫
d2r′G(0)(r, r′)ñ2(r′; ε)k2ψ(r′) (3.4)
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where G(0)(r, r′) is the Green function of the disc cavity satisfying
[
∇2

r + n2
(0)(r)k2

]
G(0)(r, r′) = δ(r− r′) . (3.5)

The homogeneous wavefunction ψ(0)(r) for the disc cavity is written as usual
{ ∑

m

[
AmH

(2)
m (nokr) +BmH

(1)
m (nokr)

]
eimφ r ≥ R0∑

m amJm(nckr)e
imφ r ≤ R0

. (3.6)

The coefficients A and B are related to one another by B = S(0)A, where the scattering
matrix elements are given by

S
(0)
mm′ = −∆̄m

∆m

δmm′ . (3.7)

The coefficients a are related to the coefficients A by a = T(0)A, with

T
(0)
mm′ = − 4i

πkR0

1

∆m

δmm′ . (3.8)

We recall from Chapter 2 that

∆̄m = ncH
(2)
m (Zo)J

′
m(Zc)− noH(2)′

m (Zo)Jm(Zc) (3.9)

∆m = ncH
(1)
m (Zo)J

′
m(Zc)− noH(1)′

m (Zo)Jm(Zc) (3.10)

where the arguments of the cylindrical functions are Zc = nckR0 and Zo = nokR0.
Clearly, for real k, ∆̄∗m = ∆m.

Now the stage is set for a Born-like approximation [36]. We expand the wave field in
powers of η

ψ(r) =
∑

j

ηjψ(j)(r) ' ψ(0)(r) + ηψ(1)(r; ε) +O(η2) (3.11)

insert it in the formal solution (3.4) and collecting terms of equal orders in η, we identify
the first order correction of the unperturbed wavefunction as

ψ(1)(r; ε) = −
∫
d2r′G(0)(r, r′)ñ2(r′; ε)k2ψ(0)(r′) . (3.12)

Before moving on to a more detailed calculation of the wavefunction, we first have to
address the exact nature of the Green function found in Eq. (3.12).

Replacing back Eq. (3.12) into Helmholtz’ equation, we find that ψ(1)(r; ε) may be
interpreted as the field resulting from the action of the source −ñ2(r; ε)k2ψ(0)(r) on the
disc cavity, [

∇2
r + n2

(0)(r)k2
]
ψ(1)(r; ε) = −ñ2(r; ε)k2ψ(0)(r). (3.13)
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Since the field source is in the neighborhood of the cavity, the far-field behaviour of
the wavefunction ψ̃ should be related to an outgoing wave as |r| → ∞. The Green
function solving (3.5) will then be chosen with an asymptotically outgoing behaviour.
Depending upon the relative position of the source r′ to both the observation point r

and the disc boundary at r = R0, six possible solutions of Green functions are found:
they are derived in Appendix F and displayed in Fig. F.1.

Our interest lies in the scattering matrix. This translates in the selection of the Green
functions with the observation position r outside the cavity. Only two possible forms
of the Green functions are then of importance in the following development, denoted
Goo(r, r

′) and Gco(r, r
′) in Appendix F.

Our concern is to obtain a correction term to the disc cavity scattering matrix. For this
purpose, we use an incoming wave having a specific angular momentum channel as our
zeroth order wavefunction ψ(0) = ψ

(0)
m′ . We set Am = A

(0)
m = δmm′ in Eq. (3.6) as a test

incoming channel, and focus on the scattered field that embodies both the outgoing
homogeneous field and the partial wave components generated by the perturbation,
{ψ(1)

mm′} (see Fig. 3.1 for an illustration).

So far, our approximation of the wavefunction has lead us to compute the first correction
provided by the action of a single angular momentum channel on the cavity,

ψm′(r) ' ψ
(0)
m′ (r) + η

∑

m

ψ
(1)
mm′(r) . (3.14)

Because the components {ψ(1)
mm′} are by construction made of outgoing waves resulting

from a single incoming channel m′, we are able to assemble a matrix relating incoming
to outgoing amplitude by direct inspection of Eq. (3.14). Doing so, we extract the
corrected scattering matrix

S = S(0) + ηS(1) +O(η2) . (3.15)

For real wavenumber k, the exact scattering matrix is unitary, S†S = 1. With respect
to the series in Eq. (3.15), we compute the unitarity condition

S†S = 1+ η
[
S(0)†S(1) + S(1)†S(0)

]
+O(η2) . (3.16)

As we will see shortly, we inherit from the Born approximation the property that, if the
wavefunction is correct to first-order, the loss of unitarity of the approximate S matrix
is to second-order, in other words S†S = 1+O(η2), implying directly that

S(0)†S(1) = −S(1)†S(0) . (3.17)

This result will be confirmed explicitly in the next Section. Another useful property of
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the exact S matrix, namely

Sm′m = (−1)m
′
S−m−m′(−1)m (3.18)

derived in Chapter 2, is also shared by the first two orders of approximations S(0) and
S(1) appearing in Eq. (3.15),

S
(0,1)
m′m = (−1)m

′
S

(0,1)
−m−m′(−1)m . (3.19)

3.1.2 Perturbation treatment of the corrected delay matrix modes

Having obtained the first correction to the scattering matrix, we may now turn to the
investigation of the effect of the index perturbation on the resonances. In line with
the preceding Chapter, we seek the excess energy associated with the presence of the
cavity in a featureless ‘universe’. Comparing this extra energy to the incoming flux, we
compute the time delay due to the presence of the cavity. The resonances appear as
prominent peaks of this time delay as a function of wavenumber k.

As is shown in Chapter 2, the time-average excess energy matrix in the angular mo-
mentum basis is

E =
2wε0

k

(
−iS†dS

dk

)
(3.20)

where w is the height of the cavity along Oz, and ε0 is the permittivity of vacuum.
The characteristic energy modes of the cavity are defined through incoming wavefield
coefficients Ap = {Apm} that diagonalize the hermitian matrix, E . The mean energy
associated with a specific characteristic mode labeled p is then

ep = Ap†EAp . (3.21)

For mode p, the time-average incoming power is

Pp =
2w

ckµ0

Ap†Ap (3.22)

with µ0 the permeability of vacuum and c, the speed of light in vacuum. The computed
time delay τp associated with the mode p is then

cτp = c
ep
Pp

=
1

Ap†Ap
Ap†

(
−iS†dS

dk

)
Ap =

1

Ap†Ap
Ap†Q Ap . (3.23)

This expression gives directly the eigenvalues of the delay matrix Q [135]. Resonances
are identified as peaks of cτp versus real k following excitation by a normalized incom-
ing flux. Note that resonances are understood as special cases of a general scattering
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experiment: the time delay can be computed off resonance and still retains its physical
significance.

Also of interest is the reciprocal relation between incoming and outgoing characteristic
mode coefficients,

Bp = e−iθpPAp∗ . (3.24)

This relation will be of central importance in the coming development.

Returning to the perturbation method, we compute the corrected delay matrix as

Q ' Q(0) + ηQ(1) (3.25)

where Q(0) is the unperturbed delay matrix for the disc cavity and

Q(1) =

(
−iS(0)†dS

(1)

dk
− iS(1)†dS

(0)

dk

)
(3.26)

is the first-order correction to the perturbed delay matrix. It follows from (3.17) that
Q(1) is hermitian,

Q(1)† = Q(1) . (3.27)

Turning to the calculation of Eq. (3.23) with Eq. (3.25), the approximate expressions
of the eigenvalues and eigenvectors of the delay matrix can be obtained. The procedure
leads to the computation of the zeroth- and first-order eigenvalues q(0)

p and q
(1)
p , and

their corresponding eigenvectors Ap(0) and Ap(1). Since we wish to evaluate the delay
cτp as defined in Eq. (3.23), the evaluation of the normalization factor may become
problematic,

cτp '
q

(0)
p + ηq

(1)
p

1 +O(η2)
. (3.28)

This occurs because the delay cτp is defined through the eigenvalues and eigenvectors
of the delay matrix, both being approximations here. Direct numerical computation of
cτp by diagonalization of Q does not suffer from this problem as the eigenvectors are
(to numerical precision) exactly normalized. In the following Section, we propose to
use Eq. (3.24) to obtain the phase change θ(1)(ε) due to the perturbation of a mode
main angular momentum channel. The time delay is then deduced from the rate of
change of the full phase −θ(k; ε) = −θ(0)(k) + θ(1)(k; ε) with respect to k, θ(0) being
the homogeneous disc phase.

3.1.3 Phase perturbation and time delay

The eigenvalues and eigenvectors of the approximate delay matrix Eq. (3.25) are ob-
tained from standard perturbation theory [36, 82]. For the matrix

Q = Q(0) + ηQ(1)
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3.1. Small deformations of the disc cavity

we expand, for a specific mode p, the eigenvalues and eigenvectors associated with an
unperturbed angular momentum channel m = m0 in a power series of η,

qm0 = q(0)
m0

+ ηq(1)
m0

+O(η2) (3.29)

Am0 = Am0(0) + ηAm0(1) +O(η2) . (3.30)

Strictly speaking we should consider objects denoted like Ap,m for instance. To lighten
the notation, we have removed the p index and will assume that we are concentrating
our attention on a given characteristic mode p. Normalization of Am0 reads

Am0†Am0 ≡ 1 = 1+ η
(
Am0(0)†Am0(1) + Am0(1)†Am0(0)

)
+O(η2) . (3.31)

As for the unitarity of S, we will verify later that the normalization is conserved up to
second order. This means that Am0(0)†Am0(1) must be pure imaginary, or zero. Using
Eqs (3.15) and (3.16), the same condition on normalization may be computed for the
outgoing coefficients Bm0 = SAm0 .

Since the diagonal matrix Q(0) states are at least twofold degenerate1 in the angular
momentum basis (i.e. q(0)

+m0
= q

(0)
−m0

), we first have to find the appropriate combination
of individual unperturbed angular channels so that two corrections q(1)

m0a and q(1)
m0b may

be computed. This is done by solving the eigenproblem
(
Q

(1)
+m0,+m0

Q
(1)
+m0,−m0

Q
(1)
+m0,−m0

Q
(1)
−m0,−m0

)(
c
m0a,b

+

c
m0a,b

−

)
= q(1)

m0a,b

(
c
m0a,b

+

c
m0a,b

−

)
. (3.32)

Following Eq. (3.19), one verifies that Q(1)
+m0+m0

= Q
(1)
−m0−m0

, and we can write

q(1)
m0a

= Q(1)
m0,m0

+ |Q(1)
+m0,−m0

| (3.33)

q(1)
m0b

= Q(1)
m0,m0

− |Q(1)
+m0,−m0

| (3.34)

and the eigenvectors

cm0a =
1√
2

(
+e+iχm0

+e−iχm0

)
, cm0b =

1√
2

(
+e+iχm0

−e−iχm0

)
(3.35)

where ei2χm0 = Q
(1)
+m0,−m0

/|Q(1)
+m0,−m0

|. Therefore, the zeroth order incoming coefficients
are

Am0a(0)
m =

1√
2

e+iχm0 δ+m0,m +
1√
2

e−iχm0 δ−m0,m (3.36)

Am0b(0)
m =

1√
2

e+iχm0 δ+m0,m −
1√
2

e−iχm0 δ−m0,m . (3.37)

1There are also many accidental degeneracies in the unperturbed disc spectrum leading to multiples
of 2 locally degenerate states. A interesting case of analytically trackable 4-fold degeneracy is found
in the annular cavity where two different sets of angular momenta, say m0 and m0

′, lift their twofold
degeneracy into even and odd modes, and simultaneously their even-m0 - even-m0

′ degeneracy. Details
of this special case are given in Section 3.3.2.
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3.1. Small deformations of the disc cavity

The phase χm0 appears because the perturbation produces a symmetry breaking in
the disc cavity. Therefore, it should only depend on geometric parameters, not on the
wavenumber k,

∂χm0

∂k
= 0 . (3.38)

Also of interest are the first order correction to the coefficient vectors,

Am0a(1)
m =





iβm0aa
A
m0a(0)
m + iβm0ab

A
m0b(0)
m , |m| = m0

1√
2

Q
(1)
m,+m0

e+iχm0 +Q
(1)
m,−m0

e−iχm0

q
(0)
m0
−q(0)

m

, |m| 6= m0

(3.39)

Am0b(1)
m =





iβm0ba
A
m0a(0)
m + iβm0bb

A
m0b(0)
m , |m| = m0

1√
2

Q
(1)
m,+m0

e+iχm0−Q(1)
m,−m0

e−iχm0

q
(0)
m0
−q(0)

m

, |m| 6= m0

. (3.40)

These expressions may be summarized as a sum of coefficient vectors

Am0a(1) = Ām0a(1) + iβm0aa
Am0a(0) + iβm0ab

Am0b(0) (3.41)

Am0b(1) = Ām0b(1) + iβm0ba
Am0a(0) + iβm0bb

Am0b(0) (3.42)

where Ām0a,b(1) is a vector with no |m| = m0 components (i.e. only the bottom lines in
(3.39) and (3.40)). An immediate consequence of this is the orthogonality relation

Am0a,b(0)†Ām0a,b(1) = 0 . (3.43)

With regards to Eq. (3.31), this expression demands that the factors βaa and βbb be
real, or zero. This is where our development departs slightly from the usual choice of
convention that Am0a,b(0)†Am0a,b ∈ R, hence forcing βaa,bb to be zero [36]. In our case,
the incoming/outgoing coefficients need to satisfy Eq. (3.24). We seek a supplementary
term θ(1) in the complete phase factor θ that appears because of the perturbation. Using
Eq. (3.15) and A = S†B, we find

Am0a,b(0)+ηAm0a,b(1) = η0
(

e−iθm0a,bS(0)†PAm0a,b(0)∗
)

+η1
(

e−iθm0a,bS(0)†PAm0a,b(1)∗ + e−iθm0a,bS(1)†PAm0a,b(0)∗
)

+O(η2) . (3.44)

Upon equating the coefficients of equal powers of η, we obtain

η0 : Am0a,b(0) = e−iθm0a,bS(0)†PAm0a,b(0)∗ (3.45)

η1 : Am0a,b(1) = e−iθm0a,bS(0)†PAm0a,b(1)∗ + e−iθm0a,bS(1)†PAm0a,b(0)∗ . (3.46)

The projection of Am0a,b(0)† on these expressions yields the phase factor

e−iθm0a,b =
1

Am0a,b(0)†S(0)†PAm0a,b(0)∗ (3.47)
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and the βm0aa,bb
and βm0ab,ba

coefficients,

βm0aa,bb
= −i1

2
e−iθm0a,bAm0a,b(0)†S(1)†PAm0a,b(0)∗ (3.48)

βm0ab,ba
= −i1

2
e−iθm0a,bAm0b,a(0)†S(1)†PAm0a,b(0)∗ . (3.49)

Note that the phase θm0a,b
≡ θ

(0)
m0a,b is completely defined through the zeroth-order

terms: it is therefore independent of η. Any change of phase θ
(1)
m0a,b(k; ε) due to the

perturbation has to be found in the eigenvectors. But what is this change of phase?
How can it be recognized amongst the many components of the eigenvectors?

We answer these questions by observing that the only tangible information that we
have in this description of the interaction resides in the zeroth-order wave. It is then
suitable to attribute θ(1)

m0a,b(k; ε) to a phase change explicitly affecting the corresponding
unperturbed state vector. Using the various perturbation developments for the S matrix
and Am0a,b vectors, we collect all terms affecting the vector Bm0a,b(0) on the left-hand
side (LHS) of Eq. (3.24) and the vector Am0a,b(0) on its right-hand side (RHS),

(1 + iβm0aa,bb
η)Bm0a,b(0) + η

(
S(0)Ām0a,b(1) + iβm0ab,ba

Bm0b,a(0) + S(1)Am0a,b(0)
)

+ . . .

= e
−iθ(0)

m0a,b (1− iβm0aa,bb
η)PAm0a,b(0)∗ + ηe

−iθ(0)
m0a,bP

(
Ām0a,b(1)∗ − iβm0ab,ba

Am0b,a(0)∗)+ . . .

(3.50)

We then extract and equate the main terms affecting only the zeroth-order mode of
interest,

Bm0a,b(0) = e
−iθ(0)

m0a,b

(
1− iηβm0aa,bb

1 + iηβm0aa,bb

)
PAm0a,b(0)∗ . (3.51)

We may write the phase change θ(1)
m0a,b as

θ(1)
m0a,b

(k; ε) = −2 arctan
(
ηβm0aa,bb

)
(3.52)

so that the complete phase of the main zeroth-order channel is −θ(0)
m0a,b + θ

(1)
m0a,b .

The time delay corresponding to this phase shift is the wavenumber derivative of the
phase,

d

dk

(
−θ(0)

m0a,b
+ θ(1)

m0a,b

)
= −dθ

(0)
m0

dk
− 2

(
η

1 +
(
ηβm0aa,bb

)2

)
dβm0aa,bb

dk
. (3.53)

A few intermediate results are gathered in order to simplify Eqs (3.47)-(3.49) and Eq.
(3.53):

S(0)Am0a,b(0) = S(0)
m0m0

Am0a,b(0) (3.54)

PAm0a(0)∗ = +(−1)m0Am0a(0) (3.55)

PAm0b(0)∗ = −(−1)m0Am0b(0) (3.56)
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The zeroth-order phase between incoming and outgoing waves become simply

e−iθ
(0)
m0a = +(−1)m0S(0)

m0m0
(3.57)

e−iθ
(0)
m0b = −(−1)m0S(0)

m0m0
. (3.58)

These relations present the expected dependence on S(0). Only a constant phase fac-
tor of π exists to differentiate the two modes. We easily find that the wavenumber
differentiation of the phases −θ(0)

m0a,b yields the correct zeroth order time delay,

− dθ
(0)
m0a

dk
= −dθ

(0)
m0b

dk
= q(0)

m0
= −i

(
1

∆̄m0

∂∆̄m0

∂k
− 1

∆m0

∂∆m0

∂k

)
. (3.59)

The coefficients βm0aa,bb
satisfying the incoming/outgoing symmetry relation to second

order become
βm0aa,bb

= −i1
2
S(0)
m0m0

Am0a,b(0)†S(1)†Am0a,b(0) . (3.60)

Using Eqs. (3.26) and (3.38), and the definition of the eigenvalue q(1)
m0a,b in the eigen-

problem (3.32), we can show that the wavenumber derivative of Eq. (3.60) yields

dβm0aa,bb

dk
= −1

2
Am0a,b(0)†Q(1)Am0a,b(0) = −1

2
q(1)
m0a,b

. (3.61)

Using this expression in (3.53), we obtain our final result

cτm0a,b
' d

dk

(
−θ(0)

m0a,b
+ θ(1)

m0a,b

)
= q(0)

m0
+

ηq
(1)
m0a,b

1 +
(
ηβm0aa,bb

)2 =
q

(0)
m0 + ηq

(1)
m0a,b +O(η2)

1 +
(
ηβm0aa,bb

)2

(3.62)
This equation should be compared with Eq. (3.28): the normalization factor is now
known precisely and properly justified. Although the overall power is normalized up to
order η2, it is understood that the zeroth-order channel Am0a,b(0) will be increased in
amplitude to compensate the losses to other angular momentum channels. This results
in a forced normalization of the delay cτm0a,b

with respect to the zeroth- and first-order
components of the incoming zeroth-order channel.

Before moving on to some illustrative examples, it is worthwhile to summarize a num-
ber of properties that have been taken for granted or assumed during the previous
development. The precise verification of the following requirements - necessary for the
formalism to stand on firm ground - will be the focus of the next two Sections:

1. Matrix S(1) verifies unitarity of the S matrix, Eq. (3.16):
S(0)†S(1) + S(1)†S(0) = 0; matrix Q(1) is hermitian, Eq. (3.26),

2. Matrix S(1) satisfies S(1)
−m,−m′ = (−1)m

′
S

(1)
m′,m(−1)m, Eq. (3.19) and

Q
(1)
+m0,+m0

= Q
(1)
−m0,−m0

,
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3. Phase χm0 depends solely on the geometry of the cavity, Eq. (3.38),

4. Coefficients Ām0a,b(1) satisfy Eq. (3.46),

5. Coefficients βm0aa,bb
, Eq. (3.60), are real.

These properties will be referred to as properties 1 through 5 in the remainder of this
Chapter.

3.2 Two illustrative examples: Presentation

In order to provide some illustration and verification of the above-mentioned properties,
we will consider examples where the perturbative approach should apply. The first one
deals with a direct deformation of the disc boundary, while the second is the simplest
case of an inhomogeneous cavity: an homogeneous disc with a small circular inclusion.
We will show that the first correction to the scattering matrix, S(1), has the exact same
form in both cases. Since the knowledge of the scattering matrix is sufficient to deduce
all other significant quantities, the properties found in the boundary deformation case
apply immediately to the inclusion case.

This Section serves to obtain the S(1) matrix and to verify the properties 1 through 5
for the validity of the perturbation expansion on S and on the eigenmodes of the delay
matrix. The physical interpretation of our results is delayed until the next Section.

3.2.1 Small amplitude boundary deformation

Consider the refractive index of a boundary-deformed homogeneous disc cavity, n2(r; ε) =

n2
(0)(r) + η ñ2(r; ε), where n2

(0)(r) is the disc cavity index distribution and

ñ2(r; ε) = (n2
o − n2

c) [U (r −R0[1 + εf(φ)])− U (r −R0)] (3.63)

is the compensation index with f(φ), a periodic function, f(φ) = f(φ+ 2π), schemat-
ically pictured in Fig. 3.3(a). Separating the integral Eq. (3.12) into N interior and
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(a) (b)

Fig. 3.3 (a) Schematic of a geometrically deformed disc cavity according to Eq. (3.63). (b) Separation
of interior (blue areas) and exterior (red areas) contributions to the refractive index. The value of |r|
is always larger than the maximum radius of the cavity R0(1 + εmaxφ{f(φ)}).

exterior contributions (see Fig. 3.3(b)), we obtain

ψ(1)(r; ε) = −k2
(
n2
o − n2

c

)
[

+
N−1∑

j=1,3,5,...

∫ φj+1

φj

dφ′
∫ R0

R0+εR0f(φ′)
dr′Gco(r, r

′)r′ψ(0)(r′)

−
N∑

j=2,4,6,...

∫ φj+1

φj

dφ′
∫ R0+εR0f(φ′)

R0

dr′Goo(r, r
′)r′ψ(0)(r′)

]

(3.64)

with Gco(r, r
′), the homogeneous disc Green function for a point source located inside

the cavity at r′ and the field being measured at r outside the cavity, and Goo(r, r
′),

the homogeneous disc Green function for a point source located outside the cavity at
r′ and the field being measured at r outside the cavity (see Appendix F). We demand
periodicity of f(φ), φN+1 = φ1, and define φ1 as the first angular position where f(φ)

crosses r = R0 with a negative slope (i.e. φ1 marks the beginning of the first depression
encountered from φ = 0).

Following the procedure developed in the preceding Section, we set Am = δmm′ in Eq.
(3.6). Five distinct contributions to ψ(1)

m (r; ε) are obtained, all of which involving radial
integration of Bessel functions,

ψ(1)
m (r; ε) = k2

(
n2
o − n2

c

)
[
−

N−1∑

j=1,3,5,...

Ijm in +
N∑

j=2,4,6,...

(
Ijm out 1 + Ijm out 2 + Ijm out 3 + Ijm out 4

)
]

(3.65)
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(a) Iin, Sin

(b) Iout 1, Sout 1 (c) Iout 2, Sout 2

(d) Iout 3, Sout 3 (e) Iout 4, Sout 4

Fig. 3.4 Representation of the physical interpretation of the five contributions to the complete first-
order scattering matrix: disc cavity in gray, deformed area in blue (concave deformation) and red
(convex deformation). The outgoing wave (leaving arrow relative to the cavity) comes from a path
involving only one interaction with the boundary deformation in each case. This is indicative of a
first-order correction.

where

Ijm in = T (0)
mm

∑

m′

bcm′H
(1)
m′ (zo)e

im′φ
∫ φj+1

φj

dφ′
∫ R0

R0[1+εf(φ′)]
dr′ r′Jm′(z

′
c)Jm(z′c)e

i(m−m′)φ′ (3.66)

Ijm out1 =
1

4i

∑

m′

H
(1)
m′ (zo)e

im′φ
∫ φj+1

φj

dφ′
∫ R0[1+εf(φ′)]

R0

dr′ r′Jm′(z
′
o)H

(2)
m (z′o)e

i(m−m′)φ′ (3.67)

Ijm out2 =
1

4i
S(0)
mm

∑

m′

H
(1)
m′ (zo)e

im′φ
∫ φj+1

φj

dφ′
∫ R0[1+εf(φ′)]

R0

dr′ r′Jm′(z
′
o)H

(1)
m (z′o)e

i(m−m′)φ′ (3.68)

Ijm out3 = S(0)
mm

∑

m′

bom′H
(1)
m′ (zo)e

im′φ
∫ φj+1

φj

dφ′
∫ R0[1+εf(φ′)]

R0

dr′ r′H(1)
m′ (z

′
o)H

(1)
m (z′o)e

i(m−m′)φ′(3.69)

Ijm out4 =
∑

m′

bom′H
(1)
m′ (zo)e

im′φ
∫ φj+1

φj

dφ′
∫ R0[1+εf(φ′)]

R0

dr′ r′H(1)
m′ (z

′
o)H

(2)
m (z′o)e

i(m−m′)φ′ (3.70)
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and z′c = nckr
′, zo = nckr, and z′o = nokr

′. An interpretation of these contributions is
shown on Fig. 3.4.

For ε � 1, we expand the integrands of Eqs. (3.67)-(3.70) in power series around
r′ = R0 and proceed with the integration of each term of the five contributions. All the
integrals are expressible as

∫ R0[1+εf(φ′)]

R0

dr′ r′Cm(λr′)Dm′(µr
′) ' +εf(φ′)R2

0 [Cm(λR0)Dm′(µR0)] (3.71)
∫ R0

R0[1+εf(φ′)]
dr′ r′Cm(λr′)Dm′(µr

′) ' −εf(φ′)R2
0 [Cm(λR0)Dm′(µR0)] (3.72)

with Cm(·) and Dm(·) either Jm(·) or H(1,2)
m (·) Bessel/Hankel functions. The individual

angular contributions m due to input signal m′ is highlighted, yielding the partial
scattering matrices (the indices of Eqs. (3.66)-(3.70) are kept)

Sin
mm′ = ε

4i

π

(
n2
o − n2

c

) Jm(Zc)

∆m

Φin
mm′

Jm′(Zc)

∆m′
(3.73)

Sout 1
mm′ = ε2π

(
n2
o − n2

c

)
k2R2

0

1

4i
H(2)
m (Zo)Φ

out
mm′Jm′(Zo) (3.74)

Sout 2
mm′ = ε2π

(
n2
o − n2

c

)
k2R2

0S
(0)
mm

1

4i
Φout
mm′H

(1)
m (Zo)Jm′(Zo) (3.75)

Sout 3
mm′ = ε2π

(
n2
o − n2

c

)
k2R2

0S
(0)
mmH

(1)
m (Zo)Φ

out
mm′bom′H

(1)
m′ (Zo) (3.76)

Sout 4
mm′ = ε2π

(
n2
o − n2

c

)
k2R2

0H
(2)
m (Zo)Φ

out
mm′bom′H

(1)
m′ (Zo) (3.77)

and

Φin
mm′ =

N−1∑

j=1,3,5,...

1

2π

∫ φj+1

φj

dφ′ f(φ′)ei(m−m
′)φ′ (3.78)

Φout
mm′ =

N∑

j=2,4,6,...

1

2π

∫ φj+1

φj

dφ′ f(φ′)ei(m−m
′)φ′ . (3.79)

Substituting bcm, bom, T
(0)
mm and S

(0)
mm with their expression in terms of the different

Bessel functions (see Appendix F), we find that the exterior components (3.74)-(3.77)
complement the interior component (3.73) such that the complete first order correction
to the scattering matrix S simply writes

S
(1)
mm′ = ε

4i

π
(n2

o − n2
c)
Jm(Zc)

∆m

Φmm′
Jm′(Zc)

∆m′
(3.80)

with Φmm′ = Φin
mm′ + Φout

mm′ , a term in the Fourier series of f(φ),

Φmm′ =
1

2π

∫ 2π

0

dφ′ f(φ′)ei(m−m
′)φ′ . (3.81)
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Since f(φ) is a real function, Φ is hermitian (Φmm′ = Φ∗m′m). Also, we easily derive
the symmetry relation Φm,m′ = Φ−m′,−m. In view of Eq. (3.8), Eq. (3.80) is the
expression of the product of two properly weighted fields having angular momentum m

and m′, evaluated at the boundary of the cavity, and coupled to each other through the
deformation term Φmm′ .

Property 1. The property of the unitarity of S (up to second order) is verified by
explicit calculation of S(0)∗

mmS
(1)
mm′ and S

(1)∗
m′mS

(0)
m′m′ and by use of the hermiticity of Φ.

This simultaneously checks the hermiticity of Q(1). This property may also be verified
by inspection of the elements of Q(1),

Q
(1)
mm′ = ε

4

π
(n2

o − n2
c)
Jm(Zc)

∆̄m

Φmm′
Jm′(Zc)

∆m′

[
−ncR0

J ′m′(Zc)

Jm′(Zc)
+

1

∆̄m′

∂∆̄m′

∂k

]

+ε
4

π
(n2

o − n2
c)

[
−ncR0

J ′m(Zc)

Jm(Zc)
+

1

∆m

∂∆m

∂k

]
Jm(Zc)

∆̄m

Φmm′
Jm′(Zc)

∆m′
.(3.82)

Property 2. Using J−m(·) = (−1)mJm(·) and Φm,m′ = Φ−m′,−m, we readily verify
that S(1)

−m,−m′ = (−1)m
′
S

(1)
m′m(−1)m. Also the main diagonal of the scattering and delay

matrices are seen to be symmetric with respect to the S(1)
00 term: S(1)

+m,+m = S
(1)
−m,−m,

Q
(1)
+m,+m = Q

(1)
−m,−m.

Property 3. The perturbation treatment often demands the use of the ‘corner’ element
Q

(1)
m0,−m0

. In the case of the boundary deformation, we define

Q(1)
m0

= ε
4

π
(n2

o − n2
c)

∣∣∣∣
Jm0(Zc)

∆m0

∣∣∣∣
2 [
−2ncR0

J ′m0
(Zc)

Jm0(Zc)
+

1

∆m0

∂∆m0

∂k
+

1

∆̄m0

∂∆̄m0

∂k

]
(3.83)

so that we may rewrite

Q
(1)
m0,−m0

= (−1)m0Q(1)
m0

Φm0,−m0 , (3.84)

and further Q(1)
m0m0 = Q(1)

m0Φm0,+m0 , so that the eigenproblem (3.32) simplifies to

Q(1)
m0

(
Φm0,m0 (−1)m0Φm0,−m0

(−1)m0Φ∗m0,−m0
Φm0,m0

)(
c
m0a,b

+

c
m0a,b

−

)
= q(1)

m0a,b

(
c
m0a,b

+

c
m0a,b

−

)
. (3.85)

The eigenvalues are found to follow Eqs. (3.33)-(3.34),

q(1)
m0a

= Q(1)
m0

(Φm0,m0 + |Φm0,−m0 |) (3.86)

q(1)
m0b

= Q(1)
m0

(Φm0,m0 − |Φm0,−m0|) (3.87)

and the eigenvector phase exp(i2χm0) reads

ei2χm0 = eim0π
Φm0,−m0

|Φm0,−m0|
. (3.88)
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As expected, the phase χm0 is found to solely depend on the geometrical factors em-
bodied by the boundary Fourier series term Φm0,−m0 .

Property 4. The verification of this property is somewhat more involved. Since
the βm0aa,bb

coefficients are computed from Eq. (3.46), they automatically satisfy the
reciprocity property. Then, the expression that needs to be verified is

Ām0a,b
!

= e−iθm0a,b
[
S(0)†PĀm0a,b∗ + S(1)†PAm0a,b(0)∗] . (3.89)

For the sake of simplicity, only the calculational details of mode a are shown, mode b
follows exactly the same procedure.

In the previous Section, it was shown that

Ām0a(1)
m =

1√
2

Q
(1)
m,+m0

e+iχm0 +Q
(1)
m,−m0

e−iχm0

q
(0)
m0 − q(0)

m

, |m| 6= m0 (3.90)

Am0a(0)
m =

1√
2

e+iχm0 δm,+m0 +
1√
2

e−iχm0 δm,−m0 (3.91)

where Q(1)
m,±m0

is defined by Eq. (3.82), and

q(0)
m = −i

(
1

∆̄m

∂∆̄m

∂k
− 1

∆m

∂∆m

∂k

)
. (3.92)

The vector element m from the RHS of (3.89) has the following contributions

{
S(0)†PĀm0a(1)∗}

m
= (−1)mS(0)∗

mmĀ
m0a(1)∗
−m (3.93)

{
S(1)†PĀm0a(0)∗}

m
=

(−1)m0

√
2

[
S

(1)∗
−m0me−iχm0 + S

(1)∗
+m0me+iχm0

]
. (3.94)

so that complete expression becomes

{RHS (3.89)}m = e−iθm0a
1√
2

1

q
(0)
m0 − q(0)

m

×
[ (

(−1)mS(0)∗
mmQ

(1)∗
−m,+m0

+ (−1)m0(q(0)
m0
− q(0)

m )S
(1)∗
−m0,m

)
e−iχm0

+
(

(−1)mS(0)∗
mmQ

(1)∗
−m,−m0

+ (−1)m0(q(0)
m0
− q(0)

m )S
(1)∗
+m0,m

)
e+iχm0

]
.

(3.95)

Since the second member of the bracket is obtained through the change of sign −m0 ↔
+m0 (q(0)

+ = q
(0)
− and S(0)

+m,+m = S
(0)
−m,−m), only the calculation for the first member is

carried out. Beginning with the first term, (−1)mS
(0)∗
mmQ

(1)∗
−m,+m0

, we easily determine, by
use of symmetry relations of Φmm′ and the negative order relations for Bessel functions
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(Appendix A), that

(−1)mS(0)∗
mmQ

(1)∗
−m,+m0

=
(
S(0)∗
m0m0

S(0)
m0m0

)
(−1)mS(0)∗

mmQ
(1)∗
−m,+m0

= +ε(−1)m0S(0)∗
m0m0

4

π
(n2

o − n2
c)×

[
Jm(Zc)

∆̄m

Φm,−m0

J−m0(Zc)

∆m0

(
−ncR0

J ′m0
(Zc)

Jm0(Zc)
+

1

∆m0

∂∆m0

∂k

)

+

(
−ncR0

J ′m(Zc)

Jm(Zc)
+

1

∆̄m

∂∆̄m

∂k

)
Jm(Zc)

∆̄m

Φm,−m0

J−m0(Zc)

∆m0

]
.

(3.96)

The second term, (−1)m(q
(0)
m0 − q(0)

m )S
(1)∗
−m0,m, is treated in a similar fashion,

(−1)m(q(0)
m0
− q(0)

m )S
(1)∗
−m0,m =

(
S(0)∗
m0m0

S(0)
m0m0

)
(−1)m(q(0)

m0
− q(0)

m )S
(1)∗
−m0,m

= ε(−1)m0S(0)∗
m0m0

4

π
(n2

o − n2
c)×

[
Jm(Zc)

∆̄m

Φm,−m0

J−m0(Zc)

∆m0

(
1

∆̄m0

∂∆̄m0

∂k
− 1

∆m0

∂∆m0

∂k

)

−
(

1

∆̄m

∂∆̄m

∂k
− 1

∆m

∂∆m

∂k

)
Jm(Zc)

∆̄m

Φm,−m0

J−m0(Zc)

∆m0

]
.

(3.97)

Combining Eqs. (3.96)-(3.97), we see that the terms ∆−1
m0
∂∆m0/∂k and ∆̄−1

m ∂∆̄m/∂k

cancel in pairs. Then, the first member of the RHS of Eq. (3.89) becomes

(−1)mS(0)∗
mmQ

(1)∗
−m,+m0

+ (−1)m0(q(0)
m0
− q(0)

m )S
(1)∗
−m0,m = (−1)m0S(0)∗

m0m0
Q

(1)
m,−m0

. (3.98)

As for the second member of Eq. (3.89), we find similarly

(−1)mS(0)∗
mmQ

(1)∗
−m,−m0

+ (−1)m0(q(0)
m0
− q(0)

m )S
(1)∗
+m0,m = (−1)m0S(0)∗

m0m0
Q

(1)
m,+m0

. (3.99)

Using the expression of e−iθm0a found at Eq. (3.57) and replacing back expressions
(3.98) and (3.99) into Eq. (3.89), we finally obtain

{RHS (3.89)}m =
1√
2

Q
(1)
m,+m0

e+iχm0 +Q
(1)
m,−m0

e−iχm0

q
(0)
m0 − q(0)

m

= Ām0a(1)
m . (3.100)

This verifies property 4 for mode a and by the same procedure for mode b.

Property 5. The coefficients βm0aa,bb
, Eq. (3.60), are computed directly with the

expressions of S(1)
mm′ , Eq. (3.80), the vectors Am0a,b(0), Eqs. (3.36)-(3.37), and Eq.

(3.87),

βm0aa
= ε

2

π
(n2

o − n2
c)

∣∣∣∣
Jm0(Zc)

∆m0

∣∣∣∣
2

(Φm0m0 + |Φm0,−m0|) (3.101)

βm0bb
= ε

2

π
(n2

o − n2
c)

∣∣∣∣
Jm0(Zc)

∆m0

∣∣∣∣
2

(Φm0m0 − |Φm0,−m0|) . (3.102)
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Because Φm0m0 is a real number, we conclude that βm0aa,bb
are also real, hence fulfilling

property 5.

3.2.2 Small circular inclusion

A second interesting application of the perturbation method is the addition of a (minute)
circular inclusion inside the cavity. This is our well-known annular cavity (Chapter 2
and Appendix D), except that here the radius of the inclusion is perturbatively small.
The system consists in a homogeneous disc cavity having a circular inclusion of radius
εR0 and index nh located at a distance d along the Ox axis from the geometrical center
of the cavity. In the inclusion’s own coordinates (ρ, θ), the compensation index Eq.
(3.1) takes the form

ñ2(ρ, θ; ε) =
(
n2
h − n2

c

)
U(εR0 − ρ) . (3.103)

The complete system is represented schematically in Fig. (3.5).

Fig. 3.5 Schematics of the cavity and inclusion system. The natural coordinates for the cavity (r, φ)

and inclusion (ρ, θ) are shown, along with parameters d and ε. The refractive index inside the inclusion
is nh, while the index of the cavity and outside media are respectively nc and no.

In view of Eq. (3.12), the proper Green function to use here is Gco(r, r
′),

Gco(r, r
′) =

∑

m′

bcm′Jm′(z
′
c)e
−im′φ′H(1)

m′ (zo)e
im′φ , (3.104)

and the unperturbed wavefunction ψ(0)(r′) has the form

ψ(0)
m (r′) = T (0)

mmJm(z′c)e
imφ′ . (3.105)

Using Graf’s displacement theorem (see Appendix A), the reference frame is relocated
on the inclusion coordinates (ρ, θ) so that we may write Eq. (3.12) as

ψ(1)
m (r; ε) = k2

(
n2
c − n2

h

) ∫ εR0

0

dρ ρ

∫ 2π

0

dθ Gco(r, r
′(ρ, θ))ψ(0)

m (r′(ρ, θ)) (3.106)
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with

Gco(r, r
′)ψ(0)

m (r′) = T (0)
mm

∑

m′,j,j′

bcm′(−1)m
′
[Jm+j(nckd)J−m′−j′(nckd)]

×
[
J−j(ζc)Jj′(ζc)e

i(j′−j)θ
]
H

(1)
m′ (zo)e

im′φ (3.107)

and ζo,c = no,ckρ. Integration over θ in Eq. (3.106) simplifies the expression for
ψ

(1)
m (r; ε),

ψ(1)
m (r; ε) = 2π

(
n2
c − n2

h

)
T (0)
mm

∑

m′,j

bcm′H
(1)
m′ (zo)e

im′φ [Jm+j(nckd)Jm′+j′(nckd)]

×
∫ εR0

0

dρ ρ [Jj(ζc)]
2 . (3.108)

The integration range over the ρ coordinate scales with ε � 1. It is then justified to
expand the integrand near the origin (see Appendix A),

[Jj(ζc)]
2 =

[
J|j|(ζc)

]2
=

(
1
2
ζc
)2|j|

(|j|!)2

[
1− 2

(
1
2
ζc
)2

(|j|+ 1)
+O

(
ζ4
c

)
]

. (3.109)

Using this expansion, the integral in Eq. (3.108) is evaluated term by term,
∫ εR0

0

dρ ρ [Jj(ζc)]
2 = ε2|j|+2

(
1

2

)2|j|
R2

0Z
2|j|
c

2(|j|+ 1)(|j|!)2

[
1− ε2 2

|j|+ 2

(
1

2
Zc

)2

+O(ε4)

]
.

(3.110)
For ε2

(
1
2
Zc
)2 � 1, only the first term of the preceding series is relevant. Also, integrals

with orders |j| > 0 rapidly become negligible with respect to the zeroth order term
2. Setting j = 0 in Eq. (3.108), the approximate first correction to the wavefunction
outside the cavity, Eq (3.12), is

ψ(1)
m (r; ε) = ε2πk2R2

0

(
n2
c − n2

h

)∑

m′

{
T (0)
mmJm(nckd)Jm′(nckd)bcm′

}
H

(1)
m′ (nokr)e

im′φ

(3.112)
or with proper substitution of the expressions for T (0)

mm and bcm′ ,

ψ(1)
m (r; ε) = ε2

∑

m′

S
(1)
mm′H

(1)
m′ (nokr)e

im′φ (3.113)

where the first correction term to the scattering matrix is

S
(1)
mm′ = ε2

i2

π

(
n2
c − n2

h

) Jm(nckd)

∆m

Jm′(nckd)

∆m′
. (3.114)

2The J0 Bessel function is the only one being non-zero at the origin. For j = 0, we have
∫ εR0

0

dρ ρ [J0(ζc)]
2 ' ε2 1

2
R2

0 . (3.111)
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This last expression is closely related to its small boundary deformation counterpart,
Eq. (3.80), the differences being a constant factor and Φmm′ = 1. We conclude that the
circular inclusion cavity inherits all the properties derived for the boundary deformation
case. We state here only the first order delay matrix Q(1),

Q
(1)
mm′ = ε2

2

π
(n2

c − n2
h)
Jm(nckd)

∆̄m

Jm′(nckd)

∆m′

[
−ncd

J ′m′(nckd)

Jm′(nckd)
+

1

∆̄m′

∂∆̄m′

∂k

]

+ε2
2

π
(n2

c − n2
h)

[
−ncd

J ′m(nckd)

Jm(nckd)
+

1

∆m

∂∆m

∂k

]
Jm(nckd)

∆̄m

Jm′(nckd)

∆m′
(3.115)

and βm0aa,bb
coefficients

βm0aa
= ε2

2

π

(
n2
c − n2

h

) ∣∣∣∣
Jm0(nckd)

∆m0

∣∣∣∣
2

(3.116)

βm0bb
= 0 . (3.117)

3.2.3 Perspectives for other systems

A similar procedure may be undertaken for a circular exclusion: a small circular ob-
ject located outside the cavity. In this case however, the Green function to consider is
Goo(r, r

′), and the zeroth-order wavefunction is composed of both incoming and out-
going components, which results in four different contributions to the complete first
order scattering matrix S(1). This is closely related to the description of the perturbed
boundary cavity, see Figs. 3.4(b) through 3.4(e), only with the perturbation being lo-
cated away from the disc boundary. The result however does not simplify as nicely as
the cases studied so far. This scenario is especially suited for the analytical study of
the detection of small biological entities [2, 125, 133].

One can also consider a small non-circular inclusion/exclusion which would add a form
factor depending on the mean radius of the dielectric perturbation. The a priori knowl-
edge of the end result for the disc inclusion/exclusion would allow to immediately set
j = j′ = 0 in Eq. (3.107), and to carry out a 2D integration in Eq. (3.106) with the
small argument approximation on J0(ζc).

This method is not bound to single inclusion/exclusion: we could consider the effect
of multiple non-interacting obstacles on the scattering matrix. Finally, note that the
refractive index of the inclusion/exclusion can be set to a complex number to model
absorption or emission phenomena.
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3.3 Two illustrative examples: Further analysis and
numerical results

In this final Section, we present some further general analytical properties of the scat-
tering and delay matrices derived in the previous Sections. We first extract a qualitative
picture of the S(1) matrix by exploiting the asymptotic forms for the Bessel functions.
Among other things, we identify a transition probability ridge connecting high angular
momentum components to the innermost angular momenta region. Outside this re-
gion, the off-diagonal terms of the scattering and delay matrices decrease exponentially.
This observation enforces the use of an amplitude cut-off for pathological terms in the
numerical evaluation of the S matrix (Chapter 2).

We also analyze in more detail the characteristic modes obtained from perturbation the-
ory with emphasis on the near resonance behaviour. The results indicate that the ridge
found in the scattering matrix has a dramatic effect on the far-field properties of the
wavefunction. These properties provide useful insights for the study to be undertaken
in Chapter 4.

Finally, we propose an answer to a theoretical question: is it possible to recreate,
through a boundary deformation of the disc cavity, the effect of an index deformation
of the homogeneous disc?

3.3.1 Global behaviour of the scattering matrix

The first order correction to the scattering matrix found in the two illustrative examples
possess the same dependence upon the product of factors ∆m∆m′ . This term proves
to determine the behaviour of the off-diagonal elements of the scattering matrix. The
analysis provides further evidence for the optimal truncation size of the relevant matrices
and justifies the use of a small amplitude cutoff to avoid numerical errors (see Chapter
2).

The critical term to analyze is the ∆m function, Eq. (3.10). Because it is defined
through Bessel and Hankel functions, ∆m will inherit their evanescent and/or oscillating
features. The relative size of the argument versus order of the cylindrical functions
determine their behaviours (see Appendix A). Three particular regimes can be identified
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3:

• 0 < m < Zc and 0 < m < Zo

∆m ' −
2

π

1√
ZcZo

eiΘ
o
m

[
nc

(
1− (m/Zc)

2

1− (m/Zo)2

)1/4

sin Θc
m + ino

(
1− (m/Zo)

2

1− (m/Zc)2

)1/4

cos Θc
m

]

(3.118)

• 0 < m < Zc and m > Zo

∆m ' − 1

π

√
2

Zc

[
nc√
m

(
1√
2

e−Λom − i
√

2e+Λom

)(
1− (m/Zc)

2

1− (Zo/m)2

)1/4

sin Θc
m

+
no
√
m

Zo

(
1√
2

e−Λom + i
√

2e+Λom

)(
1− (Zo/m)2

1− (m/Zc)2

)1/4

cos Θc
m

]

(3.119)

• m > Zc and m > Zo

∆m ' 1√
2π

e−Λcm

[
nc
Zc

(
1√
2

e−Λom − i
√

2e+Λom

)(
1− (Zc/m)2

1− (Zo/m)2

)1/4

−no
Zo

(
1√
2

e−Λom + i
√

2e+Λom

)(
1− (Zo/m)2

1− (Zc/m)2

)1/4
]
(3.120)

In these expressions, Zc = nckR0 > Zo = nokR0, and Λo,c
m = Λm(Zo,c) and Θo,c

m =

Θm(Zo,c) (see Appendix A for the exact expressions). The transient regime between
oscillatory and evanescent behaviour is not considered here because it would add cum-
bersome expressions for a range of angular momenta that remains narrow for any rea-
sonable value of kR0. Therefore, the regimes having Zo,c−Z−1/3

o,c < m < Zo,c+Z
−1/3
o,c are

ignored, and the transition between oscillatory and evanescent behaviours are assumed
to happen sharply at m = Zc and m = Zo.

• First regime: because of the trigonometric oscillating terms in Eq. (3.118), we
may find combinations of m and k (through Zo and Zc) minimizing the overall
value of ∆m. The effect with regards to the delay matrices Eqs. (3.82) and

3We consider here that m > 0. However, using Eqs. (A.4)-(A.7) we show that ∆−m = ∆m, so
that Eqs. (3.118)-(3.120) also apply to negative orders. For any realistic value of kR0, the case m = 0

is such that the different cylindrical functions behave in the far-field as oscillating functions. This
restricts ∆0 to the first regime.
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(3.115) is an increase in the magnitude of the corresponding element, indicating
a neighboring resonance. The overall m dependence in this regime reads

|∆m| ∝
1

(Z2
o −m2)1/4(Z2

c −m2)1/4
. (3.121)

• Second regime: the expression for the intermediate angular momentum domain,
Eq. (3.119), is similar to the preceding one, Eq. (3.118). However, the overall
envelope in this intermediate regime for ∆m is an increasing exponential,

|∆m| ∝ e+Λom . (3.122)

• Third regime: according to the fact that Λc
m < Λo

m (Appendix A), the dominant
factor in the third region, |m| > Zc, shows ∆m as an exponentially, but monoton-
ically, increasing function of m. There are then no resonances in this semi-infinite
range.

An example of evaluation of ∆m is illustrated in Fig. 3.6. We also display in Fig. 3.7(a)
the predicted overall appearance of ∆−1

m ∆−1
m′ according to Eqs. (3.120) and (3.121), and

the corresponding exact evaluation on Fig. 3.7(b). Note the ridge structures where the
evaluation of ∆−1

m ∆−1
m′ rises, then drops exponentially along a single line or column (see

Fig. 3.6(b)). These structures have direct consequences on the scattering features for
modes having a dominant angular momentum component |m| = m0 > Zo: these modes
are more likely to escape through low angular momentum components than neighboring
high angular momentum ones.

These results may be interpreted through the semi-classical picture of the cavity system,
where Zo and Zc hold respectively for the total internal reflection (TIR) limit and
the ‘real rays’ limit (see Chapter 1). This is readily seen from the expression of the
semiclassical momentum for the disc cavity, p = m/Zc, and letting m = Zo (TIR limit),
orm = Zc (real rays limit). Above the real rays limit exist evanescent fields (‘imaginary’
rays). In view of this interpretation, resonant modes with angular momentum |m| < Zo
are then less confined inside the cavity than those with Zo < |m| < Zc.

The Jm(Z)Φmm′Jm′(Z) terms appearing in the scattering and delay matrices embody
completely the differences between cavities of different kinds. They discriminate, so to
speak, one type of perturbation from the other, e.g. the boundary modification versus
the inclusion.
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Fig. 3.6 (a) Evaluation of |∆m|−2, Eq. (3.10), using kR0 = 9, nc = 3.2 and no = 1 (Zo = 9,
Zc = 28.8) (black dots) over a symmetrical range of m. The green continuous line indicates the
envelop trends given by Eqs. (3.121) and (3.122) for the corresponding domain of application; origin
at m = 0 for Eq. (3.121), origin at m = ±Zc for Eq. (3.122). (b) Evaluation of |S(1)

mm′ | along the
column m′ = 20 for the circular inclusion cavity, nh = 1 and d/R0 = 0.5. The diagonal term |S(1)

m′m′ |
is highlighted by a red circle. Notice the ridge region, |m| < Zo, having a larger scattering amplitude
than terms located near the diagonal component at m = 20.

3.3.2 Results from perturbation theory

For the boundary perturbation example, we have shown in Eqs. (3.86) and (3.87) that
the first corrections to the eigenvalues of the approximate delay matrix Q(0) +ηQ(1) are

q(1)
m0a

= Q(1)
m0

(Φm0,m0 + |Φm0,−m0|) (3.123)

q(1)
m0b

= Q(1)
m0

(Φm0,m0 − |Φm0,−m0|) (3.124)

with Q(1)
m0 defined in Eq. (3.83). The first order corrections change with the cavity

mean radius Φm0,m0 . This agrees with the observation that the delay spectra for two
discs having radii R0 and R′0 are only shifted along the wavenumber axis with respect
to another. The level degeneracy is lifted only if Φm0,−m0 6= 0.

For a boundary deformation defined through a finite Fourier series, only a finite number
of levels will have their degeneracy lifted in the first order. An illustration of this point
is found in a quadrupolar deformation

R(φ) = R0(1 + ε cos 2φ) (3.125)

for which the matrix Φ has only two satellite diagonals along the main diagonal. In
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(a)
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Fig. 3.7 Mapping of |∆m|−1|∆m′ |−1 (a) from analytical considerations, Eqs. (3.120) and (3.121),
and (b) from exact evaluation, Eq. (3.10). The parameters are the same as the ones used on Fig. 3.6.
The color gradient in (b) scales with the logarithm of |∆m|−1|∆m′ |−1. Note the ridges in regions with
|ν| < Zo and |ν′| > Zo where ν = {m,m′} and ν′ = {m′,m}.

this special case, only the mode m0 = 2 is able to lift its degeneracy through first order
perturbation.
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Using Eqs (3.88) and (3.6), we readily verify that

ψ(0)
m0a

∝ cos

(
m0φ+

1

2
arg{Φm0,−m0}

)
(3.126)

ψ(0)
m0b

∝ sin

(
m0φ+

1

2
arg{Φm0,−m0}

)
. (3.127)

The modes labeled a and b are then respectively of even and odd symmetry with
respect to the angular position 1

2
arg{Φm0,−m0}, a reference symmetry axis of the cavity

recognized by the mode m0. The number of different symmetries in a deformed cavity
is then related to the amount of different phases found in the Fourier series of the
boundary deformation.

We now discuss a few more properties of the delay spectrum with respect to the mode
symmetry. In terms of delay levels, different m0 odd and even modes, relative to a
uniquely defined symmetry axis, may cross each other. However, the picture is more
involved for same symmetry modes: accidental degeneracy found in the homogeneous
disc spectra become (at least) twofold anti-crossings4 (see Fig. 3.8 for a descriptive
representation). For a given symmetry, the overall delay spectrum becomes a series of
avoided crossings between levels, the sizes of which are related to interaction strength.
Complete spectral mayhem appears for cavities having no clearly defined symmetry
axis (e.g. random boundary roughness or spiral cavity). In these cases, as it is always
possible to find a projection of a given symmetry mode into the others, every level will

4A very special exactly solvable case of level avoidance is the circular inclusion cavity. We can show
that the 4× 4 generalization of the eigenproblem Eq. (3.32) reads



Q
(1)
m0m0 (−1)m0Q

(1)
m0m0 1Q

(1)
m0m0

′ (−1)m0
′
Q

(1)
m0m0

′

(−1)m0Q
(1)
m0m0 Q

(1)
m0m0 (−1)m0Q

(1)
m0m0

′ (−1)m0+m0
′
Q

(1)
m0m0

′

Q
(1)∗
m0m0

′ (−1)m0Q
(1)∗
m0m0

′ 1Q
(1)
m0
′m0

′ (−1)m0
′
Q

(1)
m0
′m0

′

(−1)m0
′
Q

(1)∗
m0m0

′ (−1)m0+m0
′
Q

(1)∗
m0m0

′ (−1)m0
′
Q

(1)
m0
′m0

′ Q
(1)
m0
′m0

′







cm0
+

cm0
−
cm0

′

+

cm0
′

−


 = q(1)




cm0
+

cm0
−
cm0

′

+

cm0
′

−




(3.128)
which has the following characteristic polynomial

q(1)2
[
q(1)2 +

(
−2Q(1)

m0m0
− 2Q

(1)
m0
′m0

′

)
q(1) +

(
4Q(1)

m0m0
Q

(1)
m0
′m0

′ − 4|Q(1)
m0m0

′ |2
)]

= 0 (3.129)

whose roots, perhaps surprisingly, can be written down analytically: q(1) = 0 (twice degenerate) and

q(1) =
(
Q

(1)
m0m0 +Q

(1)
m0
′m0

′

)
±
√(

Q
(1)
m0m0 −Q(1)

m0
′m0

′

)2

+ 4|Q(1)
m0m0

′ |2. Away from the accidental cross-

ing, the Q(1)
m0m0

′(k) is small and we find eigenvalues having proper values (see forthcoming paragraphs).
Since the coupling term Q

(1)
m0m0

′(k) increases with k near accidental crossings of the unperturbed cav-
ity, the overall effect is the splitting of 2 levels. As we will see in the development of the inclusion
cavity, odd modes delays of this specific cavity are not affected by first order perturbation. This result
is in agreement with the four levels interaction where two eigenvalues remain degenerate and equal to
zero. Further analysis show that the zeroth-order eigenvector coefficients are a linear superposition of
two even modes belonging to angular momenta m0 and m0

′.
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interact with each other in anti-crossing events.

The cavity inclusion example is particularly attractive since it demands only a few minor
alterations to the results of those of the boundary modification. The most important
difference resides in the fact that in this case Φmm′ = 1 for all angular momentum pairs.
Following the preceding discussion on symmetry issues, we immediately find that having
Φmm′ = 1 implies that the odd modes relative to the Ox axis have q(1)

m0b = 0., i.e. odd
modes remain unaffected to first order. The reason is that the odd disc modes have zero
amplitude on the Ox axis. Furthermore, the sign on βm0aa

, Eq. (3.116), only depends
on the difference n2

c−n2
h. From the definition Eq. (3.52), this implies that θ(1)

m0a(k; ε) < 0

for n2
c > n2

h and θ(1)
m0a(k; ε) > 0 for n2

c < n2
h. Since the slope of −θ(0)(k) is positive with

respect to k (because of its relation with the positive delay, Eq. (3.59)), the complete
phase θm0a

(k) = −θ(0)
m0a(k) + θ

(1)
m0a(k; ε) moves towards larger k values for n2

c > n2
h, and

the other way around for n2
c < n2

h. A numerical example of this observation is shown
in Fig. 3.9.

An illustration of the perturbation method of this Chapter is presented in Fig. 3.10
for the inclusion system and a near resonance scenario (mode (18, 7) for instance).
In this example, the condition (εZc/2)2 � 1 is well respected (Eqs 3.110 and 3.111),
(εZc/2)2 ' 0.05 for the parameters used in Fig. 3.10. Although the overall agreement
between the two sets of evaluations is much better at d/R0 = 0.81 than it is at d/R0 =

0.90. This is attributed to the oscillating amplitude of the J18(nckd) Bessel function
affecting the range of validity of both perturbation treatments with respect to the total
amount of ψ(0)

m0=18 field being diverted by the inclusion (see Fig. 3.11). The orange peak
of Fig. 3.10(b) is even turning asymmetric, a symptom that the correction term q

(1)
m0a is

becoming non-perturbatively large. The numerical evaluation loses some of its validity
near the maximum of |ψ(0)|2 at r/R0 ' 4.5.

Although the numerical evaluation of the perturbation series may be worrisome due
to its poorly defined range of validity, we would like to emphasize that we could, in
principle, always find an ε deformation parameter suitable for a ‘converged’ first-order
perturbation treatment.

The expression for βm0aa
, Eq. (3.116), is also useful in the evanescent regime inside

the caustic radius m0/nck (see Chapter 1). This is interesting because, in this region,
the zeroth-order field changes exponentially with the radius (see Appendix A for large
order Bessel Jm(x) functions), in contrast with the continuous oscillations affecting the
region above the semi-classical caustic. This behaviour could prove useful as we attempt
to control the amount of field being diverted to other momentum field components
|m| 6= m0. Figure 3.12 presents the first order incident coefficients Eq. (3.39) for three
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(a) Effect of perturbation on single degenerate peak

(b) Effect of perturbation on two degenerate peaks. The avoided-crossing be-
haviour between same symmetry modes is highlighted

Fig. 3.8 Schematic representation of the removal of degeneracy due to perturbation in the delay
spectrum. (a) Splitting of a resonant mode (left spectrum) into even and odd modes relative to an
appropriate symmetry axis (right spectrum). The light pink line on the right picture indicates the
position of the former unperturbed degenerate resonant peak. (b) Splitting of two resonant modes
(left spectrum) into even and odd modes relative to an appropriate common symmetry axis (right
spectrum). The close-up view of the accidental crossing between modes with angular momentum m0

and m0
′ reveals avoided-crossings between the delay levels of modes of same symmetry. Note that the

“pure” m0a (m0b) and m0
′
a (m0

′
b) modes follow diabatic levels (discontinuous lines) that cross over

the gap between adiabatic levels (continuous lines): there is a modal character exchange along an
adiabatic level going left to right. Consequently, the modes of a given symmetry rearrange themselves
in two orthogonal combinations as they go through the avoided-crossing.
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Fig. 3.9 Complete phase factor θm0a
= −θ(0)

m0a
+ θ

(1)
m0a

(ε) (dark red curve) near resonance (18, 7) at
k(18,7)R0 ' 13.8916 for the disc cavity + inclusion corresponding to the physical setup nc = 3.2,
no = 1, nh = 1, R0 = 1, d/R0 = 0.81 and ε = 0.01. The individual terms −θ(0)

m0a
(black) and

θ
(1)
m0a

(ε) (blue) add up to move the resulting curve (dark red) toward larger k values. The length and
direction of the blue arrows are obtained by the evaluation of θ(1)

m0a
(ε). Note the large phase change as

the wavenumber goes through the resonance, almost by 2π, with the inflexion position around a phase
shift of π [88]. See Fig. 3.10 for the corresponding delay spectrum.

values of d/R0. Results show that the coefficients outside the ridge, |m| < Zo, differ
only by a common scaling factor for different d/R0.

Not only do the terms inside the ridge become larger in amplitude, they also seem to
change quite a lot over the relatively small parametric interval sampled here. Since the
outgoing far-field for characteristic delays reads

ψout(r) = e−iθψ∗inc(r) ∼
∑

m

A∗me−imφ−mπ/2 , (3.130)

the far-field is prone to vary strongly as the inclusion is displaced inside the evanescent
field region. Hence, the emission properties of a high quality mode seem to be dictated
by the low angular momentum components. This observation will be the subject of a
detailed investigation in the next Chapter.

The appearance of the ridge in the evaluation of the first order coefficients A(1)
m , Eqs

(3.39)-(3.40), stems from the presence of Q(1)
m,±m0

producing the features shown on Figs.
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(b) Perturbation

Fig. 3.10 Delay spectrum of the disc cavity even mode (18, 7) found at k(18,7)R0 ' 13.8916 for
ε = 0 (unperturbed reference, black) and the inclusion scenario ε = 0.01 (red, d/R0 = 0.81; orange,
d/R0 = 0.90). (a) exact computation from the analytical model of Appendix D and (b) perturbation
method of this Chapter (perturbation of the S matrix and eigenvalues obtained from perturbation
theory). The lateral motion of the peaks is mostly determined by the q(1)

m0a
factor while most of the

amplitude decay is due to the normalization factor 1 + (ηβm0a
)2 (η = 1).

3.6 and 3.7. Physically, the existence of the ridge can be understood by the position
of the caustic radius of low-lying delay modes. These modes are strongly affected by
a perturbation well inside the evanescent region of a high quality mode, and therefore
more likely to connect to other angular momentum modes, including the resonant ones.
Because the amplitude deflected by the inclusion is largely modified by the behaviour
of the Jm(x) Bessel function, a characteristic of these low quality modes, the net effect
is a continuously changing amplitude |A(1)

m |2 inside the ridge. For instance, the mode
(18, 7), shown in Fig. 3.11, is itself a low-lying component of another high quality mode
having its evanescent region well inside the oscillating part of (18, 7).
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Fig. 3.11 Radial cut of the wavefunction
∣∣∣ψ(0)
m0=18

∣∣∣
2

, Eq. (3.6), near the resonance at k(18,7)R0 '
13.8916 and the corresponding effective potential (see Introduction, Chapter 1). Note the decaying
portion of the field inside the semi-classical caustic radius m0/nck ' 0.401R0.
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(ε = 1) for d/R0 = 0.28 (dark red), d/R0 = 0.33 (dark orange) and
d/R0 = 0.38 (orange). Main channel |m0| = 18 is indicated by thicker line and hollow marker.
Physical parameters are the same as those used in Fig. 3.9. The evaluation is performed at the
resonance maximum delay value of the perturbed (18, 7) even mode.
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3.3.3 Inhomogeneous versus Deformed disc cavity

One question that may be asked regarding the much studied annular cavity is how
original (in the sense of producing novel results) is this design compared to other geo-
metrically deformed cavities. In other words, and more generally, can one always devise
a purely geometrical deformation of the homogeneous disc cavity such that its measured
delay spectrum (or pole positions) is identical to that of a disc cavity with an inhomo-
geneous refractive index? The preceding results, regarding first-order correction to the
disc scattering matrix, provide some answers.

Since the S matrix is central to both the emission/absorption description of complex
poles and the real k time delay characterization, we will concentrate on this specific
quantity to address the question stated above. Let the effect of a small circular inclusion
on the disc cavity result in a S matrix series of the form of Eq. (3.15). It would seem
reasonable to investigate small geometrical deformations of the circle such that the
zeroth-order term S(0) remains unchanged.

Turning our attention to the S(1) contributions of our two illustrative examples, Eqs
(3.80) and (3.114), we first discard the case d = R0 in S(1) because it would mean that
the small, albeit finite size inclusion, would be on the boundary. This in turn would
imply that we have to set Φmm′ = const. for all m and m′ in Eq. (3.114). For that to
happen, f(φ) ∝∑j eijφ, a notoriously ill-defined series.

For values of d between 0 and R0(1− ε), any agreement between the two S(1) contribu-
tions demands that

Φmm′ ∝
Jm(nckd)Jm′(nckd)

Jm(nckR0)Jm′(nckR0)
. (3.131)

However, because the exact expression for Φmm′ depends on the difference, m − m′,
contrary to the above requirement, agreement between the two S(1) can not occur.

We must therefore conclude that the annular cavity is an original design with respect
to geometrical deformation of an homogeneous cavity. This result applies to the whole
spectrum: it may still be possible to tailor a single mode by geometrical deformation
of the cavity boundary such that we would find an identical resonant wavenumber and
delay for a given inclusion. It would appear that the same conclusion is true for any
deformation for which f(φ) is a single valued function with respect to the geometrical
center of the cavity.
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Chapter 4

Application I: The annular cavity

This Chapter is the natural extension of the previous one where predictions
on the annular cavity were made from a perturbation perspective. We now
present a thorough numerical investigation of the annular cavity modes for
different parameter sets. Emphasis is placed on the increase of anisotropic
emission in the far-field from a high quality WGM with (almost) isotropic
near-field as a control parameter is varied. We identify two competing escape
mechanisms explaining this dichotomy. We then use semi-classical theory to
determine the origin in phase space of the anisotropic far-field. Since these
results do not rely on the exact position of the investigated high quality
WGM, they may be used as prediction tools for very high delay resonances
where numerical simulations become cumbersome and hardly possible. Fi-
nally, we investigate two phenomena that may cause difficulties in trying to
achieve proper control of the far-field emission: resonant coupling and wall
roughness.

It has been shown in the previous Chapter that placing a small circular inclusion in a
disc cavity changes the field composition of the high quality modes. More specifically,
the angular momentum composition of the incoming/outgoing characteristic modes is
modified to preferentially populate states inside the domain |m| < nokR0 instead of
the immediate neighborhood of the main channel nckR0 > |m| = |m0| > nokR0. This
property is inherited from the ridge structures appearing in the scattering matrix in
the form of off-diagonal horizontal and vertical bands crossing at the center of the S

matrix.

Since the perturbation contribution of the main angular momentum |m| = m0 to the
delay matrix Q(1) is proportional to Jm0(nckd), moving the inclusion beyond the semi-



classical caustic radius (m0/nck) has a varying (oscillating) effect on the perturbed
delays and the angular momentum components. On the other hand, the more mono-
tonic behaviour of the Bessel function within the caustic radius may be exploited to
provide a smooth increase of the amount of diverted field. With regards to this in-
ner caustic scenario, the chosen application is more predictable for large inclusions,
and certainly less disruptive of the main whispering gallery mode (WGM) field. Prob-
ing the inner evanescent field may then be carried out with a wide range of inclusion
sizes and positions even beyond the perturbation regime while retaining a qualitative
interpretation of the near-field behaviour (i.e. WGM-like).

These observations, derived from perturbation results of the preceding Chapter, lead
naturally to consider the control of emission properties of a high quality WGM with-
out sacrificing too much of its containment power (Q-factor). Moreover, owing to the
simplicity of the system geometry, we should be able to provide analysis of the internal
mechanisms at play in addition to direct numerical simulations.

This Chapter is separated into four Sections. The first one is dedicated to the in-
vestigation of the parametric range capable of disrupting the far-field of the WGMs,
while preserving their near-field behaviour. This will be achieved by moving a constant
radius inclusion toward the disc boundary along the Ox axis (see Fig. 4.1(a)). An
intuitive model of the cavity dynamics will also be formulated, providing evidence of
the competition of two escape mechanisms.

(a) (b)

Fig. 4.1 The parametric perturbations of the disc cavity investigated in this Chapter are of two types:
(a) inclusion displacement and (b) inclusion growth. In the second scenario, the inclusion radius r0 is
increased while the distance d+ r0 remains constant. This type of deformation is suggested from the
results of the first parametric study.

Once the adequate parametric range is determined, we will proceed to exploit the
inclusion size to modify the overall appearance of the far-field (again while maintaining
a high delay mode). This is done in Section 4.2 through the modification of the inclusion
radius (see Fig. 4.1(b)). Emphasis will be on a semi-classical analysis of the field, and
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important phase space structures related to the emission properties will be identified.
We will provide convincing evidence of the correspondence between wave and classical
structures. We will not use the usual periodic orbit description however, but rather we
will exploit a description based on classical mechanisms to cover large portions of phase
space.

The following two Sections provide supplementary information. They will fill in some
important details first skipped for the sake of conciseness. We will point out two
aspects that could be of relevance once an experimental implementation is considered.
The first topic is that of accidental resonant coupling between a high and a mid-size
quality mode. A coupled oscillators model will be derived to illustrate the subject and
will be compared to results from complete calculations from the annular cavity setup.

The second topic is inherent to all experimental realizations: manufacturing defects.
We will focus on the case of outer boundary roughness, and will stress the fact that
boundary roughness unfortunately provides a third way out of the cavity from the high
delay WGM. For our purpose, emission control, this will demand that the phenomena
leading to directional emission be of greater magnitude then the loss of uniformity in
the far-field due to randomness in the geometrical configuration of the cavity.

This work was initially inspired by the one of [161]. However, we found that avoided
level crossings [143, 160, 149, 121] (or resonant couplings on the real k axis as they are
called in Section 4.3) were phenomena too special to get an appropriate workable design
to manipulate the far-field. Our approach is more related to the one of [13], although
we do not rely on a fictitious dynamical system [12] to model the behaviour of the light
field of the annular cavity.

The original contributions of this Chapter, apart from the recourse to the scattering
formalism and delay matrix to convey the computations, revolve around the control of
the directional emission/reception field of a high quality annular cavity. The observation
of a parametric interval supporting high quality modes with highly directional far-field,
Fig. 4.7, and the model presented in Section 4.1.2 to explain this observation, ultimately
leading to Fig. 4.12, are seen as novel results [101]. The classical transport mechanism
domains in the chaotic part of phase space, Fig. 4.16, and their good agreement with full
wave results regarding phase space distribution and far-field distribution, Figs 4.19, 4.21
and 4.22, are also original contributions [106]. The identification of resonant coupling
as an issue for modal control, Section 4.3, and the investigation of the consequences of
boundary roughness as leading to a third escape mechanism from the cavity Fig. 4.32
are considered novel.
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4.1. The non-uniform emission from WGMs...

4.1 The non-uniform emission from WGMs: A com-
petition of escape mechanisms

Let us assume that a disc cavity possesses a high quality resonance in the angular
momentum channel |m| = m0. This angular momentum lies somewhere in the range
|m| = m0 ∈ [Zo = nokR0, Zc = nckR0]. A disc inclusion is then added inside the cavity
such that an annular cavity is obtained. A result from perturbation theory, Eq. (3.114),
informs us that the first order perturbation correction to the scattering matrix takes
the form

S
(1)
mm′ ∝

Jm(nckd)

∆m

Jm′(nckd)

∆m′
. (4.1)

The matrix S(1) is a termwise product of a first matrix composed of Jm(nckd)Jm′(nckd)

terms and of a second matrix ∆−1
m ∆−1

m′ . Using the large m description of the Jm(nckd)

Bessel function (see Appendix A), we find that the first matrix is bounded by Zd =

nckd between oscillatory (|m| < Zd) and exponentially decreasing behaviours (|m| >
Zd). Fixing k to a constant value, the size of the oscillatory domain increases with d,
delimiting a ridge (an approximately constant plateau over a given range of m values)
whose extent is eventually bounded as Zd = Zo (see Figs 4.2 and 4.3 for explanations
and numerical examples). Once Zd = Zo is reached, the ridge domain remains of the
same form but increases exponentially in amplitude with d.

We insist on the growth of the ridge structure as it appears in the perturbed eigenvectors
of the delay matrix as well. Since these vectors are directly responsible for the far-field
appearance of the emission pattern, the control of the ridge seems, at least from a
perturbation perspective, to be of central importance.

In this Section, we will provide a complete numerical computation of the characteristic
delays and associated vectors of a high quality WGM supported by an annular cavity
as the circular inclusion is moved toward the exterior boundary. In line with the per-
turbation results, we define a measure of contrast between the normal uniform emission
of the disc WGM and the actual annular modes. We will also determine that it may
be possible to produce a well localized WGM with a high containment power in the
near-field, while observing dramatic changes in the far-field patterns.

We will also separate two escape mechanisms competing to determine the far-field
appearance of the wavefield. The crossover between the d-dependent probabilities of
finding the dominant mechanism happens as the delay starts to drop, signaling the
lower limit (threshold) of the high containment-high anisotropic far-field parametric
domain. We should stress that this result is far easier to obtain than the full numerical
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4.1. The non-uniform emission from WGMs...

(a) (b)

Fig. 4.2 Separation of the matrix S(1) with regards to the respective contributions of ∆−1
m ∆−1

m′ and
Jm(nckd)Jm′(nckd). The colored areas are associated with the definitions found in Fig. 3.7(a),
and the hatched areas indicate the domain of applicability of the oscillatory behavior of Jm(Zd)

(single hatched: oscillatory on lines (columns), exponential decay on columns (lines); double hatched:
oscillatory over lines and columns). As the inclusion position d is increased from (a) to (b), the
underlying ridge region (|m| < Zo) becomes completely covered by the non-decreasing terms. Given
a line (or column) m = m0 and Zc > |m0| > Zo, not only is the ridge region becoming exponentially
stronger with increasing d (see Eq. (A.51)), but also many more channels are being included with
significant amplitude. The broadening eventually stops as Zd reaches Zo (d/R0 = no/nc): the d
independent exponential decrease in m due to ∆−1

m0
∆−1
m remains the dominant behaviour in the region

|m| > Zo.

computation of a perturbed high quality WGM. In this sense, this procedure may
become appealing to establish the threshold level of prohibitively large delay WGMs
without actually computing them: only an approximate value of their (real) resonant
wavenumbers is needed, a quantity that is readily accessible for instance through a
robust semi-classical approximation of the disc cavity.

4.1.1 Effect of the displacement of the inclusion on the far-field
of a WGM

We define a disc cavity having a bulk refractive index in the semiconductor range,
nc = 3.2, and exterior/inclusion index equals to no = nh = 1. The cavity radius R0

is set to 1 and is used as the length scale. The hole radius r0 is kept constant (a
number of radii are investigated) and, following the preceding discussion, we keep the
center-to-center distance d along the Ox axis as a control parameter.

The delay spectrum of the homogeneous disc without inclusion (Fig. 4.4(a)) shows that
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Fig. 4.3 Numerical evaluation of the line S(1)
m0m, m0 = 11, for different values of d/R0: nc = 3.2,

no = nh = 1, kR0 = 4.5 and R0 = 1. The vertical gray lines bound the oscillatory regime of
∆−1
m (maximum size of the ridge, ±Zo = ±nokR0). The ridge domain grows in size with d until

d/R0 = no/nc is reached. Then a monotonic exponential increase of the whole structure follows.

a high quality degenerate (11, 1) mode exist at kR0 ' 4.499. It possesses an angular
momentum (Zo ' 4.5) < |m0| < (Zc ' 14.4), in agreement with our prescription. We
focus our attention on the even mode relative to the Ox axis. The different behaviours
reported in the remainder of this Section also apply to the odd (11, 1) mode, but appear
at a larger perturbation (larger d and/or r0). This agrees with Eq. (3.117) from the
first order perturbation treatment of Chapter 3. Other disc cavity modes satisfying the
afore-mentioned criteria (high quality having Zo < |m0| < Zc) also behave in much the
same way as our specimen mode (11, 1).

In Figs 4.5 and 4.6, we record the wavenumber positions and the resonant delays of
the (11, 1)− even mode as a function of the center-to-center distance d over the range
d ∈ [0, R0 − r0]. Five inclusion sizes (r0) are presented.

As seen in Fig. 4.5, the resonant peak position remains roughly constant up to the
semi-classical caustic radius |m0|/nck ' 0.76R0 for all inclusion sizes. Increasing d+ r0

beyond that point forces the resonant modes to rearrange their amplitude distribution
inside the cavity, resulting in the displacement of the position of the resonant peak to
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Fig. 4.4 Delay spectrum of (a) the homogeneous disc cavity and of (b) the annular cavity with
d/R0 = 0.388 and r0/R0 = 0.2. The red curves represent the delays for the Ox axis odd symmetry
mode and the green curves are associated to even symmetry modes. The resonant position of modes
(5, 3), (11, 1) and (8, 2) are shown. Note however that in the annular case, these labels have to be
understood as a result of an adiabatic parametric follow-up of the disc resonances: in many instances,
the effect of the inclusion may be so disruptive that the near-field looses its WGM aspect.

higher wavenumbers k. This behaviour can be verified analytically by a perturbation
approach (see Fig. 3.9). Of course, the larger the size of the inclusion, the larger the
displacement.

The information obtained from the resonant delay, Fig. 4.6, is qualitatively different.
We observe at first the same invariance under deformation as seen in Fig. 4.5. However,
before reaching the caustic radius, the delays start to drop rapidly. Moreover, the loss
of 50% of the unperturbed delay value happens within a small range of ' 0.2R0, and
this for all inclusion sizes. The delay curves for different radii r0 should actually bunch
together and (exponentially) fall at a common d + r0 threshold value. The premature
drop of the 2 curves with r0/R0 = {0.1, 0.2} is somewhat special and can be explained
by an accidental case of resonant coupling. The explanation of this phenomenon is
postponed until Section 4.3. The flat segment between (d + r0)/R0 = 0 and ' 0.4 is
associated with the dominance of the tunneling through an effective cavity potential as
already pointed out in [60].

In order to gauge the angular momentum content of the resonant WGM, we define a
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Fig. 4.5 Displacement of the resonant wavenumber position of mode (11, 1) relative to the correspond-
ing one in a disc cavity with a centered (d = 0) inclusion. Five inclusion sizes r0/R0 are investigated
and show similar behaviours as d+ r0 increases. The displacement becomes especially strong as d+ r0

approaches the caustic radius (dashed vertical line at ' 0.76).

contrast measure for the outgoing field under parametric variations,

Cm0(r, par) =

∑

|m|6=m0

∣∣BmH
(1)
m (nokr)

∣∣2

∑

m

∣∣BmH
(1)
m (nokr)

∣∣2 . (4.2)

This measure is a function of the internal parameters (par) implicitly incorporated in
the delay matrix vectors B.

For m0 = 11 and the data of Figs 4.5 and 4.6, the contrast measure evaluates the
fraction of the outgoing part of the (11, 1) mode that is not the main angular component
|m| = m0 = 11. While C11(R0, d) is obviously related to the near-field aspect of the
mode, the r →∞ limit will determine how much the (11, 1) mode has lost its uniformity
in the far-field. The r →∞ limit, C̃m0 takes the simplified form

C̃m0(∞, par) ≡ lim
r→∞

Cm0(r, par) =

∑

|m|6=m0

|Bm|2

∑

m

|Bm|2
. (4.3)
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Fig. 4.6 Resonant delay value of mode (11, 1) relative to the center-to-center distance d for five
inclusion sizes r0/R0. The premature drop observed for radii r0/R0 = {0.1, 0.2} is explained by a
resonant coupling with a secondary mid-size resonance. This topic is discussed in Section 4.3.

The evaluation of (4.2) is carried out for r0/R0 = 0.2 both in the near-field and the far-
field regimes. In Fig. 4.7, the far-field looses its main angular momentum component
early relative to the near-field. Also, C̃11(∞, d) reaches 0.5 near d/R0 = 0.27, a position
where the delay level drops to half of its unperturbed value (see Fig. 4.6). This agrees
with our perturbation result that asserts that extra losses due to the perturbation of a
WGM are caused primarily by lower quality angular momenta contamination, and not
by an actual modification of the WGM resonance conditions. Indeed, a look at Fig. 4.5
indicates clearly that the resonant peak positions remain mostly unchanged over a large
parametric range. One should also note the similarity in the expression of the contrast
measure Eq. (4.3) and the general expression of the perturbed delay Eq. (3.62): it may
then not come as a big surprise if the far-field contrast measure and the resonant delay
are closely related.

The parametric window between d/R0 = 0.27 and 0.5 where the far-field is non-uniform
and the near-field remains WGM-like could be exploited as an engineering interval. The
constant and predictable WGM behaviour of the near-field over this range is in sharp
contrast with the non-uniform and varying far-field. This could prove to be an efficient
control asset. This specific subject is the topic of Section 4.2.
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Fig. 4.7 Evaluation of Eq. (4.2) for mode (11, 1) at r = R0 (blue curve) and r →∞ (red curve). The
gray parametric region has both near-field WGM aspect (< 1% deviation) and far-field non-uniformity
(> 50%). Insets show the near-field (r = R0, inner ring) and the outgoing far-field (r = ∞, outer
ring) polar distribution of |ψ(r, φ)|2 for d/R0 = {0.352, 0.602, 0.85} (respectively, left to right).

Before moving on, it seems reasonable to address in some detail the rapid turnover of
the delay curve which appears to be related to angular momenta contamination of the
WGM. This can surely contribute to our understanding of the dynamical behaviour of
the annular cavity. For our purpose, we develop in the next sub-section a model of the
annular cavity where the loss of containment power is associated with the dominance
of a secondary escape mechanism over the usual radiative escape route out of the disc
cavity.

4.1.2 An iterative model of the annular cavity: Highlighting two
escape mechanisms

The build-up and decay of the field of an annular cavity resonator may be constructed as
a sequence of scattering and reflection events. This description of the field has already
been successfully exploited for the treatment of dynamical tunneling phenomenon in
closed cavities [45]. In this sub-section, we obtain the transition probabilities between
different angular channels and confront it with the emission probability from the main
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4.1. The non-uniform emission from WGMs...

angular channel of a disc cavity.

We may define the field inside an annular region r0 + |d| ≤ r ≤ R0 as the result of a
sequential process. Starting with an initial field condition, the corresponding wave is
scattered on one hand by an effective circular boundary of radius R′0 ≥ |d| + r0, and
reflected (and transmitted) on the other hand by the external boundary at r = R0

(see Fig. 4.8). The reflected component then feeds a new round of scattering and
reflection/transmission processes. In this manner, the total field ψa(r) inside the annular
region can be expanded as a superposition of all incoming and outgoing local interaction
fields

Fig. 4.8 Multiple reflections/scatterings description of the annular cavity field. The incoming and
outgoing coefficients representation is used for the sake of simplicity. The total field inside the region
R′0 ≤ r ≤ R0 is decomposed as a series of scattering by the internal effective boundary at r = R′0 and
reflections by the external boundary at r = R0.

ψa(r) =
∞∑

n=1

ψ(n)
a (r) R′0 ≤ r ≤ R0 (4.4)

with the local expansions

ψ
(1)
o (r) =

∑
mA

(1)
m H

(2)
m (nokr)e

imφ +
∑

mB
(1)
m H

(1)
m (nokr)e

imφ , r > R0

ψ
(n)
o (r) =

∑
mB

(n)
m H

(1)
m (nokr)e

imφ , r > R0 , n > 1

ψ
(n)
a (r) =

∑
m a

(n)
m H

(2)
m (nckr)e

imφ +
∑

m b
(n)
m H

(1)
m (nckr)e

imφ , R′0 ≤ r ≤ R0 , n ≥ 1.
(4.5)

The coefficients A(1) and a(n) relate to the incoming waves (directed toward the geomet-
rical center of the disc cavity) and the coefficients B(n) and b(n) relate to the outgoing
waves. The different expansion coefficients are obtained by application of the bound-
ary conditions (continuity of the local wavefield and its normal derivative), so that the
complete superposition satisfies them as well. The only ‘black-box’ term in this field
description is the internal scattering matrix S′ relating the coefficients a(n) and b(n)

b(n) = S′a(n) . (4.6)
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We illustrate in Fig. 4.9 the difference between the internal S′ matrix and the usual
‘external’ S matrix for the annular cavity.
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Fig. 4.9 Amplitude of the terms found on the line m = 11 of S′ and S; nc = 3.2, nh = no = 1,
R0 = 1, d/R0 = 0.4, r0/R0 = 0.2 and k = 4.499. The ridge of the perturbation scattering matrix
(see Fig. 4.3 for instance) is also found in both internal and external scattering matrix, but appears
more asymmetrical in the former case.

The S′ matrix can be obtained for a general internal scatterer by the numerical method
presented in Chapter 2, or, in the case of the annular cavity, semi-analytically using
the results from Appendix D. Moreover, fixing the geometrical aspect of the internal
scatterer with the intent to displace it inside the disc cavity entitles one to use the
displacement transformation on the scattering matrix, a result also found in Appendix
D. This trick is useful since we only have to compute one scattering matrix through a
resource intensive computation and then semi-analytically displace the object for every
investigated position d.

The sequential approach is understood as a steady-state process involving an ‘initial’
incoming field incident on the external boundary: it begins with the field of angular
momentumm incident upon the exterior boundary only. We obtain in a straightforward
manner, by application of the local boundary conditions, the linear relations between
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the different expansion coefficients

a(1)
m =

[
H

(2)
m (Zo)

H
(2)
m (Zc)

noF
(1)
m (Zo)− noF (2)

m (Zo)

noF
(1)
m (zo)− ncF (2)

m (Zc)

]
A(1)
m (4.7)

B(1)
m = −

[
H

(2)
m (Zo)

H
(1)
m (Zo)

noF
(2)
m (Zo)− nCF (2)

m (Zc)

noF
(1)
m (zo)− ncF (2)

m (Zc)

]
A(1)
m (4.8)

with F (1,2)
m (Z) =

[
(dH

(1,2)
m (z)/dz)/H

(1,2)
m (z)

]
Z
and Zo,c = no,ckR0. Subsequent interac-

tions with the external boundary result in the relations

a(n)
m =

∑

m′

Rmm′b
(n−1)
m′ (4.9)

B(n)
m =

∑

m′

Tmm′b(n−1)
m′ , (4.10)

n ∈ {N ≥ 1} where the local reflection and transmission diagonal matrices are given
by

Rmm′ = −H
(1)
m (Zc)

H
(2)
m (Zc)

noF
(1)
m (Zo)− ncF (1)

m (Zc)

noF
(1)
m (Zo)− ncF (2)

m (Zc)
δmm′ (4.11)

Tmm′ =
H

(1)
m (Zc)

H
(1)
m (Zo)

ncF
(1)
m (Zc)− ncF (2)

m (Zc)

noF
(1)
m (Zo)− ncF (2)

m (Zc)
δmm′ . (4.12)

Note that the usual Fresnel reflection coefficient [29] can be retrieved from the first
expression using the appropriate asymptotic expansions for the Bessel functions (see
Appendix A) 1. The diagonal elements of these matrices are presented in Fig. 4.10 where
the reflection matrix appears as a smooth version of the total internal reflection (TIR)
limit 2. Correspondingly, there is always a small non-zero transmission amplitude for

1For instance, in the m < Zo < Zc regime, we use Eqs (A.37)-(A.38) (and their complex conjugate)
to find the large m reflection coefficient

Rmm′ '
√
Z2
c −m2 −

√
Z2
o −m2

√
Z2
c −m2 +

√
Z2
o −m2

ei2Θm(Zc)δmm′ (4.13)

Using the definition of the semi-classical momentum pαm = sinχαm = m/nαkR0 (α= o, c), we retrieve
the expected Fresnel coefficient (up to a phase factor),

Rmm′ =
nc cosχcm − no cosχom
nc cosχcm + no cosχom

ei2Θm(Zc)δmm′ . (4.14)

The Fresnel transmission coefficient however is not reobtained due to fundamental differences in the
functions describing the field outside a finite size cavity and plane waves.

2This limit is nothing but the expression of the Snell-Descartes law which delimits the region
of perfect reflection and transmission for a planar surface. In our present notation, it appears at
pTIR = no/nc.
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Fig. 4.10 Reflection and transmission matrices, Eqs (4.11)-(4.12), versus the semi-classical momentum
pm = m/Zc. The parameters are those of the cavity under investigation nc = 3.2, no = 1, k = 4.5 and
R0 = 1. As a base for comparison, the Fresnel reflection coefficient and the total internal reflection
(TIR) limit (pTIR = no/nc) are displayed .

all transmitted angular momentum components. For high-lying WGM having a large
main angular momentum component, this means that the retention power of the cavity
is very high (hence the high quality modes).

The scattering matrix S of the annular cavity may be deduced from the summation of
all partial outgoing waves embodied in the coefficients {B(n)}. This iterative picture of
the field is not a time step process since the angular channels do not have necessarily the
same ‘flight times’ between two consecutive interactions with the external boundary.
With this in mind, our description of the system is somewhat better related to the
billiard classical map where no physical time appears on the Poincaré section of phase
space.

Considering Fig. 4.7 again, it is clear that the main component of the high quality
mode (11, 1) inside the cavity for (d + r0)/R0 ∈ [0.2, 0.7] is |m| = m0 = 11. Initi-
ating the iterative process with a

(1)
m = 1√

2
[δm,m0 − δm,−m0 ], the field is scattered and

reflected through the iterative process, resulting in a superposition of what remains
in the |m| = m0 channels and of other angular momentum channels fed through the
internal scattering. From Fig. 4.10, we expect the resonant field components |m| = m0
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Fig. 4.11 Close-up view of escape mechanisms within a single round trip. Plain arrows are associated
with portions of the field with angular momentum m0 that remain inside the annular region R′0 ≤
r ≤ R0. Dashed arrows represent the field that escapes the specific components |m| = m0 of the
field either by coupling to other angular channels through internal scattering, or by transmission to the
outside.

(pm ' 0.76) to remain approximately constant inside the cavity over a large number of
reflections. We further expect that the other ‘contaminant’ angular momentum com-
ponents will be located inside the ridge portion (|m| < Zo) of the internal scattering
matrix (see components of matrix S′ on Fig. 4.9), and therefore, be subject to a lower
reflective power (see Fig. 4.10 for angular channels below the TIR limit). Since the
main |m| = m0 channels are then largely dominant over many iterates, and other com-
ponents tend to escape quickly, isolating a single round trip enables one to identify the
processes happening at every returning iterations without much loss of the complete
dynamics. Figure 4.11 illustrates such a decomposition.

The resonance phenomenon in this iterative picture is born out of the collective (coher-
ent) effect of all the iterations. Since only a single round trip is necessary to gather all
the important features of the escape mechanisms, it matters little to accurately position
the resonance for the model to be representative. Therefore, since the internal scat-
tering matrix S′ and the reflection matrix R evolve monotonically over a rather large
wavenumber range in comparison to the typical width at half maximum of resonances
(for (11, 1), ' 10−6R−1

0 ), only an approximate value of the resonant wavenumber is
needed to carry out a single iteration computation 3. In the following, the calculations
are done at kR0 = 4.499.

Considering the preceding discussion, we set a(n)
m = a

(1)
m = 1√

2
[δm,m0 − δm,−m0 ] so that

the round-trip initial power is given by
∑

m |a
(n)
m |2 = 1 (see Fig. 4.11). The incident

3The internal scatterer is assumed not to support high quality modes. In the situation where it
would be the case, a precise knowledge of the resonances of S′ is needed because of potential resonance
coupling between the external annular cavity and the internal ‘high quality’ inclusion.
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power on the external boundary that does not remain in the |m| = m0 angular channels
following the internal scattering is

P̄ ′m0
=

∑

|m|6=m0

∣∣b(n)
m

∣∣2 = 1− P ′m0
(4.15)

where P ′m0
=
∑
|m|=m0

∣∣∣b(n)
m

∣∣∣
2

is the fraction of power remaining in the |m| = m0 channels
after the internal scattering. The value of P̄ ′m0

is a measure of the single iteration losses
to angular momentum channels other than the main mode. This amount of power is
considered immediately lost over the round trip.

The total scattered power transmitted outside the physical cavity through the external
boundary from the |m| = m0 channels is

P̄m0 = |Tm0,m0|2 P ′m0
= |Tm0,m0|2

[
|b(n)

+m0
|2 + |b(n)

−m0
|2
]

(4.16)

where we have used Tm0,m0 = T−m0,−m0 .

 

 

(d+ r0)/R0

P
ro
ba
bi
lit
y

0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
×10−6

Transition, P̄ ′
m0

Transmission, P̄m0

Fig. 4.12 Transition probability to other angular momenta (red) and transmission probability to the
exterior of the physical cavity (blue) according to Eqs (4.15) and (4.16) respectively. Both escape
probabilities reach the same value at (d + r0)/R0 ' 0.482: using a particle picture of the system, at
this parametric position it is equally probable for a photon to escape mode (11, 1) by regular potential
tunneling than it is by coupling to angular momentum components different from m0.

Since we have set the initial power to 1, we can relate Eqs (4.15) and (4.16) to actual
probabilities associated to different emission mechanisms. On one hand, Eq. (4.15) is a
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transition probability out of mode (11, 1) to other angular momentum components, and
on the other hand, Eq. (4.16) is a direct transmission probability to the exterior. Eval-
uating these expressions at kR0 = 4.499 for values of d/R0 ∈ [0, 0.5] (r0 = 0.2R0), we
find that the transmission mechanism clearly dominates at first, but that the transition
mechanism quickly overcomes the former as the deformation increases: at d/R0 ' 0.33,
or (d + r0)/R0 ' 0.53, P̄ ′m0

/P̄m0 ' 10. The crossover happens at (d + r0)/R0 ' 0.482;
this is near the position (d + r0)/R0 ' 0.47 where the asymptotic contrast measure
C̃(11,1)(∞, d) equals 0.5 (Fig. 4.7) and where the nominal delay has dropped by a factor
2 (Fig. 4.6). This correspondence is quite rewarding, and of course not coincidental, as
we will see.

The decomposition in these escape mechanisms is then of a great practical interest to
determine the lower bound in parametric value from which to expect highly anisotropic
far-field with minor deterioration of the delay value of a high quality WGM. Again, we
stress that knowledge of the exact position of the resonance is not needed to successfully
apply this method. This is of central importance as WGMs supporting extremely high
delays, and proportionally small width, are numerically quite demanding to pinpoint
accurately.

4.2 Control of the annular cavity emission output

In the preceding Section, we have presented evidences that high quality WGM and
anisotropic emission far-field can be compatible in the annular cavity. The demonstra-
tion involved the displacement of a constant radius disc inclusion. Different radii were
tested resulting each time in similar results (see Figs 4.5-4.6 for instance).

We have also presented that the onset of non-uniform emission of a high quality WGM is
due to the competition between a potential barrier tunneling mechanism and an angular
momentum transition mechanism. The former mechanism is inherited from the disc
cavity from which the annular cavity is built upon, and the latter is due to scattering
by the inner inclusion. By increasing the value of d+ r0, the overall probability that a
WGM with angular momentum m0 reaches any other angular momentum components
|m| 6= m0 eventually overcomes the intrinsic barrier tunneling probability. This results
in the loss of field uniformity of the unperturbed WGM. The measure of the field
uniformity, both in the far- and the near-field, is defined in relation to the main angular
momentum m0 of the unperturbed field. The non-uniformity increases with the fraction
of a wavefield departing from the unperturbed WGM. A contrast measure Cm0(r, par)

has been defined in Eq. (4.2) to quantify the field non-uniformity in the near-field
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4.2. Control of the annular cavity emission output

(r = R0) as well as in the far-field (r → ∞). This measure allows to verify that
there exists a parametric regime for high quality WGM having near-field uniformity
(Cm0(R0, par) ' 0) AND far-field non-uniformity (C̃m0(∞, par) ' 1).

In this Section we will be concerned with the control of the output field of a high quality
WGM. Moreover, we will be especially interested in a semi-classical interpretation of this
control as it provides intuitive guidelines to further designs, and on a more theoretical
side, evidence of particle-wave correspondence. We will first present numerical results
that the far-field may change substantially by modifying the position (d) and size (r0)
of the inclusion. We will then move on to a classical interpretation of the cavity as
an open billiard system in order to obtain clues regarding the emission properties of
the annular cavity. Finally, using semi-classical tools, we will obtain a set of initial
conditions to be inserted in the classical model.

The modification of the output of a high quality WGM demands that we find combi-
nations (d, r0) of the parameters at our disposal to obtain an anisotropic far-field while
preserving the whispering gallery aspect of the near-field (high quality factor). Results
found in Fig. 4.6 suggest that keeping the distance d + r0 constant and changing the
individual parameters d and r0 may provide a way to achieve this objective.

We use again the parameters nc = 3.2, no = nh = 1 and R0 = 1, and focus our attention
on mode (11, 1) (even symmetry) as a test subject. Reference to WGM (11, 1) is purely
indicative and is understood as an adiabatic deformation of the unperturbed mode
found in the disc cavity. Parameter d+ r0 is set to a constant value of 0.55R0 and r0 is
increased from 0 to 0.55R0.

The delays and contrast values for mode (11, 1) are presented on Fig. 4.13. The
parameter sets (d/R0, r0/R0) = (0.55, 0) and (0, 0.55) correspond to separable cases,
and as such, present large delay values. Any symmetry-breaking perturbation of these
limiting cases comes at the cost of decreasing the delay value (loss of quality factor).
The V-shape delay profile found in Fig. 4.13(a) (log scale) between the two separable
situations is associated with losses due to enhanced coupling to other available lower
quality modes as is depicted by the corresponding C11 measure. Even a small inclusion,
relative to the wavelength (λ/nc ∼ 0.43R0), may produce a significant change in the
far-field profile. This result is in agreement with our results from Chapter 3 as well as
those of [38] where a perturbation treatment of the annular cavity is conducted.

Figures 4.14(a)-(c) present different far-field profiles at the specific locations indicated
in Fig. 4.13. The far-fields switch from a narrow peak emission near φ = π at small
r0 to a broader, yet directional, peak in the forward direction, φ = 0, at r0/R0 =
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Fig. 4.13 (a) Delay value for mode (11, 1) with respect to parameter r0 ((d + r0)/R0 = 0.55). (b)
Contrast measure in the far-field (r → ∞) and in the near-field (r = R0). According to the contrast
measure, the near-field WGM aspect is unaffected by the inclusion while the far-field gets strongly
modified. Blue circles mark evaluation positions of the far-field patterns of Fig. 4.14.

0.165. This is the region where the asymptotic contrast measure C̃m(∞, d) is close to
1, indicating indeed that the field has lost uniformity. In contrast, for smaller or larger
r0 outside this region, one tends towards uniformity both in the near- and the far-field
(Cm(R0, d) ' C̃m(∞, d) ' 0). For case (c) in Fig. 4.14, we observe an intermediate
far-field profile with a carrier-envelope behaviour evolving towards uniformity.

4.2.1 Dominant structures of phase space

An often used approach to describe the behaviour of light in a cavity is to consider
its geometrical or ray optics limit [89, 147]. This picture stems from a semi-classical
Ansatz applied to the wave equation and results in equations of motion expressing
the evolution of wavefronts from one point in time to another. Although the complete
wavefront solution fails for systems with classical chaotic trajectories [140], it may prove
rewarding precisely to focus on the propagation directions of wavefronts (the Eikonal
equation: the gradient of constant valued wavefronts). This picture produces photonic
ray bundles that propagate in the cavity as particles in a billiard [14].

The dynamics of the billiard systems is best represented on a Poincaré section of phase
space, or, for the sake of simplicity, phase space in the remainder of this work. The
phase space for billiard systems is constructed from the records of (normalized) arc
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Fig. 4.14 Normalized far-field profile for three sets of parameters (d/R0, r0/R0).

length positions s and sine of incidence angles p = sinχ of consecutive reflections on
the external boundary, Fig. 4.15. These are Birkhoff canonical coordinates [16] of
phase space (area preserving coordinates). The coordinate sets that are more often
used for convex cavities are (φ, p) where φ is an angular position measured from an
origin located inside the cavity. The specific case of the annular cavity is characterized
by a well-separated phase space, Fig. 4.15(b), which consists of dynamical domains
bounded by the limits

p = ±pNR = ±(d+ r0)/R0 ∀φ . (4.17)

For |p| > pNR, ray trajectories are strictly of the whispering gallery type: the caustic ra-
dius |pR0| of these trajectories is larger than the maximal radial extent of the inclusion,
d+ r0. As such, the |p| > pNR regions will be referred to as the regular domains.
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Fig. 4.15 (a) Representation of the canonical coordinates (s, p = sinχ) in configuration space and
(b) in phase space. The reflection of rays on the exterior boundary is specular while the internal disc
inclusion permits transmission according to Fresnel coefficients [29]. Consecutive impact positions on
the exterior boundary are recorded in phase space. For clarity, only trajectories within the NR region
are displayed. The trajectories in the regular domain have a constant p momentum and would appear
as horizontal sequences of markers in phase space.

On the other hand, the |p| < pNR region supports only trajectories that intersect the
inclusion. The immediate consequence is the random appearance of this part of phase
space which is then referred to as the Non-Regular domain (NR). Most trajectories in
the NR region are chaotic, with the exception of marginally unstable periodic orbits
(MUPOs) [3, 4] forming continuous sets of periodic orbits closely avoiding the internal
inclusion. Interestingly enough, as we will see shortly, our attention is set on trajectories
that are not MUPOs.

At this point, the cavity is open only to rays reaching the emission domain, that is,
trajectories having a momentum |p| < pTIR where

pTIR = no/nc (4.18)

is the Total Internal Reflection (TIR) limit, mentioned earlier. For pNR > pTIR, only
the NR domain has access to the emission region, while for pNR < pTIR, both regular
and non-regular domains may contribute to the exiting trajectories. Because a whis-
pering gallery trajectory formed by classical rays retains its angular momentum and
corresponding semiclassical momentum (see Chapter 1)

pm =
m

nckR0

, (4.19)

photons stored in this dynamical structure will either rapidly leave the cavity for pm <

pTIR, or will forever remain inside for pm > pTIR. Regarding the objective of inducing

137



4.2. Control of the annular cavity emission output

a non-uniform emission from a high quality whispering gallery type trajectory, the
classical billiard picture of the cavity is a failure.

However, we know from experience (Section 4.1) that high delay WGMs do not remain
confined in the cavity forever: albeit high, the associated delay is finite. Either WGMs
radiate out to the exterior, or are transformed into poorly contained lower angular mo-
mentum values via a scattering process. It is tempting to transpose the loss by angular
momentum transition to a classical transport mechanism towards the NR region. This
is further suggested by the wave calculations that indicate a broadening of the ridge
as d + r0 increases (Fig. 4.3), i.e. increasing contributions of more angular channels,
meaning, classically speaking, an increase of the size of the NR region. There exists a
non-zero probability that a high lying WGM in phase space ‘tunnels’ through to the
NR region. Bearing this idea in mind, we pursue our investigation.

The dynamics in the NR region is governed by the trajectories impinging on the inclu-
sion. These trajectories belong to a well-defined subdomain of the NR region [124]. We
call this domain, the incoming hole scattering region, Hin (Fig. 4.16). This subdomain
of phase space is bounded by

p± = sinχ± = −d
h

√
1− r2

0

h2
sinφ± r0

h

√
1− d2 sin2 φ

h2
(4.20)

where h2 = R2
0 + d2− 2R0d cosφ. Likewise, we obtain the domain in phase space where

the trajectories end up after having been scattered by the inclusion. This domain will
be called the outgoing hole scattering region, Hout, and is a reflection of Hin relative to
the p = 0 axis. This property stems from the time reversal dynamics in billiards.

In phase space, trajectories follow the regular dynamics of the circular billiard until
they reach Hin. The overall dynamics in the NR region of phase space then consists
in a conveyor-belt-like motion towards the Hin subdomain (except for MUPOs) and in
mixing from Hin to Hout (Fig. 4.16(b)). Note that the trajectories in Hin always exit
in Hout, even if the inclusion is absent: setting nh = nc voids the effect of the inclusion,
yet, the Hout region may still be computed.

If the classical particles are allowed to completely escape as they reach the rectangular
emission domain E in phase space, bounded by the TIR limits Eq. (4.18), it is clear
that the domain Hout provides the escape coordinates of trajectories initially inside Hin.
This observation is especially useful if E is completely embedded in the NR dynamical
region. In this case, trajectories initialized inside the region between pTIR and pNR
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Fig. 4.16 (a) Limits of the incoming scattered rays by the inclusion in configuration space (red arrows).
The outgoing scattered rays (blue arrows) are obtained through time inversion (reversing the arrows)
of the incoming trajectories. (b) Dynamical subdomains of phase space Hin (dashed blue limits) and
Hout (plain red limits). Trajectories outside Hin keep their momentum p (orange arrows) until they
reach Hin and exit through Hout with a different p value.

always escape through Hout. 4

So far, we have obtained the following results:

• It is possible to isolate a parametric domain where the electromagnetic field re-
mains strongly located on a WGM (i.e. high delay/quality factor) while exhibiting
different non-uniform far-field profiles;

• The classical subdomain of phase space responsible for the escape of trajectories
through internal scattering is well-defined and analytically known for the annular
cavity.

The obvious question to ask next is: how are the wave results related to a strictly
classical ray description of the cavity dynamics? Any success in this direction will not

4Even more, given the invertible Poincaré application P defining the mapping on the phase space,
we may wish to identify the trajectories common to Hout and E that came from outside of E, say Ē.
That would define the region Ē∩P−1{Hout∩E}. The mapping of this domain, P{Ē∩P−1{Hout∩E}},
then specifies the first escape coordinates of every trajectory leaving the cavity.
Note that, although Hout may not be found in all cavities, it is always possible to find a domain in

E, say W , whose inverse mapping, P−1{W}, is in Ē. The domain P{Ē ∩P−1{W}} then contains the
dominant features (first return map) of the far-field.
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4.2. Control of the annular cavity emission output

only lead to wave-particle correspondence5, it will also help to design cavities having
predictable emission profiles. To investigate this problem, we will first need to acquire
a set of initial conditions that best represent the outcome of the dynamical tunneling
from the main WGM. With this information in hand, numerical ray escape dynamics
simulations will be undertaken and compared with those of full-wave simulations. The
first instrument needed is a transformation that will map the wave information in
coordinate space to phase space coordinates. This is discussed in the following.

4.2.2 Husimi distribution

The emission profile of the open cavity system in the ray picture is solely a matter
of trajectories reaching the emission region |p| < pTIR. While strictly speaking this
description does not allow whispering gallery trajectories with pm > pNR > pTIR to
escape the cavity, taking into account the dynamical tunneling allow them to reach
|p| < pNR. From there they get transported into the emission region through the Hin-
Hout dynamics. The first objective is then to obtain a distribution of initial conditions
emulating the phase space exit positions of tunneling trajectories from a WGM.

To do so, we shall rely on the Husimi quantum/wave distribution (see Appendix B),

FH(s, p) =
1

2π~
∣∣〈 βκ(s, p)

∣∣ ψ
〉∣∣2 (4.21)

where ~/2 = 1/2 × 1/nkR0 is the best achievable phase space area resolution on the
surface of section in a cavity with a dielectric medium of refractive index n.

∣∣ ψ
〉

represents the electromagnetic field (to be defined in the following sub-sections) and∣∣ βκ(s, p)
〉
is a squeezed gaussian wavepacket. The use of this particular quantum

distribution is justified by its correspondence to conventional probability distribution
[10].

The squeezed state
∣∣ βκ(s, p)

〉
in its s′ coordinate representation of phase space is

〈
s′
∣∣ βκ(s, p)

〉
= βκ(s

′; s, p) =
( κ
π~

)1/4

e−
(s′−s)2
(2~/κ) ei

p
~ (s′−s) , (4.22)

where the parameter κ sets the relative size of the dispersions ∆sκ =
√

~/(2κ) and
∆pκ =

√
~κ/2. Since there is no a priori reason to use a different resolution for the s

5During the course of his research, the author found that it is actually far easier to find wave-
particle non-correspondence, although the literature is filled with cases of scarring [59, 115, 75, 77,
160, 44, 120, 74], i.e. resonant modes bearing sometimes striking resemblance to classical trajectories
found in phase space.
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4.2. Control of the annular cavity emission output

or the p coordinate, setting κ = 2 gives a square resolution to the phase space cell of
area ~/26.

One also notes the great similarity between the kernel of the Husimi distribution Eq.
(4.22) and the paraxial solution of the Helmholtz equation [148]. In a way, the Husimi
distribution measures the wavefunction ψ using the best achievable confined beam at a
finite wavenumber along a classical trajectory having impact coordinates (s, p).

To avoid any confusion concerning the coordinates (s, p), we restrict any representation
of the Husimi distribution on a Poincaré section to the interior side of the exterior
boundary (i.e. the phase space as seen in Fig. 4.15). We then define ~ = 1/nckR0.

Fig. 4.17 Representation of incoming/outgoing waves relative to the external boundary.

Computing Eq. (4.21) on the Poincaré section with
{
ψc+(R0, φ) =

∑
m bmH

(1)
m (nckR0)eimφ =

∑
m ψ̃

c+
m eimφ

ψc−(R0, φ) =
∑

m amH
(2)
m (nckR0)eimφ =

∑
m ψ̃

c−
m eimφ

(4.23)

as the incoming and outgoing wavefield with respect to the boundary (Fig. 4.17), we
obtain the Husimi distribution (see Eq. (B.75))

FH
c±(φ, p) =

1√
πκ~

∣∣∣∣∣
∑

m

ψ̃c±m e−
(p−m~)2

2κ~ eimφ

∣∣∣∣∣

2

(4.24)

The Husimi distribution FH
o (s, po) computed on the exterior side of the cavity boundary

is mapped on phase space by use of Snell-Descartes relation [62]

ncp = nopo, p ∈ [−1, 1] . (4.25)

Square resolution in phase space is also achievable for the field outside the cavity in
the medium of index no by computing the Husimi distribution with κ ≡ (nc/no) × 2,

6The full range of s in phase space is of length 1, while the interval on p is of length 2 (from −1 to
+1). We then demand that ∆sκ/1 = ∆pκ/2 for equal relative resolution and solving for κ yields κ = 2.
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4.2. Control of the annular cavity emission output

followed by proper p scaling using Eq. (4.25). This procedure entitles us to map in
phase space the semi-classical origin of escaping fields or, alternatively, the entry domain
of incoming fields. Using the same procedure as for interior waves,

{
ψo+(R0, φ) =

∑
mAmH

(2)
m (nokR0)eimφ =

∑
m ψ̃

o+
m eimφ

ψo−(R0, φ) =
∑

mBmH
(1)
m (nokR0)eimφ =

∑
m ψ̃

o−
m eimφ

(4.26)

we find the exterior Husimi distribution mapped on the Poincaré section through Eq.
(4.25)

FH
o±(φ, p) =

1√
πκ~

∣∣∣∣∣
∑

m

ψ̃o±m e−
(ncno p−m~)

2

2κ~ eimφ

∣∣∣∣∣

2

. (4.27)

The Husimi distribution in the case of the annular cavity is then a superposition of∣∣ βκ(s, p)
〉
squeezed states in the p-coordinate representation centered on semiclassi-

cally quantized momenta pm = m~ (see Appendix B). This is a direct consequence of
the angular momentum quantization of the wavefunction ψ.

Following this last observation and since the annular cavity phase space is separated
in rectangular domains (Fig. 4.17), we split the wavefunction into two contributions:
the regular components

∣∣ ψR
〉
, |m| > pNR/~, and the non-regular components

∣∣ ψNR
〉
,

|m| < pNR/~. With this prescription, we finally obtain the distribution

FH(s, p) =
1

2π~
∣∣〈 βκ(s, p)

∣∣ ψR
〉∣∣2

+
1

2π~
∣∣〈 βκ(s, p)

∣∣ ψNR
〉∣∣2 (4.28)

+
1

π~
Re
{〈

ψR
∣∣ βκ(s, p)

〉〈
βκ(s, p)

∣∣ ψNR
〉}

.

In a strict classical limit, since the trajectories are either confined to the regular domain
or to the non-regular domain of phase space, only one of the three terms composing the
preceding expression would be non-zero. Hence, the last term of Eq. (4.28) is exclusively
the result of wave dynamics (interference between the regular and non-regular waves)
and will be discarded in our attempt to establish the semiclassical correspondence.
This leaves the first two terms of Eq. (4.28) which we treat separately in the next
sub-sections.

4.2.3 Initial conditions for ray optics simulations

Following the iterative approach of the dynamics of the annular cavity described in
Section 4.1, we decompose the total field inside the cavity

∣∣ ψc
〉
as a series of waves

{
∣∣ ψc±,(j)

〉
} originating from an initial wave

∣∣ ψc−,(1)
〉
. This initial wave

∣∣ ψc−,(1)
〉
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is scattered by an inner effective scattering matrix of the circular domain of radius R′0
giving rise to

∣∣ ψc+,(1)
〉
, itself being transmitted to

∣∣ ψo−,(1)
〉
and reflected to

∣∣ ψc−,(2)
〉
,

thus starting a new cycle (see Fig. 4.18). Again, this iterative picture has to be
understood as a wave process where no physical time appears. However this is very
close in spirit to the classical iterative procedure on the Poincaré section.

Fig. 4.18 Decomposition of the field in a series of iterates.

As in sub-section 4.1.2, we assemble a pure even symmetric WGM with angular mo-
mentum m0 = 11 as an initial state

∣∣ ψc−,(1)
〉
inside the annular domain R′0 < r < R0.

The inclusion parameter d+r0 is set to 0.55R0 so that the conditions for an anisotropic
field emitting WGM are favourable. We may again focus solely on a single iteration
description of the field.

With respect to Eq. (4.24), the
∣∣ ψc−,(1)

〉
state appears in phase space as two gaussian

functions with maximum values at p = ±m0~, the semi-classical momentum values
of clockwise and counter-clockwise rotating WGM. According to the preceding discus-
sion, the partial wave scattered by the inner virtual boundary at R′0 is then split into its
regular and non-regular angular momentum components. Because the near-field is dom-
inated by the main |m| = m0 field components, the projection

∣∣〈 βκ(s, p)
∣∣ ψc+,(1),R

〉∣∣2

is only slightly different from the Husimi distribution obtained with
∣∣ ψc−,(1)

〉
. This

is not surprising as we chose a parameter set that affects only weakly the near-field
behaviour of the (11, 1) mode. On the other hand, the non-regular components of
the scattered state,

∣∣ ψc+,(1),NR
〉
, reveals a Husimi distribution sitting directly in the

classical Hout region (Fig. 4.19(a) for an example).

Obtaining a Husimi distribution near the Hout region is a sign that escaping the main
|m| = m0 = 11 angular components through scattering (angular momentum transfer or
‘dynamical tunneling’ found in [53, 45, 146, 11, 13, 165] to cite a few) occurs preferably
around the Hin region, especially at values of p near pNR. Therefore, inspired by the
Husimi distribution of the initial wave, we distribute the density of initial conditions for
the classical ray simulations inside the Hin region according to a decreasing Gaussian
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Fig. 4.19 (a) Representation in phase space of
∣∣〈 βκ(s, p)

∣∣ ψc+,(1),NR
〉∣∣2 obtained after inner scat-

tering from the initial state
∣∣ ψc−,(1),NR

〉
; (d + r0)/R0 = 0.55, r0/R0 = 0.165 and kR0 = 4.5.

The classical Hout region is shown as well as the pNR limits (straight horizontal lines). The Husimi
distribution resulting from the scattering by the inner virtual boundary falls within the Hout limits.
This is to be compared with (b) where initial conditions inside Hin (red dots) and their first iteration
to Hout (blue dots) are displayed.

distribution from |p| = pNR to 0, as though they arose in the NR through dynamical
tunneling. In a sense, this procedure is a sort of first order transition model where the
perturbative effect is seeded proportionally to a large zeroth order distribution. An
example of this distribution, corresponding to the parameter set under study, appears
in Fig. 4.19(b) (red dots). The first iterate of the initial conditions (blue dots) fall
inside Hout with a higher density right where the Husimi distribution is the largest.
This observation in turn adds credibility to our choice of initial condition distribution.

4.2.4 Wave and classical simulations in phase space

Turning to the classical simulation again, we define an escape rule that differs from
the simple step-function discussed in Section 4.2.1. The transmission outside the cav-
ity does not happen through a binary mechanism: the trajectories trapped inside the
cavity lose a fraction of their intensity at each boundary reflection. Also, instead of
using pure Fresnel reflection and transmission coefficients [29], we allow for a fraction
of the trajectory’s intensity to escape at every contact with the Poincaré section ac-
cording to a continuous k-dependent transmission coefficient T (p) derived by Hentschel
and Schomerus in [61]. This transmission coefficient is closely related to our discrete
transmission model Eqs (4.11)-(4.12) (see also Fig. 4.10). We could have also used the
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4.2. Control of the annular cavity emission output

curved interface model derived by Snyder and Love [136] with similar results 7 (Fig.
4.20 for an illustration).
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Fig. 4.20 Reflection coefficients using the infinite flat interface model (Fresnel), locally curved interface
Eq. (4.29) inspired from Snyder and Love (S-L) [136] (curvature radius ρ = 1) and modified Fresnel
laws for dielectric cavities of Hentschel and Schomerus (H-S) [61] (cavity radius R0 = 1). This
illustrative computation is for an incidence medium of refractive index of value 2, a transmission
medium of index 1 and a wavenumber kR0 = kρ = 15.

The n-th impact position of a trajectory j on the Poincaré section is then completely
defined by (sjn, p

j
n, I

j
n) [3] where Ijn is the remaining intensity after n ≥ 0 impacts with the

boundary. A trajectory is assumed lost when its intensity after Nj rebounds becomes
arbitrarily small relative to its initial value, Ij0 = 1. Note that the choice to distribute
the initial conditions in phase space according to a prescribed Gaussian distribution
is equivalent to a uniform distribution of initial conditions weighted with a Gaussian
distribution of intensities.

7We have generalized the results derived in [136]. Especially for the reflection coefficient, we obtain

R(χ) =

in1 cosχ− n2

[
ν+1/2
n2kρ

− H
(1)
ν+1(n2kρ)

H
(1)
ν (n2kρ)

]

in1 cosχ+ n2

[
ν+1/2
n2kρ

− H
(1)
ν+1(n2kρ)

H
(1)
ν (n2kρ)

] (4.29)

where the refractive index n1 is for the incidence medium, n2 for the transmission medium, ρ is the

local curvature radius and ν =
√

1/4 + n2
1k

2ρ2 sin2 χ.
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4.2. Control of the annular cavity emission output

Trajectories are also allowed to split at the inclusion boundary, hence giving rise to
multiple reflected and transmitted rays. This property results in star-like emission
from the inclusion when a fraction of an impinging trajectory is transmitted inside the
inclusion and gradually loses intensity at each following impacts. Again, the simulation
of the trapped trajectory eventually comes to an end as the ray intensity reaches some
arbitrary small value.

To compare the classical and wave dynamics of a characteristic mode with respect to
their emission properties, we record the positions in phase space of the escaping intensity
{T (pjn)Ijn} for all J trajectories. We then smooth out the recorded transmitted intensi-
ties with a Gaussian function having an effective area ∆sκ∆pκ = ~/2 = 1/(2nckR0) in
phase space,

IT
G(s, p) =

J∑

j=1

Nj∑

n=1

T (pjn)Ijn
1

π~
e
− (s

j
n−s)2
2∆s2κ

− (p
j
n−p)2
2∆p2κ . (4.30)

This procedure has the objective of emulating the finite resolution of the Husimi dis-
tribution. Of course, the overall ray dynamics leading to transmission remains classical
and does not take into account any phase information. The smoothing process simu-
lates only the effect of a measurement uncertainty at the emission stage and does not
affect the deterministic motion of rays inside the cavity.

The wave emission measurements for mode (11, 1) 8 are reported in phase space using
the wave

∣∣ ψo−
〉
(see Fig. 4.17 and the description in the corresponding sub-section

leading to Eq. (4.27)). Because of the rapid change of behaviour from sharp directional
emission around φ = π to a broader pattern around φ = 0, we especially focus on the
parameter values corresponding to markers (a) and (b) highlighted in Fig. 4.14. The
distribution in phase space obtained from classical and wave simulation are displayed
in Fig. 4.21.

8Actual characteristic modes obtained by the diagonalization of the delay matrix are used here, not
the partial fields from the iterative model.
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(b) Wave, r0/R0 = 0.030
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(c) Ray, r0/R0 = 0.165
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(d) Wave, r0/R0 = 0.165

Fig. 4.21 Positions in phase space of the escaping rays/field from the non-regular region; (a)-(c)
Gaussian-smoothed results from ray optics simulations and (b)-(d), outgoing Husimi distributions
obtained from wave simulations for the resonant mode (11, 1). The radius of the inclusion r0 is
set to 0.03R0 for the top figures and to 0.165R0 for the bottom ones, while parameter d+ r0 is kept
constant at 0.55R0. Although classical and wave results appear to agree well on the distribution peaks
for parameter value r0 = 0.165R0 (c)-(d), the same does not seem to hold at a smaller inclusion size
(a)-(b). The inability of the wave to resolve the thin Hin/Hout structures may be the cause. Note
however that the ‘conveyor belt’ motion, Fig. 4.16, is easily identified by the sequence of spots in (b):
a small inclusion may not cause the field to be strongly diverted into Hout, yet, it follows the conveyor
belt within this resolving power.
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4.2. Control of the annular cavity emission output

Results from classical and wave simulations appear to agree especially well in the case of
the larger inclusion position but seem to differ on the Poincaré section at smaller radii.
This being said, classical interpretation is not completely lost at small r0. As stated
in sub-section 4.2.1, all trajectories entering Hin exit through Hout. The problem here
is that, while the Hin region may be efficient at grasping some part of the WGM field,
it may still be too thin to be efficiently resolved by the wavefield. In the case of small
defects it seems that most of the trajectories follow the conveyor belt (see Fig. 4.21(b))
and slowly get drained out of the cavity. For instance, this explains the presence of
intense ‘rebound’ spots located at φ = π ± π/2 in Fig. 4.21(b), and around φ = π in
Figs 4.21(c) and (d). Similar Husimi distributions were found in [62] but underlying
classical structures (Hin and Hout domains) were not identified.

Finally we compute the classical far-fields obtained by incoherently summing all the
trajectory intensities propagating towards a common far-field sector. The far-field angle
Φ is easily computed for trajectories escaping the circular boundary of the disc cavity,

Φ = φ− χo (4.31)

where φ is the angular origin of the escaping ray on the boundary and χo is the final
refracted angle with respect to the normal vector on the exterior side of the circular
boundary. The classical far-field is computed first by distributing the trajectories into
N equal size far-field angular bins and then by summing up the trajectories’ intensity
sector-wise.
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(b) (0.385, 0.185)

Fig. 4.22 Far-field patterns from the classical simulations discussed in this Section (gray areas) and
from numerical wave simulations (black curves) for two of the three sets of parameters (d/R0, r0/R0)

used in Fig. 4.14. The classical far-fields are obtained by the distribution of 1.3 × 105 emitted
trajectories over N = 200 angular bins.

To obtain the classical far-fields, the parameter sets of Fig. 4.14 are used for the sake of

148



4.2. Control of the annular cavity emission output

comparison with known wave results. The initial values for the classical rays simulations
are chosen with the technique presented earlier (see Fig. 4.19(b)). Classical results are
shown in Fig. 4.22 and agree quite well with the full wave simulations. Although the
near-fields do not always completely agree (see Fig. 4.21), it seems that the far-fields
of wave simulations may be reproduced by an appropriate weighted subset of classical
rays emerging from the Hout region of phase space.

Let us summarize once again the assumptions used and results obtained so far.

• Given a cavity with high delay WGMs (i.e. the bulk of the cavity is a disc);

• That this cavity encloses a low quality internal scatterer (i.e no sharp resonances
in the internal scatterer alone; phase space is composed of regular regions and of
a ‘chaotic’ domain due to the internal scatterer): a displaced ‘hollow’ disc in our
case;

• And that we have access to geometrical parameter(s) of the inclusion: the dis-
placed disc radius for instance.

The observations for a high delay WGM are that:

• There exists a control parameter range where anisotropic far-field and dominant
WGM near-field coexist (Fig. 4.7);

− Reaching the semi-classical caustic radius m/nck of the perturbed WGM
results in a deformation of the WGM indicating the loss of the high de-
lay value. The semi-classical caustic radius defines an upper bound for the
control parameter range (see Figs 4.5-4.6);

− The emergence of anisotropic far-field from a high delay WGM can be ap-
proximately described by a single internal scattering model in opposition to
the usual potential barrier tunneling phenomenon. As a control parameter
is changed, the probability of internal scattering causing the anisotropic far-
field eventually overruns the potential tunneling probability. The turning
point happens as the two probabilities cross over: this defines a lower bound
for the parametric range (see Fig. 4.12);

• In the control parameter range, the use of a subset of the chaotic domain in phase
space, dependent on the choice of inclusion parameters, can be used to retrieve
the approximate far-field behaviour of the high delay WGM;
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4.3. Notes on coupled resonances

− An appropriate choice of weighted initial values in the entry subset (Hin)
results in a first iterate distribution resembling that obtained by the single
iteration wave model (Fig. 4.19);

− While the near-field of the wave and classical simulations may not always
agree (Fig. 4.21), the far-field can be well represented by classical means
alone (Fig. 4.22).

We stress again that all the phenomenological models developed do not take into account
any precise value of the resonant wavenumber position. The models involve functions
that vary smoothly over a range of wavenumbers much larger than the actual width of
the resonance of interest. This is a considerable advantage for obtaining the far-field
behaviour of very high delay WGMs having resonance widths much smaller than what
numerical methods may be able to resolve.

4.3 Notes on coupled resonances

It was mentioned at the beginning of this Chapter that resonances may interact when
their positions cross on the real wavenumber axis. We will seek an explanation of this
phenomenon with a model based on resonant coupled-damped oscillators. Specifically,
we will construct a solution following a procedure similar to the one used in Chapter 2
leading to an energy based description of the system.

Fig. 4.23 Schematics of two coupled oscillators in their harmonic potential. These resonators possess
different resonant frequencies, ω1 and ω2, different forcing terms, c1 and c2, and different environment
induced damping coefficients, Γ1 and Γ2.

The dielectric cavity system in its scattering description may be viewed as a device
providing a large collection of energy modes. At a given wavenumber, many modes
coexist, but only a few are close to their resonant value. Although the analogy may
not be complete, one can consider this system as a set of coupled classical oscillators,
each having their own forcing strength cj (input coefficient Apm), resonant frequency ωj
(wavenumber at the maximum delay), and damping (maximum delay), Γj, ordered as
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4.3. Notes on coupled resonances

Γ1 < Γ2 < Γ3 . . . . Under (normalized) external excitation, we focus on the amount of
total energy shared by the oscillators.

A non-dimensional equation for a system of two (equal mass) coupled oscillators having
normalised coordinate xj(t) can be written down simply as

d2

dt2
x(t) + Γ

d

dt
x(t) + Ωx(t) = ce−iωτt (4.32)

with

Γ = τ

(
Γ1 0

0 Γ2

)
, Ω = τ 2

(
ω2

1 κ

κ∗ ω2
2

)
, x(t) =

(
x1(t)

x2(t)

)
(4.33)

where the time scale τ is chosen as ω−1
1 , such that all parameters (Γ,Ω, c) and variables

(x, t) are dimensionless. With this choice, keep in mind that the frequencies (ω, ωj) and
the damping coefficients (Γj) have a dimension of inverse time whereas the coupling
term (κ) has the dimension of (inverse time)2.

The steady-state solution to this differential system is readily obtained,

x(t) =
[
−ω2τ 21− iωτΓ + Ω

]−1
ce−iωτt . (4.34)

In view of the open cavity system, we have essentially obtained an equivalent object
to the scattering matrix: using the equation above, we can obtain the passive response
of the coupled oscillators system to any harmonic excitation. Even if the internal
mechanisms of the system are unknown (coupling, losses, resonant frequencies), we can
still obtain the correct motion of the oscillators. The question that remains is of course
to identify the characteristic forcing states of the system.

Much in the same line as what we have done for the extra energy stored in the cavity
due to a unit power input, we consider two types of forcing (the basis of which is like
the angular momentum basis),

ca =

(
1

0

)
, cb =

(
0

1

)
. (4.35)

Obviously, for κ = 0, these excitations result in the independent motion of the two
oscillators. Since the overall motion of the oscillators is harmonic due to forcing, the
average energy supported by oscillator j = {1, 2} due to a forcing of type α = {a, b} is
given by

Eααj =
1

4
pα∗j p

α
j +

1

4
ω2τ 2xα∗j x

α
j =

1

2
ω2τ 2xα∗j x

α
j (4.36)
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4.3. Notes on coupled resonances

where pαj is the usual conjugate momentum to the position xαj . More generally, we
define a complex average energy 9

Eαα′j =
1

4
pα∗j p

α′
j +

1

4
ω2τ 2xα∗j x

α′
j =

1

2
ω2τ 2xα∗j x

α′
j . (4.37)

The possible configurations are then gathered in an average energy matrix E enclosing
all the available energy of the system,

E =

(
E11 E12

E21 E22

)
=

(
Eaa1 + Eaa2 Eab1 + Eab2

Eba1 + Eba2 Ebb1 + Ebb2

)
. (4.38)

In this hermitian symmetric matrix, the off-diagonal terms are associated to the cou-
pling energy. We wish to obtain a set of energies for which the coupling energy vanishes,
so that all the energy is partitioned between oscillators 1 and 2 only. This demands
an eigenvalue decomposition of the matrix E . This is readily achieved, and two energy
values are retrieved (configuration + and −)

E± =
1

2
(E11 + E22)± 1

2

√
(E11 − E22)2 + 4|E12|2 (4.39)

with (τ = 1/ω1)

E11,22 =
1

2

ω2ω2
1

|∆|2
[(
ω2 − ω2

2,1

)2
+
(
|κ|2 + ω2Γ2

2,1

)]
(4.40)

E12 = κ
1

2

ω2ω2
1

|∆|2
[(
ω2 − ω2

1

)
+
(
ω2 − ω2

2

)
+ iω (Γ1 − Γ2)

]
(4.41)

∆ =
(
ω2 − ω2

1 + iωΓ1

) (
ω2 − ω2

2 + iωΓ2

)
− |κ|2 . (4.42)

Setting κ = 0 (uncoupled system), the energy of the oscillators are

E+

∣∣
κ=0

=
1

2

ω2ω2
1

(ω2 − ω2
1)

2
+ ω2Γ2

1

, E−
∣∣
κ=0

=
1

2

ω2ω2
1

(ω2 − ω2
2)

2
+ ω2Γ2

2

(4.43)

reaching a maximum of 1/2 · ω2
1/Γ

2
1,2 at ω = ω1,2.

Since we are interested in the coupling of resonances, we set ω1 = ω2 in Eqs (4.40)-(4.42).
This substitution leads to

E± =
1

4

ω2ω2
1

|∆|2
[(

2(ω2 − ω2
1)2 + ω2(Γ2

2 + Γ2
1) + 2|κ|2

)

±
√
ω4(Γ2

2 − Γ2
1)2 + 4|κ|2 [2(ω2 − ω2

1)2 + ω2(Γ2 − Γ1)2]

]
(4.44)

9This procedure resembles the one of representing the operator Ê = 1
2 p̂

2 + 1
2ω

2τ2x̂2 in a complete
orthonormal basis {

∣∣ a
〉
,
∣∣ b
〉
}.
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In the case where |κ| is small,

|κ| � ω2(Γ2
2 − Γ2

1)

2
√

2(ω2 − ω2
1)2 + ω2(Γ2 − Γ1)2

(ω1 = ω2) , (4.45)

a condition found near the resonance, we may expand the square root in Eq. (4.44):

√
· '

[
ω2(Γ2

2 − Γ2
1) + 2

(
2(ω2 − ω2

1)2 + ω2(Γ2 − Γ1)2

ω2(Γ2
2 − Γ2

1)

)
|κ|2
]
. (4.46)

In this approximation, the eigenvalues at the uncoupled resonance position ω = ω1 are

E+ ' ω2
1

2

ω2
1

[ω2
1Γ1Γ2 + |κ|2]

2

[
ω2

1Γ2
2 +

2Γ2

Γ1 + Γ2

|κ|2
]

(4.47)

E− '
ω2

1

2

ω2
1

[ω2
1Γ1Γ2 + |κ|2]

2

[
ω2

1Γ2
1 +

2Γ1

Γ1 + Γ2

|κ|2
]

(4.48)

and it is verified that the uncoupled limits Eqs (4.43) are correctly recovered by setting
κ = 0.

At ω = ω1, the condition Eq. (4.45) reduces to

|κ| � ω1

2
(Γ2 + Γ1) . (4.49)

It is instructive to compare the denominator of Eqs (4.47)-(4.48) with this condition on
|κ|. For values of Γ2 � Γ1, it is possible to satisfy the condition on |κ| while still having
ω2

1Γ1Γ2 ∼ |κ|2. This corresponds to situations where the resonance positions remain
roughly unchanged with respect to the uncoupled case, while the energy content however
drops significantly.

We display on Fig. 4.24 results for two resonances having respectively ω1 6= ω2 and
ω1 = ω2. The parameters are chosen such that ω2

1Γ1Γ2 = |κ|2. It is clearly seen that
the main resonance at ω = ω1 (blue line) loses energy compared to the uncoupled case
(underlying pale blue line), the more so the closer the resonances are to each other: for
ω2 = ω1, the loss in energy for the + configuration is almost an order of magnitude.

In its close-to-resonance part of the spectrum (either ω ∼ ω1 or ω ∼ ω2), the ω1 6= ω2

case resembles that of the two independent oscillators system (see the forcing terms for
energy level E+, Fig. 4.25). Although the coupling |κ| may be ‘large’ with respect to
the damping terms Γ1 and Γ2, the indirect losses due to coupling remain small because
the response of the oscillator 1 at ω = ω2 (as well as the response of the oscillator 2 at
ω = ω1) is weak.

The picture is different in the ω1 = ω2 case because of the ω2
1Γ1Γ2 ∼ |κ|2 condition.

Focusing on oscillator 1, a strong forcing does not imply that it will get all the energy:
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Fig. 4.24 Eigenvalues of E , Eqs. (4.44), for parameters Γ1/ω1 = 10−3, Γ2/ω1 = 10−1 and κ/ω2
1 =

10−2, i.e. |κ|2 = ω2
1Γ1Γ2 and |κ|/ω2

1 = 10−2 < (Γ1 + Γ2)/2 ' 5 × 10−2. Thick pale blue and
red curves serve as reference to the uncoupled oscillators energy, Eq. (4.43). Two configurations are
presented: (a), non-resonant coupling; (b), resonant coupling. Note the color exchange of the E±
curves in (a): this is due to a local avoided crossing inherited from the adiabatic process of obtaining
E±.
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Fig. 4.25 Components of the eigenvector associated with the eigenvalue E+ for the resonance cases
presented in Fig. 4.24. In both cases, at the uncoupled resonant frequency ω = ω1, the forcing is
almost completely on the first oscillator. Note the counterpart effect of the avoided crossing on the
eigenvector components in (a).

the coupling term κ being large enough means that energy is shared between the two
resonators. However, because of the larger damping Γ2, the energy gained by oscillator
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2 is also more easily drained, hence lowering the overall capacity of the system. From
the point of view of the + configuration, oscillator 2 has a simple parasitic effect on
oscillator 1.

Also, while the resonant coupling phenomenon affects strongly the + configuration, the
− configuration only gets a small increment in containment power (see Fig. 4.24(b)).
The reason for this is that the low damping Γ1 of the first oscillator can’t be exploited
by oscillator 2 because the transferred energy keeps falling back into it due to the large
coupling term.

We insist here that this phenomenon (resonant coupling between resonances) occurs
because of a delicate balance between the coupling term κ and the damping coefficients
Γ1,2. On one hand, the coupling term must be near the damping coefficients’ product
(|κ|2 ' ω2

1Γ1Γ2), and on the other, it still has to remain small with respect to their
summation (|κ| � ω1(Γ1 + Γ2)/2). In these conditions, a low quality mode passing
through a high quality mode will lower the overall containment power (quality) of the
system.

We now return to the annular cavity system. We focus specifically on the ‘abnormal’
delay curve r0/R0 = 0.10 in Fig. 4.6. Looking at a semi-log graph of the maximum
delay associated with mode (11, 1), Fig. 4.26, a peculiar sinking is seen to occur at
an early stage of the perturbation size, much before the limiting caustic radius at
d + r0 = 0.76R0. This behaviour is identified by the red curve on Fig. 4.26. The
computation of the delay spectrum at different values of d captures the motion of a
second resonance across the main resonance (11, 1), Figs 4.27(a)-(d). This secondary
resonance is labeled (5, 3) − even in reference to its homogeneous disc state. This
observation identifies the abnormal aspect of the delay curve (Fig. 4.26) with the result
of a resonant coupling.

With the results from perturbation theory, Eqs (3.62) and (3.117), we can model the
expected natural delay spoiling curve as

τmod(d; α, β) =
τ(d = 0)

1 + α [J11(3.2× 4.5× d)]β
. (4.50)

Assuming that the Bessel function has reached its exponential form, Eq. (A.54),
this equation captures the appearance of the intended curve: a flat segment where
the denominator is essentially 1, followed by a quick downward turn happening at
α[J11(3.2 × 4.5 × d)]β ' 1 10, and finally, a straight segment having a constant slope
controlled by β.

10A more quantitative evaluation would require the computation of the position of the maximum of
the second derivative with respect to d.
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Fig. 4.26 Delay value at the peak of even mode (11, 1). The semi-log graph reveals a premature fall of
the delay at d/R0 ' 0.3 and a recovery at d/R0 ' 0.6 with respect to the monotonous delay spoiling
caused by the exponentially increasing amount of field being diverted from angular momentum m = 11

to other channels. The markers indicate the positions at which the spectra of Fig. 4.27 are drawn.
Also, the expected delay spoiling curve (dashed line) is presented (see Eq. (4.50)).

Expression (4.50) is fitted to Fig. 4.26 using a non-linear least square method 11 [107].
We used data over the range d/R0 = [0.62, 0.64]. The data outside this range is
unusable because it is strongly affected either by the proximity of resonance (5, 3) or by
the approach to the caustic radius. The parameters retrieved are α = 3.57 × 106 and
β¸ = 2.8. Interestingly, the value of β is not too far from the perturbative treatment
value of 4 (see Eqs (3.62) and (3.117)). The curve computed using these parameter
values is plotted in Fig. (4.26). This model curve also happens to settle close to the
other ‘normal’ curves having r0/R0 = {0.01, 0.3, 0.4} presented on Fig. 4.6.

We illustrate in Fig. 4.28(a) the data set of Fig. (4.26) with the baseline Eq. (4.50)
removed. The resulting figure is compared to Fig. 4.28(b) presenting the value at the
peak of E+ for different positions ω2 of the secondary resonance. It is understood that
the annular cavity undergoes a resonance coupling phenomenon similar to that found in
coupled oscillators. The resonant coupling phenomenon described here is responsible for
the high quality/high directional emission behaviour of the annular cavity as discussed

11The actual fitted function is the inverse of Eq. (4.50).
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Fig. 4.27 Spectra for four values of the parameter d. Odd symmetry modes with respect to the Ox axis
of the cavity (Fig. 4.1) appear in green, and even symmetry modes appear in red. The peak labeled
(5, 3)even moves first across the main resonance (11, 1) and nearly returns to its starting position as
the parameter d is varied.

in [161].

The resonant coupling overtakes the normal delay spoiling obtained through the growth
of the ridge in the scattering matrix. In a sense we may interpret the natural delay
spoiling of a high quality mode as a case of non-resonant coupling with an infinite
quantity of off-resonance modes (at a given wavenumber).

Although appealing for its theoretical interest, resonance coupling may become a prob-
lem when engineering robustness is a concern. As it appears, the hardly predictable

157



4.4. Notes on boundary roughness

d/R0

[τ
(d
)
−

τ m
o
d
(d
)]
/τ

(d
=

0)

0 0.2 0.4 0.6 0.8
−1

−0.8

−0.6

−0.4

−0.2

0
(d)

(c)

(b)

(a) Annular cavity

 

 

ω2/ω1

m
ax

{E
+
(κ
)}

/m
ax

{E
+
(0
)}

−
1

0.2 0.6 1 1.4 1.8
−0.8

−0.6

−0.4

−0.2

0

(b) Coupled oscillators

Fig. 4.28 (a) Corrected peak value of resonance (11, 1) relative to the homogeneous disc peak value
versus the deformation parameter d and (b) peak value of the energy E+ relative to the uncoupled
scenario versus secondary resonance position ω2. Markers on (a) point to Figs 4.27(b)-(d). Although
we do not have direct control over the (5, 3) mode resonant position, we may still force it to move
across the mode (11, 1) using the inclusion position d as a control parameter. The resulting effect is
similar to that found in the coupled resonators system.

wandering of mid-size resonances due to the modification of a control parameter may
lead to undue conclusions regarding the properties of a high quality mode. This obvi-
ously comes in opposition with our stated objective to control the output field of high
quality modes.

However, looking at Eqs (4.47)-(4.48), we note that it may be possible to obtain a much
more constant loss of quality of a high delay mode by setting the damping Γ2 of the
secondary oscillator to a large value while keeping Γ1 very low. The desired effect is
to get ω2

1Γ1Γ2 � |κ|2, so that the overall losses of the main resonance are for the most
part controlled by the coupling term. In other words, we would like a cavity bearing
both very high and very low quality modes. In the Conclusion of this work, we will
propose a cavity design enclosing these properties.

4.4 Notes on boundary roughness

In sub-section 4.1.2, we have found out that the onset of anisotropic emission from a
WGM is triggered by a competition of two escape mechanisms (see Fig. 4.12). As the
probability of transition through internal scattering increases with the control param-
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eter (i.e. the position of the inclusion), the ordinary transmission probability remains
essentially constant. Because the parametric slope of the first mechanism (transition) is
relatively steep in contrast to the transmission probability, the emission profile changes
quickly beyond the crossover position of the two mechanisms. This position in turn
defines the onset from which to expect the far-field to become anisotropic due to the
inclusion. However, this situation may change dramatically with the introduction of
intrinsic defects such as boundary roughness.

The perturbation model of Chapter 3 applied to an harmonic perturbation of the disc
boundary leads to the introduction of the βm0aa,bb

coefficients (Eqs 3.101-3.102). Given
a boundary roughness with zero mean value (i.e the average radius of the cavity is
R0), the perturbation model reveals that the delay value spoiling is controlled by the
Φm0,−m0 term of the roughness function Fourier series. The phase of Φm0,−m0 determines
a dominant symmetry axis of the perturbed modes Eqs (3.126)-(3.127). Assuming a
perturbed resonant mode, the delay peaks of odd and even symmetry modes, formed
at that point, are expected to move symmetrically in opposite directions with respect
to the unperturbed peak position. The even symmetry peak is displaced toward a
higher wavenumber resonant position, and the odd symmetry peak is displaced toward
a lower wavenumber resonant position. This is seen by plotting the perturbed phase
θ

(0)
m0a,b + θ

(1)
m0a,b(ε) using Eq. (3.52) and Eqs (3.101)-(3.102) (see, for instance, Fig. 3.9

which presents the phase factor for the annular cavity in the small inclusion limit).
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Fig. 4.29 (a) Disc cavity affected by (b) the boundary roughness function ∆r(φ).

We seek a numerically exact computation of the effect of the boundary roughness on
a disc cavity having a radius R(φ) = R0 + ∆r(φ). As such, the numerical method
presented in Chapter 2 for the computation of the scattering matrix and the delay
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matrix is put to use. We set the boundary roughness function

∆r(φ) =
∑

m

Fmeimφ ∈ R (4.51)

to possess a Gaussian noise spectrum,

Fm =





∆rmax

∆̃rmax
e−

(m−〈m〉)2
2σ2 e+iχ|m| m > 0

0 m = 0

∆rmax

∆̃rmax
e−

(m+〈m〉)2
2σ2 e−iχ|m| m < 0

(4.52)

where ∆rmax ∈ R is the maximum amplitude of ∆r(φ), ∆̃rmax ∈ R is a normalization
factor12, 〈m〉 is the roughness central angular frequency, σ is the width of the distribu-
tion and χm is a random phase uniformly distributed over the interval [0, 2π]. With re-
spect to the perturbation model of sub-section 3.2.1, we readily find that Φmm′ = Fm′−m.

We choose ∆rmax/R0 = 0.01 (1% of the cavity radius), 〈m〉 = 25 and σ = 10. The
other disc cavity parameters are nc = 3.2, no = 1 and R0 = 1 (see Fig. 4.29 for an
illustration). We seek the characteristic modes in the interval kR0 ∈ [4.35, 4.65] and
pay special attention to the set of resonant peaks, in particular the modes (11, 1) and
(8, 2). In Fig. 4.30, we present the delay spectrum obtained according to the theory
and numerical implementation discussed in Chapter 2.

The delay spectrum shows an apparent splitting of the main resonances and a net
deterioration of the delay value of resonant mode (11, 1) and (8, 2) due to boundary
roughness alone. The peaks are labeled ‘odd’ and ‘ even’ according to the results from
perturbation theory discussed above. The near-field projections at r = R0 of the ‘odd’
and ‘even’ symmetry for both resonant modes are presented in Fig. 4.31. Although
the reference axis from perturbation theory seems to be lost13, the near-fields of both
modes are effectively in quadrature. Whatever the effective symmetry axis may be, the
‘symmetries’ of each modes appear to agree.

The comparison of the scattering matrix line at mode (11, 1) resonant peak position

12The roughness function ∆r(φ) is built in two steps. First, we compute ∆̃r(φ) =
∑
m F̃meimφ with

F̃m =





e−
(m−〈m〉)2

2σ2 e+iχ|m| m > 0

0 m = 0

e−
(m+〈m〉)2

2σ2 e−iχ|m| m < 0

. (4.53)

Then, the normalisation factor ∆̃rmax = maxφ(∆̃r(φ)) is found and properly substituted in F̃m.
13We find that F−22 ' 4.26×10−4× ei 1.1311 and F−16 ' 2.97×10−4× ei 6.0720 for modes (11, 1) and

(8, 2) respectively. This in turn gives a zeroth order symmetry axis, Eqs (3.126)-(3.127), of 0.5656 [rad]

and 3.0360 [rad] for the investigated modes. These axis positions actually do not fall on a maximum
(even symmetry) or a zero (odd symmetry) of any of the near-field projections.
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Fig. 4.30 Spectrum for the disc cavity affected by boundary roughness. The labels ‘even’ and ‘odd’ of
the peaks follow the indications from perturbation theory which predicts that ‘odd’ symmetry modes
move to lower wavenumbers and ‘even’ symmetry modes move to higher wavenumbers with respect
to the unperturbed disc cavity. Here, (11, 1) ‘odd’ is found at kR0 ' 4.4971 and (11, 1) ‘even’, at
kR0 ' 4.5010 (perfect disc: kR0 ' 4.4989), and (8, 2) ‘odd’ is found at kR0 ' 4.5897 and (8, 2)

‘even’, at kR0 ' 4.5924 (perfect disc: kR0 ' 4.5910).

with the one obtained for the annular cavity shows that boundary roughness could
clearly run into conflict with the control scenario presented in this Chapter as the
scattered amplitudes may be of the same size for both mechanisms (see Fig. 4.32).
In a way, the inconvenient boundary roughness scattering supersedes the transmission
mechanism as the process to overcome through controlled parametric deformation. To
illustrate, instead of presenting only two curves, Fig. 4.12 would show a second flat level
corresponding to the probability of escape through scattering by the exterior bound-
ary. This third escape mechanism would quickly take over the transmission mechanism
as the boundary roughness amplitude increases (here, 1% of the cavity radius) and
then become the probability to beat for the controlled transition mechanism. The ex-
pected consequence is a narrowing of the window ensuring the high-delay and controlled
anisotropic far-field combination (e.g. the gray domain in Fig. 4.7).

Finally, we also observe that lower quality modes seem less affected by boundary rough-
ness than the high quality modes. For example, the unperturbed disc mode (11, 1) has
a resonant delay cτ/R0 ' 8.88 × 106 and perturbed delays 8.88 × 104 for ‘odd’ and
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Fig. 4.31 Outgoing near-field projections at r = R0 for the two ‘symmetries’ of resonant modes (11, 1)

and (8, 2) (see the spectrum on Fig. 4.30). The two ‘symmetries’ (even, blue curves; odd, red curves)
are seen to intertwine, expressing their quadrature with respect to some effective axis.
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Fig. 4.32 Line m0 = 11 of the scattering matrix for the annular cavity and the disc cavity affected by
wall roughnesses. We used the scattering matrices located at the resonance position of odd symmetry
modes (11, 1). The parameters used for the annular cavity are those of Fig. 4.9.
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10.68 × 104 for ‘even’ symmetries, while mode (8, 2) has an unperturbed delay value
2.95× 103 and perturbed delays 2.8856× 103 for ‘odd’ and 2.8995× 103 for ‘even’ sym-
metries. This happens as the Fourier amplitude of component F−2m0 scales only of a
factor 1.4 between the two sets of modes. The rapid loss of quality of high delay modes
could also add supplementary problems regarding the resonant coupling phenomenon
discussed in Section 4.3 as the mid-size peaks would still wander around the spectrum
due to parametric control and eventually cross the peak positions of high delay modes
already weakened by boundary roughness.

This Section only scratches the surface of a topic that could cover many chapters. Sur-
prisingly, to the author’s knowledge, only the often cited paper by Rahachou and Zo-
zoulenko [111], from which the numerical algorithm presented in this work is inspired,
explores the consequences of wall roughness. In view of the dramatic consequences
these can have on quality factors and effectiveness of output control, this topic defi-
nitely deserves a thorough investigation through analysis of statistical sets of cavities.
Observable averages could then be deduced, and the properties of different kinds of
roughness spectrum could be classified.
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Chapter 5

Application II: Cavity-waveguide
coupling model

In this Chapter, we present a model of electromagnetic coupling between an
infinite planar waveguide and a dielectric cavity. The object of inquiry is
the transmission coefficient of the guided field as it goes through the waveg-
uide, from a continuous wave source to a fictitious broadband detector, and
interacts more or less strongly with a finite size dielectric cavity. This model
is inspired by the mathematical description of waveguide coupling through
evanescent waves [92]. The transmission coefficient can, under certain con-
ditions, be obtained in closed-form and makes explicit use of the scattering
matrix. As illustration, the model is applied to the system composed of a
waveguide and a disc cavity.

As a second major application of the formalism developed in Chapters 2 and 3, we
present a novel method to analyse the electromagnetic coupling of a single mode planar
waveguide with a two-dimensional cavity. This composite system is interesting as the
waveguide acts simultaneously as an energy source for the cavity and as a measuring
device of the cavity’s activity (Fig. 5.1). The spacing between the waveguide and the
cavity becomes an exchange domain where the evanescent field from the waveguide
couples to the near-field components of the cavity modes, and where the modes of
the cavity reconnect with the guided wave field. Of course, since the returning field
will have circulated some time in the cavity, a phase offset is expected between the
residual guided field inside the waveguide and the recoupled wave field from the cavity.
The superposition of these components inside the waveguide is therefore prone to show
interference when the field is recorded at the end of the waveguide. Since resonances of a
cavity are associated with phase shifts of π radians [57, 88], the drops in transmission,



recorded over the waveguide line as the wavenumber is varied, are an indication of
nearby resonances. Alternatively, one may see the resonances of the cavity as draining
the wave field from the waveguide and diverting it according to the cavity’s own modes.

Fig. 5.1 Schematic representation of the waveguide-cavity coupling. Right-most inset presents a
perspective view of the system composed of thin waveguide and cavity arranged in a common plane.
The guided field is assumed to originate from a continuous wave (i.e. monochromatic) source and is
recorded by a perfect detector. The comparison of the input and output power defines a transmission
coefficient that is strongly affected by the amount of field diverted by the cavity. This is especially true
around resonances of the cavity.

Although easily described through this simple phenomenological description, obtaining
the transmission coefficient throughout the waveguide remains a difficult task because
of the coupling of the finite cavity with the ‘infinite’ line through which the observable
field is channeled. The computation of the electromagnetic field related to this type
of setup is usually carried out numerically [22, 23, 32]. In particular cases, simplified
approximations are considered, for instance near a resonance and for a single mode of
the cavity [81, 49] and mostly for the disc or annular cavity [119].

Our approach is conceptually close to that of the coupling method of two planar waveg-
uides as discussed by Okamoto [92] and turn out to be much more general than previous
approximations since we make full use of the scattering matrix of the dielectric cav-
ity. No particular resonance behaviour is assumed beforehand, and the physics of the
interaction is completely encoded in the scattering matrix. An original closed-form ex-
pression for the transmission (and reflection) of the guided field is derived Eq. (5.61)
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and the special case of weak coupling (large distance between waveguide and cavity) is
studied in detail Eq. (5.92).

This investigation was motivated in first place by the idea of directional coupling be-
tween a non-symmetric cavity and a waveguide. The object of inquiry was to determine
whether or not the rotation of an asymmetric annular cavity around its geometrical cen-
ter1 could induce a measurable effect on the recorded transmission spectrum through
a waveguide. Efforts were initially put on the analytical modelisation of the system in
order to isolate observable effects of the cavity orientation. Since the rotation of the
cavity appears as a simple (diagonal) similarity transform on the scattering matrix (see
Appendix D), we have developed a model making explicit use of the scattering ma-
trix. Unfortunately, this study, led by a collaborating experimental research group, did
not receive proper funding and was canceled early. However, because of its originality
and because it somewhat ‘connects’ the systems discussed so far to an actual plausible
setup, we feel that this model deserves its place in this work.

The first part of the analysis (Section 5.1) is concerned with the description of the
interaction of the evanescent field from the waveguide with the dielectric cavity. Our
treatment is similar in many respects to that of Morita [86]. Section 5.2 establishes the
basic equations of the model and its general solution is presented in 5.3. The following
Section 5.4 takes a new look at the previous results of Sections 5.2-5.3 and highlights
anew some of the physical properties of the coupled system. Finally, the last Section
5.5 presents some calculations on the special case of coupling with a homogeneous disc.
The technical details are once again relegated to an extensive Appendix (E).

5.1 Evanescent field and cylindrical harmonics

The evanescent field emerging from a single mode waveguide having refractive index ng
2 can be written as

E+(x, y) = A cos
(
γ
w

2

)
e−α(y−w/2)e+iβx , y ≥ w/2 . (5.1)

Our intention to connect this evanescent field with the scattering matrix of the cavity
demands that the right hand side of this expression be represented over an angular
momentum basis in which the S matrix is already known.

1It is understood that the (small) inclusion making up the annular cavity is a distance away from
the cavity center.

2The first Section of Appendix E reviews the principal results related to the propagation of an
electromagnetic field in a dielectric slab.
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With a displacement of the origin towards the center of the cavity according to Fig.
5.2, one has rather an expression of the form

E+(x, y) = A cos
(
γ
w

2

)
e−α(R0+d)e−αye+iβx , y ≥ −(R0 + d) . (5.2)

Fig. 5.2 Coordinate system for the description of the evanescent field emanating from the waveguide.

The expected evanescent field E+ in cylindrical harmonics Jm(nokr)e
imφ will have to

take the form
E+(x, y) =

∑

m

a+
mJm(nokr)e

imφ (5.3)

and the first step in obtaining the expansion coefficients is to consider the integral
(k ∈ R):
∫
dφ

∫
dr rJm(nokr)e

−imφE+(x, y) = A cos
(
γ
w

2

)
e−α(R0+d)

∫
dφ

∫
dr rJm(nokr)e

−imφe−αye+iβx.

(5.4)
According to Eq. (8.511.4) of Gradshteyn and Ryzhik [50],

eiz sin(φ+π/2) = eiz cosφ =
+∞∑

j=−∞
ijJj(z)eijφ (5.5)

and Eq. (8.411.1) [50] 3

Jn(z) =
1

2πin

∫ 2π

0

dθ eiz cos θeinθ (5.6)

one reduces the integral to∫
dr

∫
dφ rE+Jm(nokr)e

−imφ = A cos
(
γ
w

2

)
e−α(R0+d)2πi−m

×
∫
dr rJm(nokr)

∑

j

ijJj(iαr)Jj−m(βr).(5.7)

3This representation of the Bessel function is independent of the integration limits. They must
however cover a 2π interval.
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A further simplification is obtained with the use of Graf’s identity [1] to read
∫
dr

∫
dφ rE+Jm(nokr)e

−imφ = A cos
(
γ
w

2

)
e−α(R0+d)2πim

×
(
β + α

β − α

)m/2 ∫
dr rJm(nokr)Jm(

√
β2 − α2r).

(5.8)

Using appropriate normalisation, the excitation coefficients found in Eq. (5.3) are then
calculated as

a+
m =

1

2π

∫
dφ
∫
dr rJm(nokr)e

−imφE+(x, y)∫
dr rJm(nokr)Jm(nokr)

= A cos
(
γ
w

2

)
e−α(R0+d)im

(
β + α

β − α

)m/2 [∫ dr rJm(nokr)Jm(
√
β2 − α2r)∫

dr rJm(nokr)Jm(nokr)

]
.

(5.9)

One then uses the fact that
β2 − α2 = (nok)2 (5.10)

as defined in Appendix E (Eq. E.2) to get

a+
m = A cos

(
γ
w

2

)
e−α(R0+d)im

(
β + α

β − α

)m/2

= A cos
(
γ
w

2

)
im exp

[
−α(R0 + d) +

m

2
ln
β + α

β − α

]
. (5.11)

The relation (5.10) implies also that α < β, i.e. the β+α
β−α of the preceding expression is

strictly positive. If α = 0, then β = nok and the evanescent wave becomes [1]

E+(x, y)
α = 0−−−−→ A cos

(
γ
w

2

) +∞∑

m=−∞
imJm(nokr)e

imφ = A′einokr cosφ = A′eiβx, r ≤ R0+d,

(5.12)
namely a plane wave.

Similarly, one derives the expansion coefficients for a field propagating towards x →
−∞,

a−m = A cos
(
γ
w

2

)
e−α(R0+d)i−m

(
β + α

β − α

)−m/2

= A cos
(
γ
w

2

)
i−m exp

[
−α(R0 + d)− m

2
ln
β + α

β − α

]
. (5.13)

For a real amplitude A, one easily verifies that expressions (5.11) et (5.13) lead to the
reciprocity relation E+∗(x, y) = E−(x, y).
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As first discussed in Chapter 2, the wave field external to the circular domain of radius
R0 (Fig. 5.2) can be written quite generally as

ẼC =
∑

m

[
AmH

(2)
m (nokr) +BmH

(1)
m (nokr)

]
eimφ , r ≥ R0 , (5.14)

with Bm =
∑

m′ Smm′Am′ and Smm′ being the scattering matrix element. The evanes-
cent fields have a similar structure since Jm(x) = [H(1)(x) +H(2)(x)]/2 and then

E±(x, y) =
∑

m

[
a±m
2
H(2)
m (nokr) +

a±m
2
H(1)
m (nokr)

]
eimφ . (5.15)

When a scattering obstacle (e.g. a dielectric cavity) is present in this region, the coef-
ficients of the outgoing field {Bm} are necessarily different than those of the incoming
field {Am}. The total field outside the cavity produced by the evanescent exciting field
moving towards x → +∞ (+) or towards x → −∞ (−) can then be obtained by the
replacement Am = a+/2 or Am = a−/2 respectively. Since we will be interested mainly
in the field emitted by the cavity, one must subtract from the total field the evanescent
part of the exciting field from the waveguide. Hence the field induced through the
evanescent excitation traveling towards x→ +∞ is

EC+ = ẼC − E+

=
∑

m

[
a+
m

2
H(2)
m (nokr) +

(∑

m′

Smm′
a+
m′

2

)
H(1)
m (nokr)

]
eimφ − E+ . (5.16)

This expression is simplified to

EC+ =
∑

m

[
1

2

∑

m′

(−δmm′ + Smm′) a
+
m′

]
H(1)
m (nokr)e

imφ (5.17)

or more explicitly

EC+ = A cos
(
γ
w

2

)
e−α(R0+d)

∑

m

[
1

2

∑

m′

(−δmm′ + Smm′) i
m′
(
β + α

β − α

)m′/2]
H(1)
m (nokr)e

imφ .

(5.18)
In a similar way, we obtain the cavity emitted field for an evanescent excitation traveling
towards x→ −∞ as

EC− = A cos
(
γ
w

2

)
e−α(R0+d)

∑

m

[
1

2

∑

m′

(−δmm′ + Smm′) i
−m′

(
β + α

β − α

)−m′/2]
H(1)
m (nokr)e

imφ .

(5.19)
With this approach, when the scattering matrix S is unity (no scattering obstacle), the
fields originating from the cavity EC± are equal to zero. Noteworthy is the presence of
the Hankel functions of the first kind only, a further indication that EC± are strictly
outgoing wave fields.

170



5.2. Coupling theory

5.2 Coupling theory

The perturbative approach of coupling a waveguide to a dielectric cavity is expressed
by the Ansatz

E ' EC + g+(x)E+ + g−(x)E− (5.20)

H ' HC + g+(x)H+ + g−(x)H− . (5.21)

The total electric (magnetic) field E (H), exact solution of the whole system (a super-
mode), is approximately written as the superposition of unperturbed fields charateristic
of each component of the system: EC (HC), the cavity electric (magnetic) field, E±

(H±), the propagating (in both directions) single mode waveguide fields (see Appendix
E for a complete description of the waveguide fields). This separation is similar to that
described in [92]. The functions g±(x) are envelops of the propagating fields and take
into account the modifications (perturbations) of these fields inside the waveguide. This
decomposition is illustrated in Fig. 5.3.

Fig. 5.3 Schematics of the coupled system (cavity + waveguide). Only the electric field is displayed.
The domain occupied by the cavity is identified by DC .

For TM polarization (Ex = Ey = 0), a two-dimensional system and a harmonic time
dependence e−iωt for the fields, the propagating waveguide fields take the form

E± = ψ(y)e±iβxẑ (5.22)

where β is the propagation constant and ψ(y) is the transverse profile of the field
(invariant with respect to the propagation direction, see Eq. (5.2) and Appendix E).
This profile decreases exponentially outside the waveguide.

To first approximation, the field emanating from the cavity, EC (HC), is produced by
the excitation from the waveguide modes E± (H±). There are therefore 2 components
EC± (HC±) to the cavity field (see Eqs. (5.18) and (5.19)). Furthermore, because of
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the linear dependency of EC± and E±, it is reasonable to modulate these contributions
by the envelops g±(x) to lead to

EC = g+(x)EC+ + g−(x)EC− (5.23)

HC = g+(x)HC+ + g−(x)HC− . (5.24)

This allows for a local contribution of the exciting field proportional to the value of the
envelope at that position of the waveguide (the condition of equilibrium between the
waveguide mode at a given position and its modification via the cavity will be discussed
in further detail in Section 5.4).

All these fields must satisfy the Maxwell’s equations in their respective region of appli-
cability # :

∇× E# = +iωµ0H
# (5.25)

∇×H# = −iωε0n2
#E# . (5.26)

Applying the rotational ∇× to the expression for E, namely 4

∇× E ' ∇× (g+EC+) +∇× (g−EC−) +∇× (g+E+) +∇× (g−E−) (5.28)

leads directly to

+ iωµ0H = iωµ0

(
g+HC+ + g−HC− + g+H+ + g−H−

)

+
d

dx
g+x̂×

(
E+ + EC+

)
+

d

dx
g−x̂×

(
E− + EC−)

or, after simplification, to the differential equation

g′+x̂×
(
E+ + EC+

)
+ g′−x̂×

(
E− + EC−) =

[
g′+
(
E+ + EC+

)
+ g′−

(
E− + EC−)] ẑ = 0.

(5.29)
The derivative sign ′ denotes differentiation with respect to x. The same procedure is
carried out on the magnetic field H,

∇×H ' ∇× (g+HC+) +∇× (g−HC−) +∇× (g+H+) +∇× (g−H−) (5.30)

for an equivalent differential equation

+iωε0
[
(n2 − n2

c)(E
C+g+ + EC−g−) + (n2 − n2

g)(E
+g+ + E−g−)

]

+g′+x̂×
(
HC+ + H+

)
+ g′−x̂×

(
HC− + H−

)
= 0 (5.31)

4Useful identity:
∇× (fF) = f∇× F +∇f × F . (5.27)
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5.2. Coupling theory

where n is the refractive index over the entire regions of the whole system (cavity +
waveguide + surrounding), nc is the refractive of the cavity, and ng is the refractive
index of the waveguide.

One evaluates x̂×H±,C±:

x̂×H±,C± = x̂× 1

iωµ0

∇×E±,C± = − 1

iωµ0

∂

∂x
E±,C±x̂× ŷ = − 1

iωµ0

∂

∂x
E±,C±ẑ . (5.32)

Equation (5.31) then reduces to a scalar expression

g′+
∂

∂x

(
EC+ + E+

)
+ g′−

∂

∂x

(
EC− + E−

)
= −(n2 − n2

c)k
2(EC+g+ + EC−g−)

−(n2 − n2
g)k

2(E+g+ + E−g−).

(5.33)

In agreement with our perturbation treatment, one assumes next that the integrated
contribution along the y direction of the product of the waveguide and the cavity fields
is much smaller than that of the integrated product of the waveguide fields,

∣∣∣∣
∫ +∞

−∞
dy E±

∗
EC±,∓

∣∣∣∣�
∣∣∣∣
∫ +∞

−∞
dy E±

∗
E±,∓

∣∣∣∣ . (5.34)

This assumption has the effect of disregarding the terms EC± in (5.29),

g′+ ' −g′−e−i2βx . (5.35)

One considers further that this approximation is also valid for the left-hand side of Eq.
(5.33), ∣∣∣∣

∫ +∞

−∞
dy E±

∗ ∂

∂x
EC±,∓

∣∣∣∣�
∣∣∣∣
∫ +∞

−∞
dy E±

∗ ∂

∂x
E±,∓

∣∣∣∣ . (5.36)

By multiplying (5.33) with E+∗ form the left, integrating over y (and over z for a
thickness h: the field is considered essentially uniform over a distance h� 2π/k), one
finds

iβP
(
g′+ − e−i2βxg′−

)
' −k2 [κ+(x)g+ + κ−(x)g−] e−iβx−k2χ(x)

[
eiβxg+ + e−iβxg−

]
e−iβx

(5.37)
where

P =

∫ +∞

−∞
dy ψ∗(y)ψ(y) (5.38)

κ±(x) =

∫ +∞

−∞
dy (n2 − n2

c)ψ
∗(y)EC±(x, y) (5.39)

χ(x) =

∫ +∞

−∞
dy (n2 − n2

g)ψ
∗(y)ψ(y) . (5.40)
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5.3. Solution of the model

Using Eq. (5.35), one finally obtains the system of differential equations

g′+ = +i
k2

2βP
e−iβx

[
(κ+(x) + χ(x)eiβx)g+ + (κ−(x) + χ(x)e−iβx)g−

]
(5.41)

g′− = −i k
2

2βP
e+iβx

[
(κ+(x) + χ(x)eiβx)g+ + (κ−(x) + χ(x)e−iβx)g−

]
. (5.42)

This system of ordinary differential equations for the envelopes of forward and backward
propagating guided waves are to be solved in order to retrieve the transmission and
reflection coefficients.

5.3 Solution of the model

The modelisation so far has led us to a set of first order differential equations, Eqs (5.41)
and (5.42), for the envelopes of the propagating guided fields. Since these envelopes
control the amount of field found at the ends of the waveguide and assuming a single
input field, obtaining a solution to Eqs (5.41) and (5.42) is crucial for the evaluation
of the line transmission and reflection coefficients, the measurable quantities in an
hypothetical experimental setup. In the following, we obtain a formal solution to this
set of differential equations, then proceed to the explicit calculation of certain factors
left in an integral form in the formal solution.

5.3.1 General solution

A solution of the system of differential equations (5.41)-(5.42) is readily obtained as
(
g+(x)

g−(x)

)
= exp [G(x)]

(
g+(−∞)

g−(−∞)

)
(5.43)

with

G11(x) = G++(x) = +i
k2

2βP

∫ x

−∞
dx′

(
κ+(x′)e−iβx

′
+ χ(x′)

)
(5.44)

G12(x) = G+−(x) = +i
k2

2βP

∫ x

−∞
dx′

(
κ−(x′)e−iβx

′
+ χ(x′)e−i2βx

′
)

(5.45)

G21(x) = G−+(x) = −i k
2

2βP

∫ x

−∞
dx′

(
κ+(x′)e+iβx′ + χ(x′)e+i2βx′

)
(5.46)

G22(x) = G−−(x) = −i k
2

2βP

∫ x

−∞
dx′

(
κ−(x′)e+iβx′ + χ(x′)

)
. (5.47)
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5.3. Solution of the model

As x→ +∞, the solution (5.43) becomes

(
g+(+∞)

g−(+∞)

)
≡
(
g++

g−+

)
= exp

[
G0
]
(
g+(−∞)

g−(−∞)

)
≡ exp

[
G0
]
(
g+−
g−−

)
(5.48)

with G0
±± = G±±(+∞). Since the excitation source is located at x→ −∞, g+− and g−+

are known quantities (e.g. g+− = 1 and g−+ = 0). Moreover, because the exponential
of a 2× 2 matrix is also a 2× 2 matrix, one can write the exit (output) terms g++ and
g−− as functions of the source (input) terms g+− and g−+.

Fig. 5.4 Representation of the input and output envelopes of the guided waves. The W = exp
[
G0
]

matrix is a mathematical representation of the combined waveguide-cavity system as seen from the
ends of the waveguide.

An exact expression for the 2 × 2 matrix produced by the exponential of G0 is easily
obtained. On calculates first the eigenvalues and eigenvectors of G0. Let us denote Λ,
the diagonal matrix of eigenvalues

Λ =

(
λ1 0

0 λ2

)
(5.49)

and V, the eigenvector matrix,

V =

(
v11 v12

v21 v22

)
, (5.50)
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5.3. Solution of the model

where vij represents the i−th component of the j−th eigenvector. We have then 5

exp
[
G0
]

= V exp [Λ] V−1 (5.52)

such that (
g++

g−+

)
= V exp [Λ] V−1

(
g+−
g−−

)
≡W

(
g+−
g−−

)
(5.53)

where the elements of the matrix W are

W11 =
eλ1v11v22 − eλ2v12v21

∆V

W12 = −(eλ1 − eλ2)v11v12

∆V

W21 =
(eλ1 − eλ2)v22v21

∆V

W22 = −eλ1v12v21 − eλ2v11v22

∆V

(5.54)

with ∆V = det V = v11v22− v12v21 . This results in an explicit relation of g++ and g−−
with respect to g−+ and g+−,

g++ =
∆W

W22

g+− +
W12

W22

g−+ (5.55)

g−− = −W21

W22

g+− +
1

W22

g−+ (5.56)

where ∆W = det W = det exp [Λ] = e(λ1+λ2). Furthermore, the eigenvalues λ1,2 are
simply expressed as

λ1,2 =
1

2

(
G0
−− +G0

++

)
± 1

2

√
(G0
−− −G0

++)
2

+ 4G0
+−G

0
−+ (5.57)

as well as the components (un-normalized) of the eigenvectors,

v11 = 1 v12 =
G0

+−
(λ2 −G0

++)

v21 =
(λ1 −G0

++)

G0
+−

v22 = 1
(5.58)

Since the system of interest has a single unique source at x → −∞, one has g−+ = 0

such that the ratio of the mean power measured at infinity to the entrance power in
the waveguide gives us access to the transmission coefficient as

|T |2 =

∣∣∣∣
g++

g+−

∣∣∣∣
2

=

∣∣∣∣
∆W

W22

∣∣∣∣
2

. (5.59)

5Exponential of a matrix:

exp
[
BAB−1

]
= 1+

[
BAB−1

]
+

1

2!

[
BAB−1

]2
+

1

3!

[
BAB−1

]3
+ · · ·

= B

[
1+ A +

1

2!
A2 +

1

3!
A3 + · · ·

]
B−1

= B exp [A] B−1 . (5.51)
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5.3. Solution of the model

and to the reflection coefficient as the ratio of the mean output power at x → −∞ to
the entrance power as

|R|2 =

∣∣∣∣
g−−
g+−

∣∣∣∣
2

=

∣∣∣∣
W21

W22

∣∣∣∣
2

. (5.60)

Using the explicit expressions (5.54) for the {Wij} matrix elements together with those
of eigenvectors (5.58), the transmission and reflexion coefficients can be written as

T =
e(λ1+λ2)/2(λ1 − λ2)

e(λ1−λ2)/2(λ1 −G0
++)− e−(λ1−λ2)/2(λ2 −G0

++)
(5.61)

R =
(e(λ1−λ2)/2 − e−(λ1−λ2)/2)G0

−+

e(λ1−λ2)/2(λ1 −G0
++)− e−(λ1−λ2)/2(λ2 −G0

++)
. (5.62)

Recalling that

λ1 + λ2 = G0
−− +G0

++ (5.63)

λ1 − λ2 =
[
(G0
−− −G0

++)2 + 4G0
+−G

0
−+

]1/2
, (5.64)

and if 4G0
+−G

0
−+ � (G0

−− − G0
++)2 (regime where the coupling terms between the

propagating waves + et − are weak), then we may use the binomial expansion and
obtain the weak coupling expressions for Eqs (5.61) and (5.62)

T ' eG
0
++ (5.65)

R ' G0
−+

G0
−− −G0

++

(
eG

0
−−−G0

++ − 1
)

. (5.66)

5.3.2 Evaluation of the elements of G0

There remains to calculate the elements of the matrix G0. One evaluates first the
integrals (5.44)-(5.47) taken at x→ +∞,

∫
dx κ±(x)e{±, ∓}iβx = h−1(n2

g−n2
o)

∫ +∞

−∞
dx

∫ +w/2

−w/2
dy ψ∗(y)EC±(x, y)e{±, ∓}iβx

∫ h

0

dz .

(5.67)
Since the guided fields E±∗ = ψ∗e∓iβx, Eq. (5.22), are solutions of the Helmholtz
equation

[
∇2 + n2

gk
2
]
E±∗ = 0, just as EC ≡ EC± 6 are those of [∇2 + n2

ok
2]EC = 0

6We redefine EC ≡ EC± for the sake of conciseness. This expression is not to be confused with ẼC

defined in Eq. (5.14). We also set the coupling coefficients κ ≡ κ± for the same reason.
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5.3. Solution of the model

over their respective volume, we can write∫
d3r E±∗EC = − 1

n2
gk

2

∫
d3r

[
∇2E±∗

]
EC (5.68)

= − 1

n2
ok

2

∫
d3rE±∗

[
∇2EC

]
(5.69)

which together with Green’s second theorem [50], leads to∫
d3r

{
E±∗

[
∇2EC

]
−
[
∇2E±∗

]
EC
}

=

∫

S

d2r ν̂
{
E±∗

[
∇EC

]
−
[
∇E±∗

]
EC
}
,

(5.70)
where ν̂ is the unit normal vector to each surface of the volume of interest, a thin
rectangular shaped infinite waveguide. Simplifying, we get

(n2
g − n2

o)

∫
d3r E±∗EC =

1

k2

∫

S

d2r ν̂
{
E±∗

[
∇EC

]
−
[
∇E±∗

]
EC
}

. (5.71)

Since by assumption, the field is uniform along Oz, this last equation reduces to∫
dx κ(x)e∓iβx =

1

k2

∫

C

dl ν̂ ·
{
E±∗

[
∇EC

]
−
[
∇E±∗

]
EC
}

(5.72)

where C is the contour presented in Fig. 5.5. This contour integral is not closed in
the usual sense since the Green’s identity transforms a volume integral into a surface
integral: differential line element dl must always be positive and any plus/minus sign
appears naturally in the calculation through the normal derivative.

Fig. 5.5 Coordinate system for the integration over the contour C (pink rectangle). The normal
vectors ν̂ are those of the contributing surfaces of the waveguide in regards of Eq. (5.72).

For |x1| = |x2| → ∞, the asymptotic expansion of the Hankel function (see the ex-
pressions of the field emitted by the cavity Eqs (5.18)-(5.19)) implies that the integrals
(5.72) on the transverse sections of the waveguide are zero. Two line integrals over x
remain:∫

dx κ(x)e∓iβx =
1

k2

[ ∫ +∞

−∞
dx

{
E±∗

∂

∂y
EC − EC ∂

∂y
E±∗

} ∣∣∣
y=+w/2

−
∫ +∞

−∞
dx

{
E±∗

∂

∂y
EC − EC ∂

∂y
E±∗

} ∣∣∣
y=−w/2

]
. (5.73)
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5.3. Solution of the model

According to Section E.1, the waveguide field evaluated at its boundary is E±(x, y =

±w/2) = A cos γy e±iβx
∣∣∣
y=±w/2

, which means that

∫
dx κ(x)e∓iβx =

1

k2
A∗
[ {(

+ cos
(
γ
w

2

) ∂

∂y
+ γ sin

(
γ
w

2

))∫ +∞

−∞
dxECe∓iβx

} ∣∣∣
y=+w/2

+

{(
− cos

(
γ
w

2

) ∂

∂y
+ γ sin

(
γ
w

2

))∫ +∞

−∞
dxECe∓iβx

} ∣∣∣
y=−w/2

]
.

(5.74)

Since the field EC is made of cylindrical harmonics of the type H(1)
m (nokr)e

imφ with the
polar coordinates having their origin at the center of the cavity, the integral to calculate
is
∫ +∞

−∞
dxH(1)

m (nokr)e
imφe∓iβx =

∫ +∞

−∞
dxH(1)

m (nok
√
x2 + (y − y0)2)eim arctan y−y0

x e∓iβx

(5.75)
with y0 = d + R0 + w/2 > w/2 > −w/2 and the Cartesian coordinates (x, y) centered
on the waveguide (Fig. 5.5). The convergence of this integral for large values of x is
verified in subsection E.2.2 of Appendix E. One rewrites the integral as

∫ +∞

−∞
dx H(1)

m (nokr)e
imφe∓iβx =

1

nok

∫ +∞

−∞
dξ H(1)

m (z)eimαe∓iβ̃ξ (5.76)

with z =
√
η2 + ξ2, ξ = nokx, η = nok(y − y0), α = arctan(η/ξ) and β̃ = β/nok. The

system’s arrangement is such that y − y0 < 0. Making use of results of Appendix E,
especially Eqs (E.15)-(E.18), we get 7

∫ +∞

−∞
dx H(1)

m (nokr)e
imφe∓iβx =

1

nok

∫ +∞

−∞
dξ

[∫ +∞

−∞
dβ′ Fm(β′, η)eiβ

′ξ

]
e∓iβ̃ξ

=
1

nok

∫ +∞

−∞
dβ′ (−1)mF−m(β′, |η|)

[∫ +∞

−∞
dξ ei(β

′∓β̃)ξ

]

=
2π

nok

∫ +∞

−∞
dβ′ (−1)mF−m(β′, |η|)δ(β′ ∓ β̃)

=
2π

nok
(−1)mF−m(±β̃, |η|) . (5.77)

Because β > nok, we get that β̃ > 1 which selects the evanescent parts of the repre-
sentation of the Hankel functions: one recalls that the coupling between waveguide and
cavity is caused by the evanescent portion of the field from the cavity. For y < y0 and

7The principal result is derived in subsection E.2.1. A more direct integration is also presented in
subsection E.2.3. A complete demonstration for all cases of signs of β and m is however not available.
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β̃ = β/nok > 1, one therefore has

∫ +∞

−∞
dx H(1)

m (nokr)e
imφe∓iβx = − 2i

nok

enok(y−y0)
√
β̃2−1

√
β̃2 − 1

[
∓i
(
β̃ +

√
β̃2 − 1

)]±m
.

(5.78)
Hence, given (5.18), one gets
∫ +∞

−∞
dx EC+e∓iβx = − 2i

nok

1√
β̃2 − 1

enok(y−y0)
√
β̃2−1A cos γ

w

2
e−α(R0+d)

×
∑

m

[
1

2

∑

m′

(−δmm′ + Smm′) i
m′
(
β + α

β − α

)m′/2] [
∓i
(
β̃ +

√
β̃2 − 1

)]±m

(5.79)

or since β̃ = β/nok and α2 = β2 − (nok)2,
∫ +∞

−∞
dx EC+e∓iβx = −2i

α
eαye−α(2(R0+d)+w/2)A cos γ

w

2

×
∑

m

[
∓i
(
β + α

nok

)]±m
· 1

2

∑

m′

(−δmm′ + Smm′) ·
[
i

(
β + α

β − α

)1/2
]+m′

.

(5.80)

Similarly the contribution of EC− is readily written
∫ +∞

−∞
dx EC−e∓iβx = −2i

α
eαye−α(2(R0+d)+w/2)A cos γ

w

2

×
∑

m

[
∓i
(
β + α

nok

)]±m
· 1

2

∑

m′

(−δmm′ + Smm′) ·
[
i

(
β + α

β − α

)1/2
]−m′

.

(5.81)

Substituting (5.80) in
∫
dx κ+(x)e∓iβx, one finds an elegant expression

+ i
k2

2βP

∫
dx κ+(x)e∓iβx = f(α, β, γ; w) (5.82)

×
[
c±

T
(α, β, nok; R0, d) ·

[
1

2
(−1+ S)

]
· v+(α, β; R0, d)

]

where the input power P is given by

P = |A|2
(

sin(γw)

2γ
+
w

2
+

2 cos2
(
γ w

2

)

2α

)
. (5.83)
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Equation (5.82) is made up of different pieces easily recognizable: a coefficient charac-
teristic of the waveguide

f(α, β, γ; w) = +
4

β
cos
(
γ
w

2

)
e−αw/2


cos

(
γ w

2

)
sinh

(
αw

2

)
+ γ

α
sin
(
γ w

2

)
cosh

(
αw

2

)

1
γ

sin(γw) + w +
2 cos2(γ w2 )

α


 ,

(5.84)
a vector of coupling coefficients between the field emerging from the cavity and the field
of the waveguide

{c±(α, β, nok; R0, d)}m =

[
∓i
(
β + α

nok

)]±m
e−α(R0+d)

= (∓i)±m exp

[
−α(R0 + d)±m ln

(
β + α

nok

)]
(5.85)

a vector of the coefficients of the evanescent field from the waveguide

{v+(α, β; R0, d)}m′ =

[
i

(
β + α

β − α

)1/2
]+m′

e−α(R0+d)

= im
′
exp

[
−α(R0 + d) +

m′

2
ln

(
β + α

β − α

)]
(5.86)

and the identity 1 and the scattering S matrices. The same way, we obtain

− i k
2

2βP

∫
dx κ−(x)e∓iβx = −f(α, β, γ; w) (5.87)

×
[
c±

T
(α, β, nok; R0, d) ·

[
1

2
(−1+ S)

]
· v−(α, β; R0, d)

]

with

{v−(α, β; R0, d)}m′ =

[
i

(
β + α

β − α

)1/2
]−m′

e−α(R0+d)

= i−m
′
exp

[
−α(R0 + d)− m′

2
ln

(
β + α

β − α

)]
. (5.88)

One notes that the evanescent excitation vectors v+ et v− and the coupling vectors
c+ and c− are simply related by an inversion matrix {Ī}mm′ = δ−mm′ and a parity
operation {Π}mm′ = (−1)mδmm′ ,

c+ = ΠĪc− , v+ = Īv− . (5.89)

In other words v+
m = v−−m and c+

m = (c−−m)∗ = (−1)mc−−m. The matrices Ī et Π are
idempotent (X2 = 1), symmetric (XT = X) and commute with each other.
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The term χ(x) is made up of parts of the decreasing portions of the exponential
(squared) on the surface of the cavity. Its contribution will be much smaller in magni-
tude than that of the coupling term. The matrix elements of G0 are therefore directly
expressed by the integrals over the coupling coefficients already obtained

G0
++ = +fc+T 1

2
(S− 1) v+ G0

+− = +fc−
T 1

2
(S− 1) v+

G0
−+ = −fc+T 1

2
(S− 1) v− G0

−− = −fc−
T 1

2
(S− 1) v−

(5.90)

or with the relations (5.89) (v ≡ v+ et c ≡ c+),

G0
++ = +fcT

1

2
(S− 1) v G0

+− = +fcTΠĪ
1

2
(S− 1) v

G0
−+ = −fcT

1

2
(S− 1) Īv G0

−− = −fcTΠĪ
1

2
(S− 1) Īv .

(5.91)

One can finally evaluate the eigenvalues and eigenvectors of G0 (5.44)-(5.47) as well
as the transmission and reflection coefficients (5.61)-(5.62). In the limit of weak cou-
pling between the propagating + and − fields, Eq. (5.65), the transmission coefficient
simplifies to

T ' exp

[
+fcT

1

2
(S− 1) v

]
. (5.92)

This expression is the main result of this section.

5.4 Alternative development of the model

The coupling model of Okamoto, upon which we have conceptually based our description
of the complete electromagnetic field, has originally been designed for the treatment of
the coupling of 2 waveguides. The approach prescribes the simultaneous perturbation
of the fields of both waveguides. The case of the cavity-waveguide coupling is in some
sense simpler since the cavity interacts with the waveguide solely through its scattering
matrix. In other words, one can assume that the field above the waveguide is correctly
evaluated and concentrate uniquely on the field within the waveguide. This is what we
will do in this Section.

5.4.1 Description of the electromagnetic field in the guide

In Section 5.2, we have presented the production of a cavity field excited by an evanes-
cent continuous field from the waveguide. We argued that it was ‘reasonable’ to modu-
late the output field from the cavity with the envelopes of the guided waves following the
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observation that the excitation of the cavity was linearly dependant upon the guided
field. In this description, there is no further feedback with the waveguide: we seek
global envelopes solving the system altogether. From the point of view of the waveg-
uide however, the field emerging from the cavity can be seen to induce local sources
of propagating field within the waveguide. In a sense, this section focuses on a ‘micro-
scopic’ description of the coupling phenomenon by focusing solely on the field within
the waveguide as opposed to the ‘macroscopic’ view of the system discussed in the
preceding section.

The addition of the induced field to the existing waveguide field has two consequences.
First, its superposition to the initial waveguide field (primary excitation) will produce
interference without removing the initial field from the interior of the waveguide. Sec-
ond, there is now the possibility of a new excitation of the cavity by the evanescent part
of the induced field. A cycle of secondary excitations can now begin. Since coupling
between the evanescent fields and the cavity is never perfect, as well as any further
re-couplings, each new excitation will be smaller in magnitude that the preceding ones.
Given that the (evanescent) power at the input is finite, this series of excitation must
converge. The sequence of events is schematically presented in Fig. 5.6.

Fig. 5.6 Excitation cycle of the cavity: forward propagating ‘+’ waves pictured. 1) An initial evanescent
field excites the cavity which responds by producing a characteristic field. 2) This field in turn induces a
source field in a section dx of the waveguide. 3) At x′, the waveguide field is made up of a superposition
of induced fields produced ‘upstream’; this results in the creation of an effective amplitude A(x′). This
waveguide field has an evanescent component that excites anew the cavity. Note that the induction
phenomenon in step 2) also produces backward propagating ‘−’ waves. These contribute to the
reflection coefficient of the waveguide.

A mathematical formulation of the previous iterative process can be quite complex.
However, one can consider a global envelope g±(x) at position x which should contain
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phase and amplitude information of the superposition of induced fields to the initial
waveguide mode. One thinks of g±(x) as describing the equilibrium steady-state situa-
tion where the field in the waveguide at x is g±(x)E± and the additional contributions
from the cavity are g±(x)EC±. Hence one seeks an envelope function g±(x) at x on a
differential element dx such that its contribution to the excitation of the cavity shares
the same envelope. Under this condition, the total electromagnetic field inside the
waveguide can be written as

E ' g+(x)E+ + g+(x)EC+ + g−(x)E− + g−(x)EC− (5.93)

H ' g+(x)H+ + g+(x)HC+ + g−(x)H− + g−(x)HC− . (5.94)

The procedure that follows is then analogous to that of Section 5.2. Applying Maxwell’s
equations, one extracts our first differential equation for g±(x)

g′+(x)
[
E+ + EC+

]
= −g′−(x)

[
E− + EC−] (5.95)

and the second

g′+(x)
∂

∂x

[
E+ + EC+

]
+ g′−(x)

∂

∂x

[
E− + EC−] = −(n2 − n2

c)k
2
(
EC+g+ + EC−g−

)

−(n2 − n2
g)k

2
(
E+g+ + E−g−

)
.

(5.96)

The novelty of this approach is to consider that the field above the guide is modeled
properly via the scattering process of Section 5.2 and is not explicitly affected by the
envelope functions outside the waveguide. One justifies this method by interpreting the
envelope function as the contribution to the initial waveguide mode of the superposition
of all the cavity induced fields. In short, one examines only the region covered by the
waveguide. Within this region of space, one has

∣∣∣∣∣

∫ +w/2

−w/2
dy E±

∗
EC±,∓

∣∣∣∣∣ �
∣∣∣∣∣

∫ +w/2

−w/2
dy E±

∗
E±,∓

∣∣∣∣∣ (5.97)

∣∣∣∣∣

∫ +w/2

−w/2
dy E±

∗ ∂

∂x
EC±,∓

∣∣∣∣∣ �
∣∣∣∣∣

∫ +w/2

−w/2
dy E±

∗ ∂

∂x
E±,∓

∣∣∣∣∣ . (5.98)

Multiplying on the left with E+∗ and integration on the section of the waveguide y =

[−w/2, +w/2], one obtains the fraction of the field from the cavity that effectively
excites the waveguide. We get a new set of differential equations

ĝ′+ = +i
k2

2βP̂
e−iβx [κ̂+(x)ĝ+ + κ̂−(x)ĝ−] (5.99)

ĝ′− = −i k
2

2βP̂
e+iβx [κ̂+(x)ĝ+ + κ̂−(x)ĝ−] . (5.100)
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with

P̂ =

∫ +w/2

−w/2
dy ψ∗(y)ψ(y) = |A|2

(
sin(γw)

2γ
+
w

2

)
(5.101)

κ̂±(x) =

∫ +w/2

−w/2
dy (n2 − n2

c)ψ
∗(y)EC±(x, y) . (5.102)

This system of differential equations is completely autonomous with no forcing terms
usually associated with this type of perturbation model. The boundary conditions are
ĝ+(−∞) = 1 and ĝ−(+∞) = 0.

5.4.2 Solution of the alternative model

The solution of the system (5.99)-(5.100) takes the same form as the one found in
Section 5.3, (

ĝ+(x)

ĝ−(x)

)
= exp

[
Ĝ(x)

] ( ĝ+(−∞)

ĝ−(−∞)

)
(5.103)

with

Ĝ11(x) = Ĝ++(x) = +i
k2

2βP̂

∫ x

−∞
dx′ κ̂+(x′)e−iβx

′
(5.104)

Ĝ12(x) = Ĝ+−(x) = +i
k2

2βP̂

∫ x

−∞
dx′ κ̂−(x′)e−iβx

′
(5.105)

Ĝ21(x) = Ĝ−+(x) = −i k
2

2βP̂

∫ x

−∞
dx′ κ̂+(x′)e+iβx′ (5.106)

Ĝ22(x) = Ĝ−−(x) = −i k
2

2βP̂

∫ x

−∞
dx′ κ̂−(x′)e+iβx′ . (5.107)

For x→ +∞, Eq. (5.103) becomes
(
ĝ+(+∞)

ĝ−(+∞)

)
≡
(
ĝ++

ĝ−+

)
= exp

[
Ĝ0
] ( ĝ+(−∞)

ĝ−(−∞)

)
≡ exp

[
Ĝ0
] ( ĝ+−

ĝ−−

)
(5.108)

with Ĝ0
±± = Ĝ±±(+∞). Again we will need to express the ‘outgoing’ envelops ĝ++

et ĝ−− in terms of the ‘incoming’ ones. With the appropriate changes just indicated,
we recuperate all the results of subsection 5.3.1 for the new eigenvalues {λ̂1,2}, the
new eigenvectors {v̂1,2} and the new transmission T̂ and reflexion R̂ coefficients. A
comparison with the results of Section 5.3.1 will be discussed shortly.

5.5 Results for the disc cavity

We apply the approach presented in Sections 5.2-5.4 to the case of a homogeneous disc.
The parameters of the system appear in Tab. 5.1.
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refractive index of the cavity nc 1.5

refractive index of the waveguide ng 1.5

refractive index of the surrounding medium no 1

radius of the cavity [arb. units] R0 1

width of the waveguide w/R0 0.1

wavenumber (interval) kR0 [20, 21]

Tab. 5.1 Physical parameters of the coupled cavity-waveguide system.

For these parameters and for the wavenumber interval considered, the waveguide con-
stants are presented in Tab. 5.2.

decay constant of evanescent field α/R0 [15.8570, 17.0003]

propagation constant β/R0 [25.5234, 27.0187]

transverse profile constant γ/R0 [15.7657, 16.1938]

Tab. 5.2 Waveguide physical constants.

For the homogeneous disc, the wave field is of the form

∑

m

{
t±mJm(nckr)e

imφ r < R0[
a±mH

(2)
m (nokr) + b±mH

(1)
m (nokr)

]
eimφ r > R0

(5.109)

with b±m = Smma
±
m and t±m = Tmma

±
m,

Smm′ = −∆∗m
∆m

δmm′ , Tmm′ = − 4i

πkR0

1

∆m

δmm′ (5.110)

∆m = ncH
(1)
m (nokR0)J ′m(nckR0)− noH(1)′

m (nokR0)Jm(nckR0) . (5.111)

The delay spectrum of the cavity is shown in Fig. 5.7.

5.5.1 Validity of the assumptions (5.34) - (5.36) and (5.97) -
(5.98)

We first seek out to verify the assumptions (5.34) and (5.36) as function of the distance
d/R0; one can always find a distance d such that the assumptions are satisfied. This
step allows us to assert the validity of our approach. For (5.34), we have, with θ =
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kR0

cτ
/R

0

20 20.2 20.4 20.6 20.8 21
100

101
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(19, 3)

(22, 2) (23, 2)

(26, 1)
(27, 1)

Fig. 5.7 Dealy spectrum for a homogeneous disc with parameters of Tab. 5.1. A few resonances are
identified (usual notation (m,n), m: angular momentum; n: number of radial nodes).

arctan(y/x), ξ0 = nok
√
x2 + y2, and ξc = nck

√
x2 + y2

∫ +∞

−∞
dy ψ∗(y)E±(x, y) = A∗ cos

(
γ
w

2

)
e−α(R0+d)

∑

m

a±m

∫ ∞

ỹ

dy e−αyH(1)
m (ξ0)eimθ

+A∗ cos
(
γ
w

2

)
e−α(R0+d)

∑

m

a±m

∫ ỹ

√
R2
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dy e−αyH(1)
m (ξ0)eimθ

+A∗ cos
(
γ
w

2

)
e−α(R0+d)

∑

m

t±m

∫ √R2
0−x2

0

dy e−αyJm(ξc)e
imθ

+A∗ cos
(
γ
w

2

)
e−α(R0+d)

∑

m

t±m

∫ √R2
0−x2

0

dy e+αyJm(ξc)e
−imθ

+A∗ cos
(
γ
w

2

)
e−α(R0+d)

∑

m

a±m

∫ R0+d

√
R2

0−x2

dy e+αyH(1)
m (ξ0)e−imθ

+A∗
∑

m

a±m

∫ R0+d+w

R0+d

dy cos[γ(−y +R0 + d+ w/2)]H(1)
m (ξ0)e−imθ

+A∗ cos
(
γ
w

2

)
e+α(R0+d+w)

∑

m

a±m

∫ ỹ

R0+d+w

dy e−αyH(1)
m (ξ0)e−imθ

+A∗ cos
(
γ
w

2

)
e+α(R0+d+w)

∑

m

a±m

∫ ∞

ỹ

dy e−αyH(1)
m (ξ0)e−imθ .

(5.112)187
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The overlap integrals in the asymptotic regime (y ∈ [ỹ, ∞[) have been explicitly iso-
lated.

The derivatives involving the cylindrical functions are easily evaluated as

∂

∂x
H(1)
m (nokr)e

imφ =
nokx

r

∂

∂z
H(1)
m (z)

∣∣
nokr

eimφ − imy
r2
H(1)
m (nokr)e

imφ (5.113)

∂

∂x
Jm(nokr)e

imφ =
nokx

r

∂

∂z
Jm(z)

∣∣
nokr

eimφ − imy
r2
Jm(nokr)e

imφ . (5.114)

At x = 0, the first of these expressions becomes

∂

∂x
H(1)(nokr)e

imφ
∣∣
x=0

= −im
y
H(1)(nok|y|)eisign(y)mπ

2 . (5.115)

One will find a detailed evaluation of the asymptotic contributions at subsection E.2.4
of Appendix E.

The magnitude of the exponent α of the evanescent field with respect to nok strongly
decreases the asymptotic contributions beyond say ỹ ∼ 3: we fix ỹ = 20 for the con-
tribution � max[|integral (5.112)|]. The results of the calculation of the overlap are
presented in Fig. 5.8 for a wavenumber k corresponding to the position of the reso-
nance (26, 1). One observes the expected symmetry between the + and − propagation
directions. The distance d/R0 = 0.3 verifies the assumptions to within approximately
∼ 2% and the calculations of the following subsections will be done with this value.

We have also verified the approximations used in the alternative model of Section 5.4
and found a corresponding agreement. The equivalent verification of the assumptions
(5.97)-(5.98) is presented in Fig. 5.9.

5.5.2 Transmission coefficient

While the last subsection has given us a value of d/R0 = 0.3 for which the fundamental
assumptions of our method are verified to within a few per cent, we are now concerned
with the relative size of χ(x) and κ± in the integrals (5.44)-(5.47). Figure 5.10 shows
that the contributions originating from χ may not be negligible with respect to those of
κ±. Note however that the spectral domain around resonances are largely dominated
the κ± contributions. Since we are likely to be more interested in the impact of the
resonances on the transmission, the χ contributions are dropped altogether.

Also, the cross terms G0
+− and G0

−+ are very small with respect to the direct terms
(there is only weak transfer between the + and − wave guide mode). So practically, one
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(a) Assumption (5.34).
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Fig. 5.8 Test of assumptions (5.34) and (5.36) as a function of x for 3 values of d; kR0 ' 20.1964

is the position of the resonance (26, 1). The blue (red) curves are associated with the overlap of the
field caused by the interaction with a waveguide mode propagating towards +∞ (−∞). The values
are normalized to that of P and βP , Eq. (5.38), so that the light gray line at a constant value of 1 is
the comparison figure.

can still use the approximate expressions (5.65)-(5.66) since the results are essentially
identical to those of the more exact expressions (5.61)-(5.62). To be on the safe side,
our calculations are always done with the latter equations.

Our results for the transmission and reflection coefficients are displayed in Fig. 5.11(a).
One immediately sees that for the chosen parameters, transmission is essentially per-
fect, except around the cavity resonances (26, 1) and (27, 1) of Fig. 5.7 as energy is
transferred to the cavity from the waveguide.

A closer look at the quantity 1 − |T (k)|2 (Fig. 5.11(b)) makes the correspondence
with the delay spectrum even more obvious. On the right of the major peaks are
bumps indicating the presence of other minor resonances (22,2) and (23,2). At the
major peaks, the curves are almost lorentzian and one can evaluate their width at
half-height Γ. For the peak corresponding to the resonance (26, 1), we estimate a
value of Γ ' 0.0038. This measure is equivalent to the imaginary part of the complex
resonance position (Γ/2)(26,1) = kImR0, which in turn is related to the resonance delay
by kImR0/2 = R0/(cτ), such that cτ/R0 = 2/kImR0 = 4/Γ ' 1052, a result that
compares nicely with that of the theoretical spectrum of Fig. 5.7.

If we compare the results of the alternative model for the transmission coefficient, they
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Fig. 5.9 Test of assumptions (5.97) and (5.98) as a function of x for 3 values of d; kR0 ' 20.1964

is the position of the resonance (26, 1). The blue (red) curves are associated with the overlap of the
field caused by the interaction with a waveguide mode propagating towards +∞ (−∞). The values
are normalized to that of P̂ and βP̂ , Eq. (5.101), so that the light gray line at a constant value of 1
is the comparison figure.

are identical to those of Fig. 5.11 except for an overall scale factor ' 1.47 larger. This
factor originates essentially from the different normalization, the incident power P̂ in
the guide versus the incident power P over all space.

Considering the results obtained with our model, it is easy to generalize our analysis to
a add-drop filter system with two waveguides [81]. One can also remove the restrictive
approximation of weak coupling within the same theoretical framework. The price to
pay is the loss of our analytic results and one must resort to a full numerical solutions of
the complete coupled equations. These generalizations have not been explored further
in this thesis. However, these future developments would not need much new analysis
and can be regarded as basically straightforward.
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Fig. 5.10 Integrals involved in the expressions (5.44)-(5.47). One notices that the contributions of the
integral over χ tot the corresponding element of the matrix G0 is of the same order of magnitude as
the contributions of the related integral over κ±.
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Fig. 5.11 (a) Transmission spectrum |T (k)|2 along a waveguide coupled to an homogeneous cavity.
The results for three values of d/R0 are displayed (blue lines) and the 1−Tr{Q}/max{Tr{Q}} value
is pictured as well for reference (gray line). The reflection coefficient maximum value for d/R0 = 0.1

is about 10−31. (b) Evaluation of 1−|T (k)|2 on a semi-log graph showing the secondary contributions
of modes (22, 2) and (23, 2) nearby the main resonances (see delay spectrum Fig. 5.7). The graph
of Tr{Q}/max{Tr{Q}} is also illustrated on top of this transmission spectrum to provide a useful
comparison figure.
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Chapter 6

Conclusions and perspectives

In this Chapter, we present a list of the main results and observations found
in this work, and outline a novel dielectric cavity design that combines high
delays and directional emission. This ‘hybrid cavity’ made of a stadium cav-
ity embedded inside a ring cavity is designed to encapsulate the knowledge
gathered throughout this work. Some early results are provided to enforce
the concept, and a final discussion follows.

We present a summary of the results obtained in the preceding Chapters and a roadmap
for eventual future investigations. The first Section is a list per Chapter of the main
results and corresponding observations. A short discussion follows that sets the stage
for the final Section of this work. This last Section is concerned with the immediate
extension of the results of Chapters 4 and 5, and provides early observations of the
pooling properties of an ‘hybrid cavity’. This novel cavity design consists of a stadium-
shaped cavity embedded into a larger high delay ring cavity. This original design
appears to avoid the resonant coupling issue observed in the annular cavity between
high delay and mid-size resonant modes by restricting the main modes to one kind of
high quality WGMs only. Much like the annular cavity case, the non-uniform far-field
is provided by an inner scatterer, here a stadium-shaped cavity. The stadium cavity has
the property of having a ‘uniform’ low delays spectrum from which the high delay modes
of the ring cavity find escape channels to reach the far-field. Some ideas concerning
further developments are provided as well as a final word of caution.

6.1 Summary of observations and results

We review the main results obtained throughout the present work. They are presented
in a list organised by Chapters. The electronic version of this document could prove



6.1. Summary of observations and results

convenient for the reader as we extensively make use of hyperlinks for references to
figures, equations and text Sections and Subsections.

• Chapter 2 This Chapter presents the theoretical foundation upon which the
rest of the document is based. Instead of using the usual S matrix complex k-
plane description of the resonant modes of a cavity, we develop an energy-based
formalism that captures the trapping effect of the cavity for real k electromagnetic
fields. For every value of the wavenumber, an infinite number of characteristic
modes are found. Some of these modes have especially large containment capacity:
the characteristic delay spectrum of these resonant modes presents exceptionally
high peaks. We argue that this alternative description of the behaviour of the
electromagnetic field in the presence of a cavity shares many of the characteristics
of the complex k-plane poles description. A numerical procedure along with early
results are also presented.

1. We devise a scattering description of the electromagnetic field based upon
the use of the delay matrix to identify the characteristic modes of a two-
dimensional dielectric cavity (see Eq. (2.21) and related discussion). The
delay matrix Q itself is derived from a complex energy description of the
electromagnetic field.

2. The characteristic modes are time reversible modes in the sense that the
incident wave has the same amplitude profile as the scattered wave. Only a
phase factor (and an obvious complex conjugation) separates the two waves
(see Eq. 2.20 and discussion in Equivalent forms of the Q matrix in Subsec-
tion 2.1.3).

3. The characteristic modes appear to come from the symmetric contribution
of the poles and zeros of the complex wavenumber plane scattering matrix
(see Fig. 2.2 and Eq. (2.21), and the related discussion). In a sense, the
time reversibility property of the characteristic modes stems from their ar-
rangement half way from pure emission modes (poles) and pure absorbing
modes (zeros).

4. The characteristic modes bear striking similarities with conventional complex
k-plane resonant modes (see Fig. 2.18 and Tab. 2.2).

5. The discrepancies between the characteristic modes and the complex k-plane
poles resonant modes are related to the complex interactions of the many
characteristic modes on the real line (see discussion on delay levels anti-
crossings in Subsection 2.1.3).

6. An issue related to the delay levels anti-crossings is the reference frame de-
pendency of the delay spectrum (see Fig. 2.4 and related discussion).
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• Chapter 3 This Chapter presents a perturbation theory of the disc cavity elec-
tromagnetic field. The approach makes use of two consecutive perturbation ex-
pansions. The first one involves a Born approximation of the perturbed field
as a starting point to obtain the perturbed S and Q matrices. A second treat-
ment revolving around the usual matrix perturbation theory is then applied to
the characteristic modes. Specific analytical results on boundary and inclusion
deformations are derived. These results in turn indicate some promising avenues
of investigation.

1. The scattered field associated with a small, yet undefined, variation of the
refractive index of the disc cavity is expanded in a Born series (Fig. 3.1
and Eq. (3.11)). A first order correction S(1) to the homogeneous disc cavity
scattering matrix S(0) is obtained Eq. (3.15) as well as a first order correction
to the delay matrix Eqs (3.25)-(3.26).

2. Using the delay matrix formalism for the dielectric cavity system, we es-
tablish a perturbation theory for the characteristic modes. The theory ul-
timately leads to a first order expansion for the delay (Eq. (3.62)) and
associated incoming vectors (Eqs (3.39)-(3.40)) of the perturbed WGMs.

3. The time reversibility property Eq. (2.20) of the characteristic modes ap-
pears twice in the perturbation treatment of the characteristic modes. First,
it is verified on all but the two main angular momentum components (|m| 6=
m0) of the first order incoming vector (see Property 4, Eq. (3.100)). Second,
it is used to determine the value of the two remaining elements (|m| = m0)
of the first order incoming vector (see Property 5, Eqs (3.101)-(3.102)). This
last computation is central in the process of obtaining the first order correc-
tion to the phase offset and delay of characteristic modes Eqs (3.52)-(3.62).

4. The small boundary deformation and small circular inclusion scenarios are
found to have similar scattering matrices (Eqs (3.80) and (3.114)). However,
further analysis shows that the annular cavity (disc+circular inclusion) is a
truly original design in comparison to the perturbative boundary deformation
of the disc (see Subsection 3.3.3).

5. The refractive index perturbation has the effect of fixing the symmetry axes
of the otherwise degenerate modes of the disc cavity. In the case of the
boundary deformed cavity, the preferred axis appears through the Fourier
series components of the boundary deformation function having the same an-
gular momentum |m| = m0 as the unperturbed WGM (Eqs (3.126)-(3.127)).
Therefore, the symmetry axis may change from one mode to the other in the
boundary deformation scenario.

6. The circular inclusion cavity, on the other hand, sets its symmetry axis with
respect to the disc-inclusion axis (the Ox axis). Also, the odd parity modes
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(ψ(x, y = 0) = 0) of the annular cavity have an unchanged delay value in
first order perturbation (see Subsection 3.3.2). This behaviour contrasts with
the even symmetry modes resonant peaks which are displaced toward higher
(lower) k values for nh < nc (nh > nc), see Figs 3.9 and 3.10.

7. A scattering amplitude ridge appears in the first order correction S(1) matrix
(Fig. 3.6). This ridge connects the main angular momenta Zo < |m| =

m0 < Zc
1 of a high quality WGM to the low quality angular momenta

|m| < Zo with greater amplitude than its immediate neighbors |m| ' m0.
Since Q(1) and subsequent perturbed eigen-quantities are defined through the
S(1) matrix, they directly inherit this ridge structure (see the A(1) perturbed
incoming coefficients pictured on Fig. 3.12).

• Chapter 4 This Chapter presents an application on the annular cavity of the
theory of Chapter 2. The results obtained in Chapter 3 provide guidelines for
the investigation of the main escape mechanisms of the electromagnetic field from
the cavity. Semi-classical correspondence between wavefields and classical billiard
trajectories is established and the dominant structures of phase space responsible
for the non-uniform emission are found. We complement the Chapter with two
Sections on important related topics: resonant coupling and wall roughness.

1. The scattering probability ridge Fig. 3.6 computed from the perturbation
theory of Chapter 3 is identified in the annular cavity scattering matrix (S
on Fig. 4.9).

2. It is found that most features of the ridge are included in the internal scat-
tering matrix of the displaced circular scatterer/hole (S′ on Fig. 4.9).

3. The characteristic delay of a high quality mode of the annular cavity drops
quickly as the constant radius hole is displaced towards the cavity boundary
(Fig. 4.3). This happens as the resonant mode peak position on the delay
spectrum remains almost stationary with respect to the unperturbed cavity
resonant wavenumber (Fig. 4.5). The semi-classical caustic radius d + r0 =

m0/nck appears to be a parametric upper bound for this behaviour.

4. The annular cavity high quality mode displays a parameter-dependent se-
quential transformation of its far-field and near-field, with a transition do-
main characterized by a WGM-like near-field and a strongly perturbed far-
field (Fig. 4.7).

5. A single internal scattering model of the cavity field is developed (Fig. 4.11)
and is used to highlight the processes leading to the regular near-field/non-
uniform far-field behaviour. The parameter-dependent probability crossover

1Zo = nokR0 and Zc = nckR0
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of two escape mechanisms - transmission to the exterior domain and transi-
tion to angular momenta different from the main WGM channel m0 - defines
a lower parametric value from which to look for non-uniform far-field (Fig.
4.12).

6. Given a second control parameter, the inclusion radius for instance, we are
able to drastically modify the far-field of a WGM located within the range
bounded by the limits discussed above in points 3. and 5. (Figs 4.14(a)-(c)).

7. Since the scattering probability ridge of the internal scattering matrix S′ (Fig.
4.9) is responsible for the perturbed aspect of the far-field and is positioned
semi-classically within the non-regular domain of phase space (Fig. 4.15
along with Eq. (4.19)), we seek the dominant dynamical structures in this
area of phase space. These are found to be the Hin and Hout domains,
complemented with a regular ‘conveyor belt’ mechanism (Fig. 4.16).

8. We then compare the single scattering model (wave simulation) with the
trajectories distribution (classical simulation) resulting from a single iter-
ate from inside the Hin region. This comparison suggests that the Husimi
distribution is an appropriate weighting function to model the output field
from a ‘classical’ WGM situated above the non-regular limit in phase space,
(d+ r0)/R0 < m0/nckR0 (Fig. 4.19). While the actual characteristic modes
and the classical trajectories share common features on the Poincaré section
(Fig. 4.21), the resemblance is even more striking in the far-field region (Fig.
4.22).

9. The main results - existence of a WGM parametric control domain and the
good agreement between classical and wave output trajectories/fields - be-
ing monotonically dependent on the wavenumber value, are of great practical
interest to model the behaviour of extremely narrow resonances of the per-
turbed disc cavity. Only approximate values of the resonant wavenumbers
are needed to carry out the computations. Such resonant wavenumbers are
readily available from semi-classical approximations (Chapter 1).

10. The characteristic modes are prone to strong resonant coupling with each
other as their resonant wavenumber positions (delay peaks) cross. A coupled
oscillators model is developed to show the dramatic drop of energy contain-
ment of the system as the mid-size resonance of a low quality oscillator runs
through the high energy peak of the second one (Fig. 4.24). A similar
phenomenon is observed in the annular cavity (Fig. 4.28).

11. The resonant coupling is a serious issue for the parametric control of the
WGMs far-field. This conclusion stems from the observation that mid-size
resonant peaks move erratically over the spectrum as a control parameter is
modified (Fig. 4.27).
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12. The wall roughness of the disc cavity is found to lift the clockwise-counterclockwise
degeneracy of WGMs. ‘Even’ and ‘odd’ modes are created with respect to
an effective symmetry axis arising from the components of the boundary de-
formation spectrum (Fig. 4.31 and results Eqs (3.126)-(3.127) found in the
perturbation theory of Chapter 3).

13. The wall roughness causes the displacement of resonant peaks of ‘even’ and
‘odd’ modes in opposite directions with respect to the unperturbed degener-
ate peak position (Fig. 4.30).

14. Higher quality modes are more affected by boundary roughness than low
quality modes (see Fig. 4.30 and discussion in the corresponding paragraph).

15. The scattering ridge associated with the rough disc cavity may have compo-
nents with sizes similar to the ones encountered in the annular cavity (Fig.
4.32). In view of our competing mechanisms description of the perturbed
WGM (see Subsection 4.1.2), the boundary roughness provides the elec-
tromagnetic field a third way out of the cavity, potentially superseding the
transmission mechanism as the control threshold for the anisotropic emission
(see Fig. 4.12).

• Chapter 5 This Chapter is somewhat different from the others. It presents
a single (very long) calculation on the effects of connecting a cavity to a long
waveguide used both as a power source and a measurement apparatus. The main
interest is focused on obtaining the resonances of a cavity from the transmission
spectrum of a waveguide. Closed-form expression of the waveguide transmission
and reflection coefficients are obtained.

1. For an evanescent field of the form of Eq. (5.1) impinging on a dielectric
cavity, the scattered field is given by Eqs (5.18) and (5.19).

2. Assuming the model of the complete electromagnetic field Eqs (5.20)-(5.21),
we find the differential the system of equations for the envelopes of the guided
waves Eqs (5.41)-(5.42).

3. Solving Eqs (5.41)-(5.42) in a single field source scenario Fig. 5.1, we obtain
simple expressions for the waveguide transmission and reflection coefficients
Eqs (5.61)-(5.66).

4. The final closed-form expression for the transmission coefficient relies only
on the waveguide characteristics and the scattering matrix of the cavity (see,
for instance, Eq. (5.92)).

5. The transmission coefficient is seen to drop sharply at the positions of the
high quality resonances of the disc cavity Fig. 5.11. Obtaining the trans-
mission spectrum throughout the waveguide gives a picture of the resonance
spectrum of the investigated cavity.
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Out of this multitude of results, the ones concerning the possibility of controlling the
output field from a high quality mode (Chapter 4) seem to be especially valuable.
However, the potentially strong coupling between stationary high quality modes and
wandering mid-size modes is likely to produce experimentally poorly repeatable results.
For instance, accessible tolerances in mass produced annular dielectric cavities may be
an issue.

As can be understood from Fig. 4.27, WGM resonances having a semi-classical caustic
radius smaller than the maximum extent of the inclusion (m0/nck < d + r0 for the
annular cavity) move erratically over the spectrum and eventually cross other high
quality resonances. The ensuing strong coupling causes an accidental lowering of the
containment capacity of the higher quality modes. Because of the high sensitivity of
the mid-size resonances to small variations in the inclusion parameters, this coupling
scenario, while appealing at first, appears to be difficult to exploit in practice. It
certainly would be more interesting to reach globally all the resonances over a broad
wavenumber range.

Moreover, unavoidable wall roughness affects more strongly high quality resonant modes
than mid-size resonances and the severe delay decrease of the high quality modes will
inevitably enhance the resonant coupling. The ensuing accidental delay spoiling through
resonant coupling would then become even more dramatic.

On a different perspective, looking back at the cavity-waveguide coupling concept of
Chapter 5, it appears that evanescent coupling may be an efficient route to transfer field
from one dielectric structure to another. Preliminary results from the disc-waveguide
coupling (see Fig. 5.11 for instance) indicate that low quality modes of the disc cavity
drain significantly less field from the waveguide than their high delay counterparts.
Also, since the extent of the evanescent field is defined by the propagating modes
(see Appendix E), choosing a waveguide size accommodating a single mode ensures
complete control over the amount of field extending from the waveguide towards the
cavity. Finally, once the evanescent field is set, the magnitude of the coupling may
easily be modified by changing the distance between the cavity and the waveguide.

These last observations along with the high quality/high directionality concept of Chap-
ter 4 provide some promising avenues for the unambiguous control of the far-field output
from high quality modes. In the last Section of this work, we outline the key features
that an annular-like cavity should possess to achieve the control objective.
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6.2 Perspectives on mode quality vs directionality
tradeoff, and further developments

We wish to promote in this last Section the combination of the cavity-waveguide cou-
pling concept and of the regular near-field/non-uniform far-field phenomenon. As seen
in Chapter 5, the modes of a dielectric cavity may ‘feed’ on the propagating field of a
nearby waveguide to increase their own field intensity. The amount of power drained by
the cavity is governed by the presence of resonances and by the distance separating the
two structures (Fig. 5.11). Suppose now that the waveguide is bent on itself, eventually
completely enclosing the cavity, Fig. 6.1. It is expected that the power flow from the
newly formed ring cavity to the thereby embedded cavity follows the same behaviour
as the one observed in the waveguide-cavity coupling. What is new however, is that the
closed waveguide now supports finite lifetime resonances that may share part of their
circulating power with the inner cavity.

Provided that the inner cavity does not bear high quality resonances, we expect a
resonant field inside the ring cavity to be only weakly affected by the presence of
the embedded cavity. Since we may finely tune the amount of transferred power by
changing the distance separating the embedded cavity from the ring inner radius, it is
reasonable to anticipate a behaviour similar to the one depicted in Fig. 4.12: two escape
mechanisms - the regular potential tunneling of the dielectric ring and the internally
scattered field from the inner cavity - competing to impose their own far-field as one
closes the gap separating the two dielectric structures. The difference here is that the
phenomenon appears between two separate structures bounded in configuration space
by a dielectric wall rather than in dynamical space through the caustic radius of a disc
cavity mode. Under appropriate parametric conditions, the inner cavity may be set to
drain some of the trapped field from inside the ring and to use it to impose its own
far-field, Fig. 6.1(b).

Moreover, much like in the infinite waveguide case, the thickness R0 −R1, Fig. 6.1(b),
of the annulus may be chosen to allow for only one kind of circulating mode. It is then
possible to eliminate, for instance, all mid-size resonances having a number of radial
maxima larger than 1, see Fig. 6.2. The effect on the delay spectrum is to flatten
the background level, leaving only the well-separated high delay resonances, Fig. 6.3.
The ring thickness as a control parameter would then appear convenient to mitigate
the resonant coupling phenomenon between WGMs of different angular momenta by
eliminating all mid-size resonances altogether.

As discussed above, the internal scatterer must not possess large intrinsic resonances in
order to avoid depletion of the ring circulating field. This phenomenon is much like the
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(a) Waveguide and cavity (b) Ring and inner cavities

Fig. 6.1 (a) Bending a waveguide around a nearby cavity yields (b) a composite structure inheriting
the convenient properties of both dielectric sub-components. The purpose of the ring cavity is to
confine large amounts of energy in a small volume while the inner cavity acts as a transformation unit
converting the regular clockwise (CW) and counterclockwise (CCW) rotating near-field components
into directional far-field.

resonant coupling case, but instead of coupling different modes of a single structure, it
connects the modes pertaining to different dielectric substructures. We must then turn
our attention from high delay cavities to ones bearing only low delay resonances. Of the
many possible candidates, one that appears well suited for the exercise is the stadium
shaped cavity [76]. This cavity has the very special property that its equivalent classical
billiard counterpart is completely chaotic [25] capable of sustaining large delay modes.
Thus, there are no large stable islands in its phase space [93]. Moreover, the overall
dynamics is controlled by a web of unstable manifolds [129] that guide trajectories
into the escape region |p| < pTIR = nB/nC through specific highly directional output
positions [132].

Figure 6.4(a) shows the typical phase space produced by trajectories randomly seeded
into two thin rectangular sections [1 − ∆p < |p| < 1] × [0 ≤ φ ≤ 2π] and ∆p = 0.05

(4 000 initial conditions). The trajectories impinging on the Poincaré section are colored
from dark blue to white with respect to their decreasing remaining intensity2. Although
the stadium cavity is completely chaotic, the presence of the escape domain between
the TIR limits refrains the trajectories from completely filling the accessible area with
high intensity trajectories. Dominant escape regions are observed and can be associated

2The Fresnel reflection coefficient Eq. (4.14) is used to weight the reflected intensity. Every trajec-
tory is given a starting intensity of I0 = 1. The simulation stops when the remaining intensity of a
trajectory inside the billiard drops below an arbitrary level (here 10−10).
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Fig. 6.2 Effect of the introduction of an inner boundary on the resonant modes of a disc cavity
represented by the effective potential model (see Chapter 1 and [67]). For the disc cavity, R0 = 1,
no = 1 and nA = nB = nC = 1.5, and for the ring cavity, R0 = 1, R1 = 0.9R0, no = 1, nA = 1.5 and
nB = nC = 1, see Fig. 6.1(b) for the definitions. Under certain combinations of physical parameters
such as the one selected here, it may be possible to diminish the low quality modes of the disc cavity
(a)-(b) and to retain only their high delay counterparts (c)-(d).

with the corresponding classical near-field Fig. 6.4(b) and far-field Fig. 6.4(c). Notice
that due to statistical sampling, the far-field shown in Fig. 6.4(c) is built from a set of
40 000 initial conditions instead of just 4 000 for the ‘qualitative’ needs of Figs 6.4(a)
and 6.4(b).

After these preliminaries, we may now turn our attention to the full-wave results. Com-
bining the ring cavity (delay spectrum of Fig. 6.3(b)) with a well chosen stadium cavity
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Fig. 6.3 Spectra from the disc and ring cavities. The resonant modes of the disc cavity are forced
to settle at different wavenumbers by the ring inner boundary. Given adequate parametric conditions
(here R0 = 1, R1 = 0.9R0, no = 1, nA = 1.5 and nB = nC = 1, see Fig. 6.2), the disc spectrum (a)
may be modified to leave only the high delay modes to stand out (b). Notice that the peaks of lower
quality resonant modes (25, 2), (26, 2), ... do not actually disappear: they are relocated somewhere
out of this selected wavenumber window.

(delay spectrum of Fig. 6.5(a)), we arrive at an hybrid spectrum encompassing both
the high delays of the ring cavity and the low quality/directional modes of the stadium
cavity, Fig. 6.5(b)3. The results for the resonant delays - the eight peaks of Fig. 6.5(b)
- are summarized in Tab. 6.1.

Table 6.1 informs us that the delay of all modes is reduced by a common factor of
60 − 70% (in contrast to many orders of magnitude as is often found in geometrically
deformed cavities). This is an indication that our attempt to uniformize delay spoiling
through the use of a low quality scatterer has been successful. Small variations in the
spoiling level may be due to local resonant coupling with modes of the stadium cavity,
see for instance the resonant modes (28, 1)− ee (purple) and (29, 1)− oe (green) of Fig.
6.5(b).

It also appears that the field from the WGMs is drained more efficiently by modes of the
stadium with the highest delay values (essentially, the upper layers of the ‘background
level’ of Fig. 6.5(a) having delay values around 4 − 7). In a sense, this is much like
the resonant coupling phenomenon but with very broad overlapping resonances. An

3Referring to Fig. 6.3, the definitions of the symmetry types are: For an odd symmetry (o) with
respect to a given axis, the field shows a line of nodes (zero-value field); for an even symmetry (e) with
respect to a given axis, the field shows a line of extrema (minima and/or maxima alternating).

203



6.2. Perspectives on mode quality vs directionality tradeoff...

φ

p

0 π/2 π 3π/2 2π
−1

−0.5

0

0.5

1

(a) Phase space

(b) Near-field

Φ

0 π/2 π 3π/2 2π
0

0.2

0.4

0.6

0.8

1

(c) Far-field

Fig. 6.4 (a) Representation of the phase space of the stadium cavity for a set of initial conditions
randomly selected inside thin rectangles [0.95 < |p| < 1] × [0 ≤ φ ≤ 2π] (4 000 initial conditions).
The linear side walls of the stadium have a length of 2rs, rs = 0.425 being the radius of its semi-
circular sections. Thus, the full length of the stadium is 4rs and its full width is 2rs. The refractive
index inside the stadium is 1.5 (glass) and 1.0 outside. These values specify the Fresnel reflection
coefficient Eq. (4.14) that progressively decreases the circulating intensity I of the trajectories (dark
blue: I = 1; white: I = 0). The green horizontal lines are the TIR limits, pTIR = 2/3. (b) An
overview of the near-field corresponding to the phase space (a) is also presented. Notice that the color
of the trajectories scales from dark blue to white with the decreasing intensity (normal irradiance over
unit area). (c) The classical far-field of the stadium cavity for a set of 40 000 randomly chosen initial
conditions. The far-field is built from the distribution of the escaping intensity of all trajectories into
200 far-field angular bins.

example of this behaviour is displayed in Fig. 6.6.

As Fig. 6.5(b) suggests, some of the highest quality modes of the stadium found in
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Fig. 6.5 (a) Delay spectrum computed for the stadium cavity of Fig. 6.4 alone and (b) delay spectrum
of the combined ring and stadium cavity. The geometrical center of the stadium cavity is fixed at
the center of the ring cavity. This setup forces the expression of the Ox − Oy symmetry axes of the
stadium into the modes of the ring cavity: light blue is Ox− Oy=odd-odd (oo), purple is even-even
(ee), red is even-odd (eo) and green is odd-even (oe).

the upper layers of the spectrum of Fig. 6.5(a) get promoted to somewhat higher
values. This phenomenon is caused by the exterior ring with acts as a reflector to the
otherwise escaping field, which consequently enhances the effective trapping capacity
of the stadium modes.

Finally, the comparison of the far-field computed through classical means (using the
Husimi distribution as a weighting function for the initial conditions as described in
Chapter 4) and full wave simulations shows again that a large part of the far-field is
well modeled by geometric optics, Fig. 6.7. The dominant features of the far-fields
are the four narrow peaks resembling those of the isolated stadium billiard Fig. 6.4(c).
Although the far-field is not completely similar to the one from the stadium cavity, it
appears reasonable to suppose that slight modifications of the parametric layout of the
stadium cavity could improve the directional emission properties of the field.

The choice of the stadium cavity was made because of the 4 known peaks in the emission
far-field [132]. The properties of the composite system just investigated are not exclusive
to this particular choice of embedded cavity. In a sense, this comes back to the initial
investigation of geometrical deformations of cavities with dominant chaotic phase space
[90, 91, 89, 147, 128]. However now, the roles associated with large delay and high
directionality do not rest on a single structure but on two components having their own
distinct functional purpose.
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Mode Symmetry Resonant delay cτ/R0

(m0, 1) Ring Hybrid Variation [%]
(28, 1) oo (ee) 598 213 (178) −65 (−70)
(29, 1) eo (oe) 800 280 (234) −65 (−71)
(30, 1) oo (ee) 1071 424 (422) −60 (−61)
(31, 1) eo (oe) 1436 569 (598) −60 (−58)

Tab. 6.1 Summary of the computed resonant delays for the hybrid ring+stadium cavity Fig. 6.5(b) vs
the plain ring cavity 6.3(b). Values in parentheses indicate the results for the corresponding symmetries.
The overall variation of the peak delays caused by the stadium cavity is approximately 60 − 70% of
the nominal ring cavity resonant delays. Notice that the modes having an even m0 number separate
into (Ox − Oy) even-even and odd-odd symmetries and that the modes having an odd m0 number
separate into even-odd and odd-even symmetries. This is a consequence of the number of times it may
be possible for a given m0 to separate both the nodes and extrema (minima and maxima) of the ring
field distribution with respect to the symmetry axes imposed by the inner scatterer.

It could also prove rewarding to exploit the ring cavity as a lens device for the escaping
field. This is very much in line with recent work in the microcavity field [155, 55].

An extension of the present proposal may be foreseen in the area of microlaser modeling.
Since the intensity of the field is mainly concentrated in the ring domain of the cavity,
it appears reasonable to suppose that the laser action will be confined to this part of the
cavity. Free of coupling between the radial and angular coordinates, the lasing system
will then be spatially separable and we may focus solely on the solution of the Maxwell-
Bloch equations [54]. The output laser field for sharp resonances is then scattered by
the inner cavity (short-lived modes: no laser effect) and the corresponding far-field is
recorded.

One also notes that one could also consider the incoming/outgoing reciprocal relation of
the characteristic modes discussed in Chapter 2 to propose a device that could concen-
trate the field coming from a narrow angular domain of the far-field into the dielectric
ring. In this application, the dielectric cavity could be regarded as a sensor/absorbing
device working in the reverse direction of that of the laser system discussed in the
previous paragraph.

These scenarios rely on a perturbation model of the ring field. In contrast with the
small refractive index deformations of Chapter 3, it may be worthwhile to develop a
perturbation theory of the high quality ring modes by known low quality modes of the
inner cavity.

Another interesting avenue of research for the hybrid ring-scatterer system could be
the explicit utilization of the resonant coupling for high quality sensors. The frequency
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(a) Stadium, cτ/R0 = 6.2 and kR0 = 24.27

(top layer of Fig. 6.5(a))

(b) Hybrid ring+stadium cavity cτ/R0 = 424

and kR0 = 23.91

(c) Detail of (b)

Fig. 6.6 (a) A resonant mode of the stadium cavity is found to be dominant in (b)-(c) the near-field
of the ring and stadium hybrid cavity mode (30, 1)− oo. Figure (c) is produced by masking all but a
rectangular section of the field presented in (b). Notice the similarity in the far-field for the stadium
and the hybrid cavities (outer ring of (a) and (b)).

detuning between two spectrally overlapping high quality modes of the ring cavity and
the inner scatterer cavity4, as a third perturbative object passes through the gap area,
could enhance the probability of detection of the said object.

The heuristic semi-classical description of the transition from an evanescent field source

4One could think of the inner scatterer as a disc cavity with a higher refractive index than the ring
cavity.
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(c) (30, 1)− oo and −ee
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(d) (31, 1)− oe and −eo

Fig. 6.7 Classical far-fields (grey areas) and wave simulated far-fields |ψ(∞, φ)|2 (colored lines) for the
resonant modes of Fig. 6.5(b) . The color code for the symmetries is the same as the one employed
for the spectra. The initial conditions for the classical simulations are selected from the Hin domain
of phase space with a decreasing gaussian distribution (Husimi distribution of the circulating WGMs)
as in Chapter 4. Among the key features of the classical far-field are the 4-points peaks of Fig. 6.4(c)
directly inherited from the stadium sub-structure.

to a scatterer currently done through the use of the Husimi distribution in Chapter 4
could be modified to be more ‘physical’. The weighting function used to seed the initial
conditions in the emission domain of phase space is essentially a decreasing exponential
function. Since this function is typical of any evanescent field, the investigation of the
imprint of such evanescent field in phase space could be useful to model the actual
transition probability. In view of the hybrid ring-scatterer configuration discussed in
this Section, special attention could be given to the study of frustrated waves between
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dielectric interfaces not necessarily parallel to each other.

There are also some technical improvements that could be carried out. For instance, one
would like to eliminate the numerical derivative of the S matrix for the computation
of the delay matrix5 and it would be worthy to explicitly extend the method to the
transverse electric (TE) modes. The last few paragraphs are mostly speculative and
are laid out only to demonstrate some of the possibilities remaining. Finally, a word
of personal advice to anyone wishing to tackle this research theme (‘microcavities’ in
a broad sense): define well beforehand the scope of the field he/she wants to cover,
and stick to it at any cost. The main issue with this domain is that it stands over
both engineering and applied science (bio-sensors, optical couplers or laser devices for
instance), and more fundamental science (wave-particle duality, ‘quantum chaos’ or
quantum ‘open systems’). From my experience, the risk associated with the vastness
of the field is that one’s efforts may easily get scattered into many different directions
- pun intended - resulting in overall low outcomes.

5This could be achieved by introducing the wavenumber derivative inside the numerical method of
Appendix C and to carry out explicitly the operation at the level where the basis expansion is done,
see Section C.1.
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Annexe A

Fonctions de Bessel: Relations
exactes et approximations

Cette annexe rassemble quelques résultats des sections 9.1, 9.2 et 9.3 de l’ouvrage de
Abramowitz et Stegun [1] portant sur les fonctions de Bessel. Bien qu’elles soient
assez courantes, il demeure pratique de résumer ici les expressions qui sont utilisées
fréquemment dans le présent document, et d’ajuster la notation en conséquence. Des
relations exactes pour les fonctions de Bessel Jm(z) et Ym(z) et les fonction de Hankel
H

(1)
m (z) et H(2)

m (z) sont présentées dans un premier temps. Suivent des développements
approximatifs de ces mêmes fonctions pour différents cas d’ordre m et d’argument
z. Puisque les fonctions de Hankel peuvent être définies par les fonctions de Bessel,
l’expression “fonctions de Bessel” désigne l’ensemble de ces fonctions spéciales.

A.1 Relations exactes de fonctions de Bessel

Il existe une bonne quantité d’expressions exactes utilisant les fonctions de Bessel (voir
[1, 50]). Quelques-unes provenant de la section 9.1 de Abramowitz et Stegun [1] sont
regroupées ici. L’ordre noté m est un entier alors que ν désigne un nombre réel ou com-
plexe. Si aucune restriction supplémentaire ne s’applique, l’argument z est complexe.
La notation Fν(z) (ou encore, Fm(z)) identifie une des fonctions spéciales Jν(z), Yν(z),
H

(1)
ν (z) ou H(2)

ν (z) (ou Jm(z), Ym(z), H(1)
m (z) ou H(2)

m (z) respectivement).

Équation de Bessel :

z2d
2Fν(z)

dz2
+ z

dFν(z)

dz
+
(
z2 − ν2

)
Fν(z) = 0 (A.1)



A.1. Relations exactes de fonctions de Bessel

Construction des fonctions de Hankel :

H(1)
ν (z) = Jν(z) + iYν(z) (A.2)

H(2)
ν (z) = Jν(z)− iYν(z) (A.3)

Identités sur le signe de l’ordre :

J−m(z) = (−1)mJm(z) (A.4)

Y−m(z) = (−1)mYm(z) (A.5)

H
(1)
−ν (z) = e+iνπH(1)

ν (z) (A.6)

H
(2)
−ν (z) = e−iνπH(2)

ν (z) (A.7)

Identités sur la conjugaison complexe (ν ∈ R) :

[Jν(z)]∗ = Jν(z
∗) (A.8)

[Yν(z)]∗ = Yν(z
∗) (A.9)

[
H(1)
ν (z)

]∗
= H(2)

ν (z∗) (A.10)
[
H(2)
ν (z)

]∗
= H(1)

ν (z∗) (A.11)

Règles de récurrence et de dérivation :

Fν+1(z) = −Fν−1(z) +
2ν

z
Fν(z) (A.12)

d

dz
Fν(z) = −Fν+1(z) +

ν

z
Fν(z) (A.13)

Particulièrement, d
dz
J0(z) = −J1(z) et d

dz
Y0(z) = −Y1(z). Il peut être avantageux

d’utiliser directement l’équation différentielle (A.1) pour évaluer la dérivée sec-
onde.

Théorème de déplacement de Graf : Le théorème de déplacement de Graf se mon-
tre d’une grande utilité pour modifier le référentiel d’une fonction de Bessel as-
sociée à une exponentielle complexe (harmonique cylindrique). Un cas spécial
est celui où les origines O et O′ de deux référentiels sont séparés d’une dis-
tance u (voir schéma Fig. A.1). On définit les coordonnées polaires (z, φ) et
(z′, φ′) attachées respectivement à ces deux référentiels. L’harmonique cylindrique
Fm(z)eimφ s’exprime donc dans les coordonnées primées comme

Fm(z)eimφ =
∑

m′

Jm′−m(u)Fm′(z
′)eim

′φ′ , u < z′ (A.14)

Fm(z)eimφ =
∑

m′

Fm′−m(u)Jm′(z
′)eim

′φ′ , u > z′ (A.15)

La transformation des coordonnées (z′, φ′) vers les coordonnées (z, φ) est obtenue
par simple remplacement (z′, φ′)↔ (z, φ) dans les expressions précédentes.

Les mêmes expressions s’appliquent pour des arguments z, z′ et u complexes sous
certaines contraintes [1].
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A.2. Développements des fonctions de Bessel

t1

t2
t1

t2

t3
t4

t4 t5

t5

Fig. A.1 Interprétation géométrique des éléments constitutifs du théorème de déplacement de Graf.
Cette représentation ne s’applique que lorsque les arguments des fonctions de Bessel sont réels et
positifs.

Wronskiens : Wronskien W [f(z), g(z)] = f(z) d
dz
g(z) − g(z) d

dz
f(z) pour différentes

combinaisons de fonctions de Bessel:

W [Jν(z), Yν(z)] = Jν+1(z)Yν(z)− Jν(z)Yν+1(z) (A.16)

=
2

πz
(A.17)

W
[
H(1)
ν (z), H(2)

ν (z)
]

= H
(1)
ν+1(z)H(2)

ν (z)−H(1)
ν (z)H

(2)
ν+1(z) (A.18)

= − 4i

πz
(A.19)

Les Wronskiens sont indépendants de l’ordre ν.

A.2 Développements des fonctions de Bessel

Les développements des fonctions de Bessel présentés ici sont tronqués à l’ordre corre-
spondant à l’utilisation préconisée dans ce travail. Le lecteur intéressé aux développe-
ments complets (le plus souvent, des séries infinies) est invité à consulter directement
la référence principale de cette section [1]. Dans ce qui suit, la variable x est réelle. Les
développements pour un argument complexe existent sous restriction [1].

A.2.1 Développements pour m fixe et x� m

• Jm(x):
La limite des petits arguments de la fonction de Bessel Jm(x) pour m ≥ 0 prend
la forme

Jm(x) =

(
1

2
x

)m [
1

m!
− 1

(m+ 1)!

(
1

2
x

)2
]

+O(xm+4) . (A.20)
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A.2. Développements des fonctions de Bessel

Les ordres négatifs sont traités par la relation (A.4). Seule la fonction d’ordre 0
est non-nulle à l’origine.

• Ym(x):
La limite des petits arguments de la fonction de Bessel Ym(x) pour m ≥ 0 est
singulière à l’origine:

Y0(x) =
2

π
ln

(
1

2
x

)
+

2

π
γ +O(x2) (A.21)

Ym(x) = −(m− 1)!

π

(
1

2
x

)−m
+O(x−m+2) , m > 0 (A.22)

avec γ = 0.577 215 664 901 532 . . . , la constante d’Euler-Mascheroni 1. Les ordres
négatifs sont traités par la relation (A.5).

• H
(1)
m (x) et H(2)

m (x):
Le développement des fonctions de Hankel suit essentiellement celui des fonctions
de Bessel Ym(x),

H
(1)
0 (x) =

[
1 + i

2

π
γ

]
+ i

2

π
ln

(
1

2
x

)
+O(x2) (A.23)

H(1)
m (x) = −i(m− 1)!

π

(
1

2
x

)−m
+O(x−m+2) , m > 0 (A.24)

Les ordres négatifs sont traités par la relation (A.6), et les développements des
fonctions de Hankel H(2)

m (x) sont obtenus par le remplacement i → −i dans les
expressions précédentes.

A.2.2 Développements pour m fixe et x� m

Pour la limite des grand arguments x devant l’ordre m > 0, on définit

Θ̃m(x) = x−mπ

2
− π

4
. (A.25)

Tout comme les développements pour les petits arguments x, on utilisera les expressions
(A.4)-(A.7) pour accomoder les ordresm négatifs. Les dérivées par rapport à l’argument
x sont indiquées par la notation primée, F ′ν(x).

1Cette constante est définie formellement comme une limite de la différence entre la série harmonique
et le logarithme naturel, γ = limn→∞

[∑n
j=1

1
j − lnn

]
.
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A.2. Développements des fonctions de Bessel

• Jm(x):
La fonction de Bessel Jm(x) dans la limite des grands arguments prend une forme
oscillante et faiblement décroissante

Jm(x) ≈
√

2

πx

[
+ cos Θ̃m(x)−

(
4m2 − 1

8x

)
sin Θ̃m(x)

]
+O(x−2−1/2)(A.26)

J ′m(x) ≈
√

2

πx

[
− sin Θ̃m(x)−

(
4m2 + 3

8x

)
cos Θ̃m(x)

]
+O(x−2−1/2)(A.27)

• Ym(x):
La fonction de Bessel Ym(x) dans la limite des grands arguments prend une forme
oscillante et faiblement décroissante

Ym(x) ≈
√

2

πx

[
sin Θ̃m(x) +

(
4m2 − 1

8x

)
cos Θ̃m(x)

]
+O(x−2−1/2)(A.28)

Y ′m(x) ≈
√

2

πx

[
cos Θ̃m(x)−

(
4m2 + 3

8x

)
sin Θ̃m(x)

]
+O(x−2−1/2)(A.29)

• H
(1)
m (x) et H(2)

m (x):
Les fonctions de Hankel H(1)

m (x) et H(2)
m (x) dans la limite des grands arguments

prennent une forme oscillante complexe et faiblement décroissante

H(1)
m (x) ≈

√
2

πx
e+iΘ̃m(x)

[
1 + i

(
4m2 − 1

8x

)]
+O(x−2−1/2) (A.30)

H(1)′
m (x) ≈

√
2

πx
e+iΘ̃m(x)

[
i−
(

4m2 + 3

8x

)]
+O(x−2−1/2) (A.31)

Les développements des fonctions de Hankel H(2)
m (x) sont obtenus par le remplace-

ment i→ −i.

A.2.3 Développements pour m grand

Pour l’ordre m > 0 grand, les expressions des fonctions de Bessel prennent des formes
différentes selon le rapport de l’argument x et de l’ordre m (voir les développements de
Debye, section 9.3 de [1]). Tout comme les développements pour les petits et grands
arguments x, on utilisera les expressions (A.4)-(A.7) pour accomoder les ordres m né-
gatifs. Les développements des fonctions de Bessel qui suivent sont des approximations
au moins d’ordre O(m−1).
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A.2. Développements des fonctions de Bessel

Cas m + m−1/3 < x :
Pour des arguments x supérieurs à l’ordre m, on définit l’expression

Θm(x) = x
√

1− (m/x)2 −m arccos(m/x)− π

4
. (A.32)

Notons que lim
x�m

Θm(x)→ Θ̃m(x), où Θ̃m(x) est présentée à l’équation (A.25).

• Jm(x):
La fonction de Bessel Jm(x) suit une lente décroissance oscillante

Jm(x) ≈ +

√
2

πx
√

1− (m/x)2
cos Θm(x) (A.33)

J ′m(x) ≈ −

√
2
√

1− (m/x)2

πx
sin Θm(x) . (A.34)

La limite x � m de ces expressions permet de retrouver les expressions
(A.26) et (A.27).

• Ym(x):
La fonction de Bessel Jm(x) suit une lente décroissance oscillante

Ym(x) ≈ +

√
2

πx
√

1− (m/x)2
sin Θm(x) (A.35)

Y ′m(x) ≈ +

√
2
√

1− (m/x)2

πx
cos Θm(x) (A.36)

La limite x � m de ces expressions permet de retrouver les expressions
(A.28) et (A.29).

• H
(1)
m (x) et H(2)

m (x):

H(1)
m (x) ≈ +

√
2

πx
√

1− (m/x)2
e+iΘm(x) (A.37)

H(1)′
m (x) ≈ +

√
2
√

1− (m/x)2

πx
e+i[Θm(x)+π/2] (A.38)

La limite x � m de ces expressions permet de retrouver les expressions
(A.30) et (A.31). Les développements pour la seconde fonction de Hankel et
sa dérivée sont obtenus par le remplacement i→ −i.
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A.2. Développements des fonctions de Bessel

Cas m − m−1/3 < x < m + m−1/3 :

Les développements des fonctions de Bessel dans le domaine de transition (x ∼ m)
fait intervenir des fonctions de Airy, Ai(·) et Bi(·) [1],

Jm(x) ≈ 21/3

m1/3
Ai(−21/3m−1/3(x−m)) (A.39)

Ym(x) ≈ − 21/3

m1/3
Bi(−21/3m−1/3(x−m)) (A.40)

Puisque les fonctions de Airy tombent rapidement dans un régime asymptotique
exponentiel (croissant ou décroissant) ou oscillant, autrement bien modélisés par
d’autres approximations des fonctions de Bessel, on sera intéressé au comporte-
ment linéaire dans le voisinage de x = m. Pour les petits arguments, les fonctions
de Airy prennent la forme (à l’ordre O(m−1(x−m)3), section 10.4 de [1])

Ai(−21/3m−1/3(x−m)) ≈ 1

32/3Γ(2/3)
+

21/3

31/3Γ(1/3)

(x−m)

m1/3
(A.41)

Bi(−21/3m−1/3(x−m)) ≈ 31/2

32/3Γ(2/3)
− 31/221/3

31/3Γ(1/3)

(x−m)

m1/3
. (A.42)

Puisqu’il est désirable de conserver une approximation des fonctions de Bessel au
moins à l’ordre m−1, on restreint l’approximation au domaine m −m−1/3 < x <

m+m−1/3. On a donc une forme approximative des fonctions de Bessel au moins
de cet ordre pour l’intervalle m−m−1/3 < x < m+m−1/3.

• Jm(x):
L’approximation locale de la fonction de Bessel Jm(x) pour l’intervalle de
transition prend la forme

Jm(x) ≈ +
21/3

32/3Γ(2/3)

1

m1/3
+

22/3

31/3Γ(1/3)

(x−m)

m2/3
(A.43)

J ′m(x) ≈ +
22/3

31/3Γ(1/3)

1

m2/3
(A.44)

• Ym(x):
L’approximation locale de la fonction de Bessel Ym(x) pour l’intervalle de
transition prend la forme

Ym(x) ≈ − 21/331/2

32/3Γ(2/3)

1

m1/3
+

22/331/2

31/3Γ(1/3)

(x−m)

m2/3
(A.45)

Y ′m(x) ≈ +
22/331/2

31/3Γ(1/3)

1

m2/3
. (A.46)
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A.2. Développements des fonctions de Bessel

• H
(1)
m (x) et H(2)

m (x):
L’approximation locale de la fonction H(1)

m (x) pour l’intervalle de transition
prend la forme

H(1)
m (x) ≈ +

21/3(1− i31/2)

32/3Γ(2/3)

1

m1/3
+

22/3(1 + i31/2)

31/3Γ(1/3)

(x−m)

m2/3
(A.47)

H(1)′
m (x) ≈ +

22/3(1 + i31/2)

31/3Γ(1/3)

1

m2/3
. (A.48)

Les développements pour la seconde fonction de Hankel et sa dérivée sont
obtenus par remplacement i→ −i.

Cas x < m − m−1/3 :

Pour ce qui suit,

Λm(x) = −m
√

1− (x/m)2 +marccosh(m/x) . (A.49)

Puisque les fonctions
√

1− (x/m)2 et arccosh(m/x), croissantes pour le domaine
d’intérêt, se confondent vers x → m, mais que la pente de la seconde est tou-
jours plus grande que celle de la première, la fonction Λm(x) est donc strictement
positive,

Λm(x) > 0 ∀ x ∈ [0, m−m−1/3[ . (A.50)

De plus, comme arccosh(m/a) < arccosh(m/b) pour a > b, alors

Λm(a) < Λm(b) , a > b . (A.51)

Finalement, pour α = m′/m et m′ > x

Λm′(x) = αΛm(x/α) . (A.52)

Ces dernières relations impliquent à leur tour que

Λm′(x) > Λm(x) ∀ m′ > m . (A.53)

• Jm(x):
Pour des arguments x inférieurs à l’ordrem, la fonction Jm(x) prend la forme

Jm(x) ≈ +
1√

2πm
√

1− (x/m)2

e−Λm(x) (A.54)

J ′m(x) ≈ +

√
m
√

1− (x/m)2

2πx2
e−Λm(x) (A.55)
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• Ym(x):
Pour des arguments x inférieurs à l’ordrem, la fonction Ym(x) prend la forme

Ym(x) ≈ −
√

2

πm
√

1− (x/m)2
e+Λm(x) (A.56)

Y ′m(x) ≈ +

√
2m
√

1− (x/m)2

πx2
e+Λm(x) (A.57)

• H
(1)
m (x) et H(2)

m (x):

H(1)
m (x) ≈ +

1√
πm
√

1− (x/m)2

[
1√
2

e−Λm(x) − i
√

2e+Λm(x)

]
(A.58)

H(1)′
m (x) ≈ +

√
m
√

1− (x/m)2

πx2

[
1√
2

e−Λm(x) + i
√

2e+Λm(x)

]
(A.59)

Les développements pour la seconde fonction de Hankel et sa dérivée sont
obtenus par remplacement i→ −i.

On retrouve les approximations des petits arguments (A.20), (A.22) et (A.24) en
employant d’abord l’identité arccosh(a) = ln

(
a+
√
a2 − 1

)
dans l’expression de

exp [±Λm(x)], et en appliquant la limite x� m,

exp [±Λm(x)] ≈ e∓mm±m
(x

2

)∓m
. (A.60)

Comme les développements de cette section sont consacrés aux grandsm, on iden-
tifie directement la formule de Stirling pour les grands factoriels,m! ≈

√
2πe−mmm+1/2.

Puisque les limites des petits et grands arguments peuvent être retrouvées à l’aide des
développements aux grands ordres, ces derniers revêtent une importance toute spéciale
pour l’analyse d’expressions utilisant les fonctions de Bessel. Quelques exemples de
l’utilisation des développements aux grands ordres sont présentés à la Fig. A.2.
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Fig. A.2 Évaluation numérique de Jm(x) and Ym(x) pour m = 3 et m = 13 (trait noir discontinu)
et évaluation des développements approximatifs aux grands ordres correspondants: trait plein bleu,
x < m−m−1/3; trait plein vert, m−m−1/3 < x < m+m−1/3; trait plein orangé, m+m−1/3 < x.
Les développements aux grands ordres obtenus sont remarquablement précis, même pour m = 3.
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Annexe B

Oscillateurs, états comprimés et
distribution de Husimi

Cette annexe regroupe des résultats bien connus associés aux oscillateurs harmoniques
classique et ondulatoire, aux états cohérents et à leur généralisation sous la forme
d’états comprimés, ainsi qu’aux distributions quantiques. Ce dernier volet se concentre
particulièrement sur la distribution de Husimi, distribution possédant un rôle central
dans l’étude des systèmes à dynamique complexe.

B.1 Oscillateur harmonique classique: Rappels

Pour le Hamiltonien de l’oscillateur harmonique classique

H =
1

2m
p2 +

1

2
mω2q2 (B.1)

les équations du mouvement sont

d

dt
q =

1

m
p ,

d

dt
p = −mω2q . (B.2)

En combinant ces deux expressions, on obtient l’équation différentielle ordinaire du
deuxième ordre

d2

dt2
q + ω2q = 0 (B.3)

qui se solutionne directement

q(t) = q(0)e±iωt , p(t) = ±imωq(0)e±iωt . (B.4)



B.2. Oscillateur harmonique ondulatoire: Rappels

On peut aussi utiliser la quantité

α =
1√

2mω
(mωq + ip) (B.5)

pour obtenir un système simplifié

d

dt
α =

1√
2mω

(
mω

d

dt
q + i

d

dt
p

)
= −iωα (B.6)

qui implique une solution de forme

α(t) = α(0)e−iωt . (B.7)

On retrouve les quantités q(t) et p(t) en inversant α(t) et son complexe conjugué

q(t) =
1√

2mω

(
α(0)e−iωt + α∗(0)e+iωt

)
(B.8)

p(t) = −i
√
mω

2

(
α(0)e−iωt − α∗(0)e+iωt

)
. (B.9)

B.2 Oscillateur harmonique ondulatoire: Rappels

L’oscillateur harmonique à une dimension de la mécanique quantique est décrit par
l’opérateur hamiltonien1

Ĥ =
1

2m
p̂2 +

1

2
mω2q̂2 (B.10)

où m est la masse de la particule d’intérêt, q̂ et p̂, les opérateurs position et impulsion,
et ω, la fréquence angulaire de l’oscillation. Les opérateurs hermitiques position et
impulsion satisfont la règle de commutation postulée de la mécanique quantique

[q̂, p̂] = i~ . (B.11)

La construction d’opérateurs de création â† et d’annihilation â

â =
1√

2m~ω
(mωq̂ + ip̂) (B.12)

â† =
1√

2m~ω
(mωq̂ − ip̂) (B.13)

permet de réécrire le Hamiltonien (B.10)

Ĥ =

(
â†â+

1

2

)
~ω . (B.14)

1Les résultats de cette section sont bien connus et on en retrouve le développement, par exemple,
chez [36].
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B.3. États cohérents

Les valeurs propres de cet Hamiltonien sont

En =

(
n+

1

2

)
~ω, ∀ n ∈ N (B.15)

et les états propres associés,
∣∣ n
〉
, dans la représentation

∣∣ q
〉
sont exprimés en terme

du produit d’une gaussienne et d’un polynôme d’Hermite Hn(z)

〈
q
∣∣ n
〉

= ψn(q) =
1

(2π∆q2)1/4

1√
2nn!

e
− 1

4
q2

∆q2Hn

(
q√
2∆q

)
(B.16)

où ∆q =
√
~/2mω. Les niveaux d’énergie de l’oscillateur harmonique unidimensionnel

ne sont pas dégénérés. Ces états
{∣∣ n

〉}
forment une base complète et orthonormale.

On écrit donc la relation de fermeture

1 =
∞∑

n=0

∣∣ n
〉〈
n
∣∣ . (B.17)

Parmi les résultats intermédiaires menant aux expressions des valeurs propres de l’Hamiltonien,
on retient l’application des opérateur â et â† sur les états propres

∣∣ n
〉
,

â
∣∣ n
〉

=
√
n
∣∣ n− 1

〉
(B.18)

â†
∣∣ n
〉

=
√
n+ 1

∣∣ n+ 1
〉

(B.19)

et

â†â
∣∣ n
〉

= n
∣∣ n
〉

(B.20)

â
∣∣ 0
〉

= 0 (B.21)

ainsi que la valeur du commutateur

[
â, â†

]
= 1 . (B.22)

B.3 États cohérents

B.3.1 Représentation des états cohérents sur la base {
∣∣ n

〉
}

On définit l’état cohérent comme le vecteur propre de â,

â
∣∣ α

〉
= α

∣∣ α
〉

. (B.23)
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On obtient l’état cohérent
∣∣ α

〉
en terme des états propres de l’oscillateur harmonique{∣∣ n

〉}
à l’aide de l’expression (B.18). Partant de la projection sur

∣∣ n = 0
〉
, la pro-

jection successive des états
∣∣ n = 1

〉
,
∣∣ n = 2

〉
... sur le côté gauche de (B.18) permet

de dégager, par récurrence, la relation
〈
n
∣∣ α

〉
=

αn√
n!

〈
0
∣∣ α

〉
. (B.24)

On trouve une relation semblable pour
〈
α
∣∣,

〈
α
∣∣ n
〉

=
(α∗)n√
n!

〈
α
∣∣ 0
〉

. (B.25)

À l’aide de la relation de fermeture (B.17), on explicite
∣∣ α

〉
dans la représentation{∣∣ n

〉}

∣∣ α
〉

=
∞∑

n=0

∣∣ n
〉〈
n
∣∣ α

〉
=
〈

0
∣∣ α

〉 ∞∑

n=0

αn√
n!

∣∣ n
〉

. (B.26)

Le terme
〈

0
∣∣ α

〉
est obtenu par normalisation de

〈
α
∣∣ α

〉
, encore une fois, par le

biais de (B.17), 〈
0
∣∣ α

〉
= e−

1
2
|α|2 . (B.27)

L’expression complète de
∣∣ α

〉
dans la base

∣∣ n
〉
est donc, à une phase près,

∣∣ α
〉

= e−
1
2
|α|2

∞∑

n=0

αn√
n!

∣∣ n
〉

. (B.28)

Parmi les résultats intermédiaires importants, on considère la projection de l’état co-
hérent sur la base des positions. Partant de l’équation aux valeurs propres (B.23), on
obtient une équation différentielle sur la position q

〈
q
∣∣â
∣∣ α

〉
= α

〈
q
∣∣ α

〉
=

1√
2m~ω

〈
q
∣∣ (mωq̂ + ip̂)

∣∣ α
〉

(B.29)

=
1√

2m~ω

(
mωq + ~

d

dq

)〈
q
∣∣ α

〉
. (B.30)

La solution normalisée pour
〈
q
∣∣ α

〉
prend finalement la forme

〈
q
∣∣ α

〉
=
(mω
π~

)1/4

e−Im{α}2e+iRe{α}Im{α} exp

[
−
(√

mω

2~
q − α

)2
]

. (B.31)

On obtient directement par transformée de Fourier la représentation en impulsion,

〈
p
∣∣ α

〉
=

1

(πm~ω)1/4
e−Re{α}2e−iRe{α}Im{α} exp

[
−
(

1√
2m~ω

p+ iα

)2
]

. (B.32)

Le choix de la phase à l’expression (B.32) est alors justifié par soucis de symétrie entre
les représentations en position et en impulsion de l’état cohérent.
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Suivant (B.5), on définit la quantité α(q0, p0) = 1√
2m~ω (mωq0 + ip0), ce qui renvoie aux

expressions

〈
q
∣∣ α(q0, p0)

〉
=
(mω
π~

)1/4

e+i 1
2
p0q0
~ e+i

p0(q−q0)
~ exp

[
−1

2

(q − q0)2

(~/mω)

]
(B.33)

et
〈
p
∣∣ α(q0, p0)

〉
=

1

(πm~ω)1/4
e−i

1
2
p0q0
~ e−i

q0(p−p0)
~ exp

[
−1

2

(p− p0)2

(m~ω)

]
(B.34)

Les états cohérents
∣∣ α

〉
ne sont pas orthogonaux entre eux,

∣∣〈 α′
∣∣ α

〉∣∣2 = e−|α
′−α|2 . (B.35)

On obtient cependant une relation de fermeture dans l’espace complexe des α (d2α =

dRe{α}dIm{α} est un élément d’aire d’un tel espace),
1

π

∫
d2α
∣∣ α

〉〈
α
∣∣ = 1 . (B.36)

Ce résultat est obtenu en utilisant deux fois la relation de fermeture (B.17) et en posant
ensuite α = reiθ (d2α = r dr dθ).

B.3.2 L’état cohérent comme état quasi classique

Le propagateur exp(−i1
~Ĥt) est utilisé pour expliciter la dépendance temporelle de

l’état cohérent
∣∣ α

〉
. Dans le cas de l’oscillateur harmonique, si à t = 0 l’état cohérent∣∣ α0

〉
est défini, alors, suivant la représentation (B.28) puis l’expression des énergies

propres de l’oscillateur harmonique (B.15), on obtient
∣∣ α(t)

〉
= e−i

1
2
ωt
∣∣ α0e−iωt

〉
. (B.37)

L’état
∣∣ α(t)

〉
vérifie la normalisation

〈
α(t)

∣∣ α(t)
〉

= 1.

L’application de l’opérateur â sur l’état cohérent
∣∣ α(t)

〉
retourne

â
∣∣ α(t)

〉
= α0e−iωt

∣∣ α(t)
〉

(B.38)

identifiant
∣∣ α(t)

〉
comme vecteur propre de â (i.e. un état cohérent demeure un état

cohérent sous évolution temporelle dans le potentiel harmonique).

Suivant la définition des opérateurs â et â†, les opérateurs position et impulsion prennent
la forme

q̂ =

√
~

2mω

(
â† + â

)
(B.39)

p̂ = i

√
m~ω

2

(
â† − â

)
. (B.40)
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J = 0: 〈q̂0(t)〉α = 1

J = 2: 〈q̂2(t)〉α = [〈q̂(t)〉α]2 + [∆q̂α]2

J = 3: 〈q̂3(t)〉α = [〈q̂(t)〉α]3 + 3 [∆q̂α]2 [〈q̂(t)〉α]

Les valeurs moyennes de position et d’impulsion sur l’état cohérent
∣∣ α(t)

〉
sont donc

〈q̂(t)〉α =
〈
α(t)

∣∣q̂
∣∣ α(t)

〉
=

√
~

2mω

(
α0e−iωt + α∗0e+iωt

)
(B.41)

〈p̂(t)〉α =
〈
α(t)

∣∣p̂
∣∣ α(t)

〉
= −i

√
m~ω

2

(
α0e−iωt − α∗0e+iωt

)
(B.42)

ou encore, suivant la description α0 = α(q0, p0) de la section précédente,

〈q̂(t)〉α = q0 cosωt+
p0

mω
sinωt (B.43)

〈p̂(t)〉α = p0 cosωt−mωq0 sinωt . (B.44)

La dispersion ∆Ôα(t) =
√〈

Ô2(t)
〉
α
−
〈
Ô(t)

〉2

α
se calcule directement à partir de (B.39)

et (B.40),

∆q̂α =

√
~

2mω
(B.45)

∆p̂α =

√
m~ω

2
. (B.46)

D’après ces résultats, l’état cohérent d’un potentiel harmonique est un état d’incertitude
minimale pour tout temps, ∆q̂α(t) × ∆p̂α(t) = ~/2. De plus, sa forme gaussienne
prescrite par les représentations (B.33) et (B.34) ne change pas au cours de son évolution
temporelle. Par ailleurs, on montre 2 que tous les moments de l’état cohérent ne sont
définis que par ses deux premiers moments (J ∈ N),

〈
q̂J(t)

〉
α

= [〈q̂(t)〉α]J +

bJ/2c∑

j=1

(
J

2j

)
(2j − 1)!! [∆q̂α]2j [〈q̂(t)〉α]J−2j (B.47)

〈
p̂J(t)

〉
α

= [〈p̂〉α(t)]J +

bJ/2c∑

j=1

(
J

2j

)
(2j − 1)!! [∆p̂α]2j [〈p̂(t)〉α]J−2j (B.48)

où bac signifie la plus petite partie entière de a (e.g. b0.5c = 0, b2.9c = 2), et (2a−1)!! =

1 · 3 · 5 · ... · (2a− 1) est la double factorielle. On obtient par exemple

L’évolution temporelle de l’état cohérent s’apparente donc à celle obtenue pour une
particle classique, comme en témoigne la comparaison des expressions (B.8) et (B.9) et
(B.41) et (B.42). Dans ce contexte, l’épithète quasi classique conférée à l’état cohérent
est donc justifiée.

2On utilise alors les représentations en p et en q (B.33) et (B.34) de l’état cohérent.
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B.3.3 États comprimés

Pour l’Hamiltonien
Ĥ ′ =

1

2m
p̂2 +

1

2
mΩ2q̂2 (B.49)

on définit les opérateurs de création et d’annihilation comprimés b̂ et b̂† en terme des
opérateurs de position et d’impulsion

b̂ =
1√

2m~Ω
(mΩq̂ + ip̂) (B.50)

b̂† =
1√

2m~Ω
(mΩq̂ − ip̂) (B.51)

avec Ω = κω la fréquence angulaire d’oscillation de l’oscillateur harmonique quantique
et κ, une constante positive. L’état comprimé

∣∣ β
〉
est défini comme le vecteur propre

de l’opérateur d’annihilation comprimé,

b̂
∣∣ β

〉
= β

∣∣ β
〉

. (B.52)

Moyennant le changement de fréquence prescrit, l’ensemble des résultats obtenus pour
l’état cohérent s’appliquent alors directement à l’état comprimé.

On note que les opérateurs comprimés s’expriment en terme des opérateurs â et â†

suivant les expressions (B.12) et (B.13),

b̂ = νâ† + µâ (B.53)

b̂† = µâ† + νâ (B.54)

avec

ν =
1

2

(√
κ− 1√

κ

)
(B.55)

µ =
1

2

(√
κ+

1√
κ

)
. (B.56)

Par rapport à l’état cohérent, le changement de fréquence a pour effet de diminuer la
taille de la dispersion sur une coordonnée au détriment de la seconde coordonnée,

∆q̂β =
1√
κ

∆q̂α (B.57)

∆p̂β =
√
κ∆p̂α . (B.58)

La notion d’état comprimé prend tout son sens pour un état cohérent soumis à une
variation du potentiel harmonique d’un facteur κ2 [130]. Le paquet d’onde suit alors une
séquence de contractions et de dilatations dont l’amplitude en position et en impulsion
suit les expressions précédentes.

227



B.4. Distribution de Husimi

B.4 Distribution de Husimi

B.4.1 Distributions quantiques

La représentation des trajectoires d’un système classique dans son espace des phases
permet l’interprétation globale de la dynamique sous-jacente. C’est un outil puissant
qui est cependant perdu dans le cadre de la physique ondulatoire dû à l’impossibilité
de représenter simultanément une fonction d’onde à la fois en position et en impulsion.
On parvient au mieux à construire une distribution quantique, qui, bien qu’entachée
d’une certaine arbitrarité, permet d’apprécier qualitativement la correspondance entre
une fonction d’onde et les structures dominantes de l’espace des phases.

Pour un opérateur Ô(q̂, p̂) et la fonction classique O(q, p) obtenue par remplacement
direct des opérateurs position et impulsion par leur équivalent scalaire, il serait désirable
d’établir l’égalité sur la mesure de Ô(q̂, p̂) par l’état ψ et la valeur moyenne de O(q, p).
Autrement dit, pour une fonction de distribution quantique F (q, p), on pose

〈
Ô(q̂, p̂)

〉
ψ

=
〈
ψ
∣∣Ô(q̂, p̂)

∣∣ ψ
〉

=

∫
dqdp O(q, p)F (q, p) . (B.59)

Cependant, la non-commutativité des opérateurs position et impulsion implique que
F (q, p) n’est pas uniquement définie. Cohen [35] a montré que l’utilisation de l’opérateur

Ô(q̂, p̂) = eiξq̂+iηp̂f(ξ, η) (B.60)

permet d’accéder à un grand nombre de fonctions de distribution quantique par le simple
choix de la fonction d’association f(ξ, η) [35, 73, 63]. Cette fonction d’association est
choisie de sorte qu’elle compense l’effet de la non-commutativité des opérateurs position
et impulsion. Du point de vue classique cependant, l’expression (B.60) demeure égale
à eiξq+iηp et (B.59) est toujours satisfaite. Dans le cadre de ce travail, l’attention est
portée sur la distribution de Husimi FH(q, p).

B.4.2 Une distribution particulière: La distribution de Husimi

La distribution quantique de Husimi est obtenue en distribuant sur (B.60) les opérateurs
comprimés b̂ et b̂† suivant l’ordre antinormal. On cherche donc à écrire

〈
e−v

∗b̂e+vb̂†
〉
ψ

=

∫
dqdp eiξq+iηpFH(q, p) . (B.61)
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Les définitions (B.50) et (B.51) renvoient directement à

eiξq̂+iηp̂ = evb̂
†−v∗b̂ (B.62)

avec

v(ξ, η) = −
√
m~Ω

2
η + i

√
~

2mΩ
ξ . (B.63)

Puisque [b̂, b̂†] = 1, la formule de Baker-Campbell-Hausdorf [130] se simplifie3 et l’expression
(B.62) devient

eiξq̂+iηp̂ = e+ 1
2
|v|2e−v

∗b̂e+vb̂† . (B.64)

En regard à (B.60), on définit alors la fonction d’association f(ξ, η) = fH(ξ, η),

fH(ξ, η) = e−
1
2
|v(η,ξ)|2 . (B.65)

La distribution quantique de Husimi FH(q, p) est ensuite obtenue par transformée de
Fourier,

FH(q, p) =
1

(2π)2

∫
dξdη

〈
e−v

∗b̂e+vb̂†
〉
ψ

e−iξq−iηp . (B.66)

On voit bien que la fonction d’association n’apparaît finalement que de façon formelle
dans les expressions précédentes puisque les coordonnées de l’espace des phases (clas-
sique) commutent toujours.

L’identité (B.36) est insérée entre les opérateurs de l’expression (B.66),

FH(q, p) =
1

π

1

(2π)2

∫
dξdη

∫
d2β′

∣∣〈 ψ
∣∣ β′

〉∣∣2 e−v
∗β′e+vβ′∗e−iξq−iηp (B.67)

puis, à l’aide de (B.63) et puisque d2β′ = dRe{β′}dIm{β′}, l’expression finale pour la
distribution de Husimi est obtenue

FH(q, p) =
1

2π~
∣∣〈 β

∣∣ ψ
〉∣∣2 . (B.68)

La distribution de Husimi est calculée explicitement sur la coordonnée q (coordonnée
pour laquelle la fonction ψ est généralement connue) en utilisant (B.33),

FH(q, p) =
1

(2π)3/2~

∣∣∣∣∣

∫ +∞

−∞
dq′ ψ(q′) · 1√

∆q̂β
e−i

1
~p(q

′−q) exp

[
−1

4

(q′ − q)2

(∆q̂β)2

]∣∣∣∣∣

2

.

(B.69)
Dans la limite où ∆q̂β → 0, la distribution de Husimi devient proportionnelle au module
carré de la fonction d’onde sur q,

lim
∆q̂β→0

FH(q, p) ∝ |ψ(q)|2 . (B.70)

3eÂ+B̂ = e−[Â,B̂]/2eÂeB̂ si [[Â, B̂], Â] = 0 et [[Â, B̂], B̂] = 0
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Une relation semblable est obtenue pour ∆p̂β → 0,

lim
∆p̂β→0

FH(q, p) ∝ |ψ(p)|2 . (B.71)

Puisque l’expression (B.69) possède la forme d’une convolution, on utilise avantageuse-
ment le théorème de convolution pour l’évaluation numérique de la distribution de
Husimi,

FH(q, p) =
1

(2π)1/2~

∣∣∣∣∣F
−1
y

{
1√
π

1√
1/∆q̂β

exp

[
−(y − p/~)2

1/ (∆q̂β)2

]
· Fx {ψ(x)} (y)

}
(q)

∣∣∣∣∣

2

(B.72)
où

Fx {g(x)} (y) =
1

2π

∫ +∞

−∞
dx e−iyxg(x) (B.73)

F−1
y {G(y)} (x) =

∫ +∞

−∞
dy e+iyxG(y) . (B.74)

De plus, si ψ(q+mQ) = ψ(q), m = ... − 2,−1, 0, 1, 2 ..., alors ψ(q) est périodique en Q
et la distribution de Husimi devient

FH
Q (q, p) =

1√
2π

1

4∆p̂β

∣∣∣∣∣∣∣

∑

m

cm exp


−

(
p−m2π

Q
~
)2

4 (∆p̂β)2


 eim

2π
Q
q

∣∣∣∣∣∣∣

2

(B.75)

avec {cm}, les coefficients de la série de Fourier de ψ(q).

La distribution de Husimi se rapproche d’une distribution de probabilité habituelle
(normalisable, réelle, positive). Pour

∣∣ ψ
〉
normalisé, cette distribution est bornée

supérieurement à 1/2π~. Elle possède l’avantage d’adoucir les fluctuations rapides de
ψ, en contraste avec la distribution de Wigner [63], ce qui a contribué à sa popularité
pour l’étude de systèmes présentant les signes du “chaos quantique” [73]. D’autre part,
la distribution de Husimi ne permet pas d’obtenir les distributions marginales,∫

dq FH(q, p) 6= ψ(p) (B.76)
∫
dp FH(q, p) 6= ψ(q) (B.77)

contrairement à la distribution de Wigner conçue spécifiquement pour satisfaire l’égalité
de ces équations.

B.4.3 Exemple: Application à l’oscillateur harmonique

Le Hamiltonien de l’oscillateur harmonique classique (B.1) affecté d’une énergie (n +

1/2)~ω est réécrit en fonction des dispersions de l’état cohérent (B.45) et (B.46),

n+
1

2
=

1

4

p2

(∆p̂α)2 +
1

4

q2

(∆q̂α)2 . (B.78)230
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Pour κ = 1, un cas spécial de la distribution de Husimi (B.68) est évalué à l’aide de
(B.28),

FH
κ=1(q, p) =

1

2π~
1

n!
e−|α|

2|α|2n . (B.79)

Il s’agit là en fait de la distribution Q de Glauber-Sudarshan [73]. En utilisant α =
1
2

q
∆q̂α

+ i1
2

p
∆p̂α

, on vérifie que

FH
κ=1(q, p) =

1

2π~
1

4nn!

(
q2

(∆q̂α)2 +
p2

(∆p̂α)2

)n
· exp

[
−1

4

(
q2

(∆q̂α)2 +
p2

(∆p̂α)2

)]
.

(B.80)
L’expression générale de la distribution de Husimi prend plutôt la forme

FH(q, p) =
1

2π~
2
√
κ

κ+ 1

1

2nn!

(
κ− 1

κ+ 1

)n ∣∣∣∣Hn

[
1√

2
√
κ2 − 1

(
q

∆q̂α/κ
− i p

∆p̂α

)]∣∣∣∣
2

· exp

[
−1

2

1

κ+ 1

(
q2

(∆q̂α)2 /κ
+

p2

(∆p̂α)2

)]
(B.81)

où l’intégrale 7.374.8 de [50] a été utilisée. Puisque dans la limite des grands arguments
le polynôme d’Hermite devient Hn(z) ∼ (2z)n, on vérifie que limκ→1 F

H(q, p) tend bien
vers (B.80).

Des exemples d’application de la distribution de Husimi sont présentés pour κ = 1 et
deux niveaux d’énergie n = 1 et n = 10 (figure B.1). La constante d’action ~ est fixée
à 1 et la dispersion sur q est numériquement égale à celle sur p (∆q̂α = ∆p̂α = 1/

√
2).

La trajectoire classique correspondant à l’énergie du niveau n apparaît aussi pour fin
de comparaison. De toute évidence, par rapport à la taille de l’orbite, la distribution
quantique se resserre autour de la trajectoire classique avec l’augmentation de l’énergie.
Ce résultat est évidemment attendu pour un système quantique dont l’énergie devient
importante par rapport à l’espacement entre les niveaux d’énergie.

Deux autres exemples montrent l’effet du choix de κ sur la distribution calculée pour
le niveau n = 10 (figure B.2). La valeur de κ = κ0 (ou κ = 1/κ0) est fixée de sorte que
la dispersion de l’état comprimé sur p (ou q) soit égale à la valeur maximale atteinte
en p (ou q) par la trajectoire classique,

∆p̂β =
√
κ0∆p̂α = 2∆p̂α

√
n+ 1/2 . (B.82)

Pour n = 10 et les autres paramètres fixés aux valeurs utilisées pour produire la figure
B.1, on obtient κ0 = 42. La distribution obtenue correspond à la situation où ∆q̂β (ou
∆p̂β) est numériquement petit, la limite formelle étant exprimée par (B.70) (ou (B.71)).
En ce sens, une coupe à p = 0 de la distribution de Husimi obtenue pour la compression
en q ainsi que le module carré de la fonction d’onde de l’oscillateur harmonique (B.16)
sont présentés à la figure B.3.
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Fig. B.1 Distribution de Husimi pour κ = 1 en amplitude linéairement croissante de jaune à noir,
et trajectoire classique dans l’espace des phases pour l’oscillateur harmonique (trait bleu discontinu);
∆q̂α = 1/

√
2, ~ = 1. (a) Niveau d’énergie n = 1 de l’oscillateur quantique. (b) Niveau d’énergie

n = 10 de l’oscillateur quantique.
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(b) κ0 = 1/42

Fig. B.2 Distribution de Husimi (B.81) pour le niveau n = 10 de l’oscillateur harmonique. (a)
Distribution comprimée sur q (∆q̂β = 1/

√
42 ·∆q̂α = 1/

√
84 ≈ 0.11, ∆p̂β ≈ 4.58). (b) Distribution

comprimée sur p (∆p̂β = 1/
√

42 ·∆p̂α = 1/
√

84 ≈ 0.11, ∆q̂β ≈ 4.58).

232



B.4. Distribution de Husimi

 

 

q

u
.a
.

−10 −5 0 5 10
0

0.25

0.5

0.75

1
∝ |ψ(q)|2
∝ FH(q, 0)

Fig. B.3 Coupe à p = 0 de la distribution de Husimi présentée à la figure B.2(a) et fonction d’onde
|ψ10(q)|2 de l’oscillateur harmonique. Les courbes sont normalisées à leur valeur maximale respective.
Une coupe semblable peut être obtenue pour la distribution en p.
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Annexe C

Calcul numérique de la matrice S

Cette annexe explicite la méthode numérique permettant le calcul de la matrice de
diffusion S présentée au chapitre 2. L’approche préconisée consiste en une sépara-
tion de la section d’une cavité diélectrique en une série de N anneaux concentriques
minces sur lesquels l’indice de réfraction est supposé dépendre uniquement de la posi-
tion angulaire. La séquence d’anneaux est limitée à l’intérieur par un disque d’indice
de réfraction constant, et à l’extérieur, par un domaine d’indice constant s’étendant
potentiellement jusqu’à l’infini. La continuité de la fonction d’onde est ensuite établie
en connectant les anneaux successifs à leur frontière commune. Le domaine central
étant un disque d’indice constant, plusieurs simplifications importantes peuvent être
obtenues. On extrait ainsi un algorithme de mise à jour d’une simple matrice S0,N+1

22

permettant ultimement le calcul de S.

C.1 Développement de l’équation angulaire locale
sur une base de Fourier

On cherche à solutionner le problème aux limites périodiques
{
d2

dφ2
+
[
n2(rj, φ)k2r2

j + ξjµ
]}

Φj
µ(φ) = 0 , Φj

µ(φ+ 2π) = Φj
µ(φ) . (C.1)

Une solution permettant de satisfaire automatiquement la condition périodique consiste
en un développement en série de Fourier,

Φj
µ(φ) =

1

2π

+∞∑

m=−∞
cjmµeimφ . (C.2)



C.1. Développement de l’équation angulaire locale sur une base de Fourier

Le remplacement de cette solution dans l’équation différentielle et la projection sur un
élément de la base de Fourier e−im

′φ permet d’obtenir

∑

m

{
−m2δmm′ + ξjµδmm′ + k2r2

j

1

2π

∫ 2π

0

dφ n2(rj, φ)ei(m−m
′)φ

}
cjmµ = 0 (C.3)

soit l’expression d’un système aux valeurs propres

Lj · cjµ = ξjµc
j
µ (C.4)

avec

Lj
mm′ = m2δmm − k2r2

j

1

2π

∫ 2π

0

dφ n2(rj, φ)ei(m−m
′)φ . (C.5)

Puisque pour k et n(rj, φ) réels, la matrice L est hermitique, la base de vecteurs {cjµ} est
orthogonale et normalisable, et les valeurs propres {ξjµ} sont réelles. Sous ces conditions,
les fonctions {Φj

µ(φ)} sont alors déclarées orthonormées.

Selon (C.5), la matrice L est composée d’une matrice diagonale réelle et d’une sec-
onde matrice dite de Toeplitz dont toutes les diagonales sont constantes. L’application
numérique demandant la troncature de Lj en une matrice carrée (2M + 1)× (2M + 1),
on parvient à construire cette matrice par la permutation d’un simple vecteur de taille
4M + 1 contenant les termes de la série de Fourier

ñjν =
1

2π

∫ 2π

0

dφ n2(rj, φ)eiνφ . (C.6)

Puisque les fréquences négatives ν < 0 de la série de Fourier s’obtiennent par la conju-
gaison complexe des fréquences positives, un gain supplémentaire en nombre de calculs
peut être réalisé. Si Mmm′ = m′2δmm′ , alors pour les éléments de la matrice Lj arrangés
sur les colonnes de m′ > 0 à gauche vers m′ < 0 à droite et les lignes de m > 0 en haut
vers m < 0 en bas, on a

Lj = M− k2r2
j




. . . . . .

. . . ñj0 ñj1 ñj2 ñj3
ñj∗1 ñj0 ñj1 ñj2
ñj∗2 ñj∗1 ñj0 ñj1

ñj∗3 ñj∗2 ñj∗1 ñj0
. . .

. . . . . .




. (C.7)

Lorsque l’intégrale (C.6) ne possède par de solution analytique, l’algorithme de transfor-
mée de Fourier rapide (Fast Fourier Transform, FFT) permet d’obtenir simultanément
l’ensemble des fréquences nécessaires à la composition de Lj par un échantillonnage de
l’indice de réfraction.
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Les termes de la diagonale de Lj croissent comme le carré de l’ordre vers ses extrémités.
Étant donnée la forme de L, les termes diagonaux prennent éventuellement des valeurs
bien supérieures aux termes non diagonaux, isolant numériquement la diagonale du
“coeur” de la matrice. Suivant le théorème de Parseval, le module carré du plus grand
terme de la série de Fourier ñjν est égale ou inférieur à l’intégrale sur le cercle du module
carré de l’indice de réfraction. Ce dernier est évidemment lui-même inférieur au carré
du maximum sur φ de l’indice de réfraction carré,

maxν{|ñjν |2} ≤
1

2π

∫ 2π

0

dφ
∣∣n2(rj, φ)

∣∣2 ≤
[
max

{
n2(rj, φ)

}
φ

]2

. (C.8)

En considérant la limite max {n2(rj, φ)}φ k2r2
j définissant la plus grande fréquence ef-

ficace du système (i.e. sa largeur de bande efficace au-delà de laquelle la diagonale
devient dominante), un choix de troncature de Lj satisfaisant le critère de Nyquist
[107] est M = 2

√
max {n2(rj, φ)}φkrj.

C.2 Définition des matrices intermédiaires

Pour ce qui suit, on utilisera la notation opérationnelle des fonctions Φj
µ(φ) =

〈
φ
∣∣ Φj

µ

〉

pour simplifier l’écriture des intégrales de recouvrement des fonctions. Notez que les
matrices S utilisées ici sont différentes des matrices S du chapitre 2: ces dernières relient
effectivement les coefficients a et b d’une couche à ceux de la couche suivante, alors que
les matrices S sont des versions modifiées des S où des facteurs dépendant de la position
des interfaces pour la couche inférieure sont retirés et passés à la couche supérieure.
Les matrices S sur les anneaux intermédiaires présentent alors des puissances du ratio
(rj − ε)/(rj + ε) comme seule dépendance à la position des interfaces.

La notation primée ′ indique la dérivée par rapport à l’argument de la fonction sur
laquelle elle s’applique. Les rayons sont ordonnées suivant rj < rj+1. Toutes les matrices
sont carrées.

Une représentation schématique de l’approche par séparation en anneaux concentriques
apparaît à la figure C.1.

C.2.1 Domaine intérieur et couplage au premier anneau (j = 0)

La fonction d’onde à l’intérieur du domaine circulaire de rayon r = r0 et d’indice de
réfraction nin constant est

∣∣ ψ0(r)
〉

=
∑

m

a0
mJm(ninkr)

∣∣ Φ0
m

〉
(C.9)237
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(a) Domaines concentriques (b) Coefficients de développement

Fig. C.1 (a) Représentation schématique de la séparation de la surface de la cavité en domaines
annulaires. L’indice de réfraction constant à l’intérieur du disque intérieur est nin et à l’extérieur, no.
Notez que le rayon intérieur r0 est situé à ε (et non 2ε) du rayon r1, tout comme le rayon Rmax par
rapport à rN . (b) Coefficients de développement aj et bj sur des couches successives.

avec Φ0
m(φ) =

〈
φ
∣∣ Φ0

m

〉
= eimφ.

La fonction d’onde à l’intérieur du permier anneau dont l’indice de réfraction est ap-
proximativement n(r1, φ) s’écrit quant à elle

∣∣ ψ1(r)
〉

=
∑

µ

[
a1
µ ρ

+
√
ξ1
µ

1 + b1
µ ρ
−
√
ξ1
µ

1

] ∣∣ Φ1
µ

〉
(C.10)

où ρ1 = r/r1 est la coordonnée radiale normalisée au rayon médian de l’anneau, et {ξ1
µ}

et {Φ1
µ(φ)} sont obtenus par solution du système aux valeurs propres (C.5).

Les matrices suivantes sont formées pour le domaine intérieur

Jmm′ = Jm(ninkr0)δmm′ (C.11)

DJmm′ = J ′m(ninkr0)δmm′ (C.12)

et pour le domaine annulaire,

Λ1
µµ′ =

√
ξ1
µ δµµ′ . (C.13)

Les termes de couplage entre les domaines sont représentés par la matrice

U0,1
µµ′ =

〈
Φ0
µ

∣∣ Φ1
µ′
〉

. (C.14)
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On définit deux matrices intermédiaires

F0,1 = +
[
U0,1Λ1U0,1† −DJ J−1

]
(C.15)

G0,1 = −
[
U0,1Λ1U0,1† + DJ J−1

]
. (C.16)

La matrice S0
22 s’écrit donc

S0
22 = −U0,1

{
F0,1

}−1
G0,1U0,1† (C.17)

et on définit
S0,1

22 = S0
22 . (C.18)

C.2.2 Anneaux intermédiaires (j = 1, 2, 3, ... N − 1)

La fonction d’onde à l’intérieur du domaine annulaire de rayon médian r = rj et de
largeur 2ε, et dont l’indice de réfraction est approximativement n(rj, φ) est

∣∣ ψj(r)
〉

=
∑

µ

[
ajµ ρ

+
√
ξjµ

j + bjµ ρ
−
√
ξjµ

j

] ∣∣ Φj
µ

〉
(C.19)

alors que la fonction d’onde à l’intérieur de l’anneau voisin de rayon médian r = rj+1

et de largeur 2ε, et dont l’indice de réfraction est approximativement n(rj+1, φ) est

∣∣ ψj+1(r)
〉

=
∑

µ

[
bj+1
µ ρ

+
√
ξj+1
µ

j+1 + aj+1
µ ρ

−
√
ξj+1
µ

j+1

] ∣∣ Φj+1
µ

〉
(C.20)

où ρj = r/rj et ρj+1 = r/rj+1 sont les coordonnées radiales normalisées au rayon médian
des anneaux, et {ξjµ} et {Φj

µ(φ)} ainsi que {ξj+1
µ } et {Φj+1

µ (φ)} sont obtenus par solution
du système aux valeurs propres (C.5) dans leur domaine d’application respectif 1.

La matrice suivante est formée pour le domaine annulaire intérieur

Λj
µµ′ =

√
ξjµ δµµ′ (C.21)

et pour le domaine annulaire extérieur,

Λj+1
µµ′ =

√
ξj+1
µ δµµ′ . (C.22)

Les termes de couplage entre les domaines sont représentés par la matrice

Uj,j+1
µµ′ =

〈
Φj
µ

∣∣ Φj+1
µ′

〉
. (C.23)

1On notera que, selon cette convention d’alternance du caractère des coefficients {ajµ} et {bjµ}, N
doit être un nombre impair.
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On définit deux matrices intermédiaires

Fj,j+1 = Uj,j+1Λj+1Uj,j+1† + Λj (C.24)

Gj,j+1 = −Uj,j+1Λj+1Uj,j+1† + Λj (C.25)

ce qui permet d’écrire succintement les matrices de connexion suivantes

Sj+1
11 = −1+ 2

{
Fj,j+1

}−1
Λj (C.26)

Sj+1
12 =

[
1−

{
Fj,j+1

}−1
Gj,j+1

]
Uj,j+1 (C.27)

Sj+1
21 = 2Uj,j+1† {Fj,j+1

}−1
Λj (C.28)

Sj+1
22 = −Uj,j+1† {Fj,j+1

}−1
Gj,j+1Uj,j+1 . (C.29)

Finalement, on calcule la matrice

Kj,j+1 =

[(
rj − ε
rj + ε

)Λj

− Sj+1
11

(
rj + ε

rj − ε

)Λj

S0,j
22

]−1

(C.30)

qui permet d’évaluer la matrice de transfert S0,j+1
22 ,

S0,j+1
22 =

[
Sj+1

21

(
rj + ε

rj − ε

)Λj
]
S0,j

22

[
Kj,j+1Sj+1

12

]
+ Sj+1

22 . (C.31)

Cette dernière matrice est identifiée au chapitre 2 comme étant celle qui permettera
ultimement le calcul de la matrice de diffusion S.

C.2.3 Dernier anneau et couplage au domaine extérieur (j = N)

La fonction d’onde à l’intérieur du dernier anneau de rayon médian rN et de largeur 2ε

dont l’indice de réfraction est approximativement n(rN , φ) s’écrit

∣∣ ψN(r)
〉

=
∑

µ

[
aNµ ρ

+
√
ξNµ

N + bNµ ρ
−
√
ξNµ

N

] ∣∣ ΦN
µ

〉
(C.32)

où ρN = r/rN est la coordonnée radiale normalisée au rayon médian de l’anneau, et
{ξNµ } et {ΦN

µ (φ)} sont obtenus par solution du système aux valeurs propres (C.5).

La fonction d’onde à l’extérieur du domaine circulaire de rayon rN+1 = rN+ε et d’indice
de réfraction no constant est

∣∣ ψ(r)
〉

=
∑

m

[
AmH

(2)
m (nokr) +BmH

(1)
m (nokr)

] ∣∣ ΦN+1
m

〉
(C.33)
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avec ΦN+1
m (φ) =

〈
φ
∣∣ ΦN+1

m

〉
= eimφ.

La matrice suivante est formée pour le domaine annulaire

ΛN
µµ′ =

√
ξNµ δµµ′ . (C.34)

et pour le domaine extérieur

H1
mm′ = H(1)

m (nokrN+1)δmm′ (C.35)

DH1
mm′ = H(1)′

m (nokrN+1)δmm′ (C.36)

H2
mm′ = H(2)

m (nokrN+1)δmm′ (C.37)

DH2
mm′ = H(2)′

m (nokrN+1)δmm′ . (C.38)

Les termes de couplage entre les domaines sont représentés par la matrice

UN,N+1
µµ′ =

〈
ΦN
µ

∣∣ ΦN+1
µ′

〉
. (C.39)

On définit comme précédemment deux matrices intermédiaires

FN,N+1 = UN,N+1DH1
{
H1
}−1

UN,N+1† + ΛN (C.40)

GN,N+1 = UN,N+1DH2
{
H2
}−1

UN,N+1† + ΛN (C.41)

ce qui permet d’écrire succintement les matrices suivantes

SN+1
11 = −1+ 2

{
FN,N+1

}−1
ΛN (C.42)

SN+1
12 =

[
1−

{
FN,N+1

}−1
GN,N+1

]
UN,N+1 (C.43)

SN+1
21 = 2UN,N+1† {FN,N+1

}−1
ΛN (C.44)

SN+1
22 = −UN,N+1† {FN,N+1

}−1
GN,N+1UN,N+1 . (C.45)

Finalement, on calcule la matrice

KN,N+1 =

[(
rN − ε
rN + ε

)ΛN

− SN+1
11

(
rN + ε

rN − ε

)ΛN

S0,N
22

]−1

(C.46)

qui permet d’évaluer S0,N+1
22 ,

S0,N+1
22 =

[
SN+1

21

(
rN + ε

rN − ε

)ΛN
]
S0,N

22

[
KN,N+1SN+1

12

]
+ SN+1

22 . (C.47)

On obtient finalement la matrice de diffusion numérique, S̄, comme

S̄ ≡ S0,N+1
22 =

{
H1
}−1 S0,N+1

22 H2 . (C.48)
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Annexe D

Forme analytique de la matrice S en
cavité annulaire

Dans cette annexe, on obtiendra la forme analytique de la matrice de diffusion S pour
un système composé d’une cavité homogène dans laquelle on a introduit une inclusion.
Il s’agit de la cavité annulaire. Pour ce faire, nous aurons besoin d’un certain nombre
d’outils mathématiques qui seront présentés en premier lieu. La matrice S s’obtient en
plusieurs étapes dont les principales sont: construction de la matrice de diffusion S̃c
due à la présence de l’inclusion dans un système de coordonnées centré à l’inclusion,
obtention d’une matrice de déplacement T permettant l’écriture de la matrice Sc =

T S̃c T† propre au référentiel centré à l’origine de la cavité, et finalement combinaison
des éléments développés pour obtenir la matrice S et la matrice des délais Q du système
composé.

Deux identités tirées de [1] seront centrales aux développements analytiques, nous les
rappelons ici.

AS (9.1.79): théorème d’addition / déplacement de Graf

Zν(w) eiνχ =
∞∑

k=−∞
Zν+k(u)Jk(v)eikα (v < u) (D.1)

où Zν = {H(1,2)
ν , Jν , Yν}, w2 = u2 + v2 − 2uv cosα, i.e. que u, v et w forment les côtés

d’un triangle avec u = v + w, χ est l’angle opposé au côté v et α est l’angle opposé à
w (voir Eqs. (A.14)-(A.15) et schéma correspondant). On note que la restriction v < u

ne s’applique pas si Zν = Jν et ν est un entier ou zéro.

AS (9.1.75): théorème d’addition de Neumann

Zν(u± v) =
∞∑

k=−∞
Zν∓k(u)Jk(v) (v < u). (D.2)



D.1. Matrice de déplacement T et...

Ici aussi la restriction v < u n’est pas nécessaire si Zν = Jν et ν est un entier ou zéro.

D.1 Matrice de déplacement T et effet du déplace-
ment de l’origine sur la matrice de diffusion

On établit dans ce qui suit l’expression des transformations nécessaires pour exprimer
nos fonctions d’onde dans 2 référentiels différents, dont les origines O et O′ sont séparées
par un vecteur d, i.e. r = r′ + d.

D.1.1 Cas r > d

(a) (b)

Fig. D.1 (a) L’objet de cette section est de transformer une fonction d’onde décrite par rapport à une
origine en O′ et connue à l’extérieur d’un domaine circulaire D′, en une nouvelle forme possédant des
coordonnées centrées sur l’origine O. On cherchera donc à écrire les coefficients A et B des ondes
partielles valides à l’extérieur d’un disque D en fonction des coefficients A′ et B′ autour du domaine
D′. (b) Construction géométrique de la translation pour r > d.

Considérons une fonction d’onde à l’extérieur d’un domaine circulaire D′, Fig. D.1(a),
et exprimée sur les coordonnées (r′, φ′)

ψ′(r′, φ′) =
∑

m

[
A′mH

(2)
m (nkr′) +B′mH

(1)
m (nkr′)

]
eimφ

′
, (r′, φ′) /∈ D′ . (D.3)

On change ensuite le référentiel de cette onde pour le transporter vers les coordonnées
(r, φ) sur une distance d en gardant r > d (Fig. D.1(b)). La fonction de Hankel s’écrit
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alors à l’aide de l’identité de Graf (D.1)

H(1,2)
m (nkr′)eimφ

′
= eimφ

[
H(1,2)
m (nkr′)eimχ

]

= eimφ
∑

ν

H
(1,2)
m+ν(nkr)Jν(nkd)eiν(φ−φ0) , r > d

=
∑

ν

[
e−i(ν−m)φ0Jν−m(nkd)

]
H(1,2)
ν (nkr) eiνφ . (D.4)

La fonction d’onde s’écrit pour (r, φ) /∈ D′

ψ(r, φ) =
∑

ν

{[∑

m

e−i(ν−m)φ0Jν−m(nkd)A′m

]
H(2)
ν (nkr)

+

[∑

m

e−i(ν−m)φ0Jν−m(nkd)B′m

]
H(1)
ν (nkr)

}
eiνφ , (D.5)

≡
∑

ν

[
AνH

(2)
ν (nkr) +BνH

(1)
ν (nkr)

]
eiνφ. (D.6)

Posant
{J(nkd)}νm ≡ Jν−m(nkd) , {R(φ0)}νν′ ≡ eiνφ0δνν′ , (D.7)

on obtient une matrice de déplacement prenant la forme

T(nkd, φ0) ≡ R†(φ0) J(nkd) R(φ0). (D.8)

Pour un argument réel1, la matrice J(nkd) est réelle et orthogonale, J(nkd) J(nkd)T = 1,
ce qui implique que T(nkd, φ0) est unitaire. Ce résultat est déduit directement du
théorème d’addition de Neumann (D.2) et du résultat Ja−b(0) = δab. En vue de
l’application que nous ferons de la matrice T(nkd, φ0), on remarque que si B′ et A′

sont reliées par
B′ = S′A′ (D.9)

alors
B = T(nkd, φ0) S′T†(nkd, φ0)A ≡ SA. (D.10)

D.1.2 Cas r < d

On répète les opérations précédentes, mais cette fois le déplacement des origines est tel
que r < d (Fig. D.2). La fonction de Hankel s’écrit maintenant suivant (D.1)

H(1,2)
m (nkr′)eimφ

′
= eim(π+φ0)(−1)m

[
H

(1,2)
−m (nkr′)e−imχ

]

= eimφ0

∑

ν

H
(1)
−m+ν(nkd)Jν(nkr)e

iν(φ−φ0) , r < d

=
∑

ν

[
ei(m−ν)φ0H

(1)
ν−m(nkd)

]
Jν(nkr)e

iνφ . (D.11)

1Dans le cas général où l’argument pourrait être complexe, il faudra distinguer entre l’opération
de transposée simple MT d’une matrice M de l’opération transposée complexe M†. Nos résultats
s’adressent aux cas où les arguments sont réels.
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Fig. D.2 Construction géométrique de la translation pour r < d.

La fonction d’onde s’écrit alors pour (r, φ)

ψ(r, φ) =
∑

ν

{∑

m

ei(m−ν)φ0

[
H

(2)
ν−m(nkd)A′m +H

(1)
ν−m(nkd)B′m

]}
Jν(nkr)e

iνφ,

≡
∑

ν

AνJν(nkr)e
iνφ. (D.12)

Il n’existe pas de matrice de déplacement comme au cas précédent. On écrit cependant
de façon plus synthétique une matrice de transformation τ(nkd, φ0)

τ(nkd, φ0) ≡
[
R†(φ0)H†(nkd)R(φ0) + R†(φ0)H(nkd)R(φ0)S′

]
(D.13)

avec
{H(nkd)}νm ≡ H

(1)
ν−m(nkd) , {R(φ0)}νν′ ≡ eiνφ0δνν′ (D.14)

de sorte que
A ≡ τ(nkd, φ0) A′. (D.15)

Nous avons considérer ce cas par souci de généralité, mais il n’apparaîtra pas dans la
construction des matrices de diffusion.

D.2 Effet du déplacement de l’origine sur la matrice
des délais d’une cavité

Le résultat (D.10) présente l’effet de la translation sur la matrice de diffusion: pour la
matrice de diffusion connue S′ obtenue pour une cavité centrée à l’origine O′ (Fig. D.1),
on exprime la matrice de diffusion S sur un domaine circulaire comprenant la cavité
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diélectrique, mais dont l’origine O est différente de O′, en termes d’une transformation
de similarité sur S′. Puisqu’une quantité d’intérêt menant à la caractérisation des modes
d’une cavité est la matrice hermitique des délais,

Q = −iS†∂S

∂k
= +i

(
∂S†

∂k

)
S = Q†, (D.16)

relevant elle-même de la matrice de diffusion, il est légitime de s’interroger de l’effet
qu’aurait un tel changement d’origine sur les délais de la cavité déplacée. On se con-
centre ici strictement sur le cas r > d de la section précédente.

En utilisant le résultat (D.10) et la définition de la matrice des délais, on obtient
directement une expression de la matrice des délais déplacée Q,

Q = T

[
−i
(

S
′†T†

∂T

∂k
S
′ −T†

∂T

∂k

)
− iS′∂S

′

∂k

]
T† (D.17)

avec T = T(nkd, φ0) tel que défini à Eq. (D.8). On cherche donc dans un premier
temps à obtenir une forme simplifiée du terme T†∂T/∂k.

D.2.1 Calcul de T†(nkd, φ0)
∂
∂kT(nkd, φ0)

Pour la matrice de déplacement T(nkd, φ0) définie en (D.8), on calcule la dérivée par
rapport à k

∂

∂k
T(nkd, φ0) = R†(φ0)

(
∂

∂k
J(nkd)

)
R(φ0) . (D.18)

On a donc le produit

{T†(nkd, φ0)
∂

∂k
T(nkd, φ0)}νµ = {R†(φ0)J(nkd)

(
∂

∂k
J(nkd)

)
R(φ0)}νµ

= nd
∑

m

e−iνφ0Jν−m(z)

(
∂

∂z
Jµ−m(z)

)
eiµφ0

=
1

2
nd
∑

m

e−iνφ0Jν−m(z) [Jµ−m−1(z)− Jµ−m+1(z)] eiµφ0

=
1

2
nd e−iνφ0

[∑

m

Jν−m(z) [Jµ−m−1(z)− Jµ−m+1(z)]

]
eiµφ0

=
1

2
nd e−iνφ0

[∑

m

Jm(z)
[
J(µ−ν−1)+m(z)− J(µ−ν+1)+m(z)

]
]

eiµφ0

(D.19)

où, à la seconde étape, l’identité (9.1.27) de [1] a été utilisée (Eqs. (A.12)-(A.13) de ce
document).
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Aussi, puisque Ja−b(0) = δab et suivant l’identité (D.2), on a

{T†(nkd, φ0)
∂

∂k
T(nkd, φ0)}νµ =

1

2
nd e−iνφ0 (δν,µ−1 − δν,µ+1) eiµφ0 (D.20)

ou encore avec la définition2

{Σ}mm′ ≡ δm,m′−1 (D.22)

alors
T†(nkd, φ0)

∂

∂k
T(nkd, φ0) =

1

2
ndR†(φ0)

(
Σ−ΣT

)
R(φ0) . (D.23)

Lorsque φ0 = 0 comme dans la Fig. D.1, cette dernière relation devient plus simplement

JT (nkd)
∂

∂k
J(nkd) =

1

2
nd
(
Σ−ΣT

)
. (D.24)

D.2.2 Matrice des délais déplacée Q

La substitution de Eq. (D.23) dans l’expression de la matrice Q Eq. (D.17) permet
d’obtenir le résultat final en termes de la matrice des délais de la cavité dans son
référentiel d’origine, Q′ = −iS′†∂S′/∂k, et d’une seconde matrice D(S′; nd, φ0),

Q = T(nkd, φ0) [D(S′; nd, φ0) + Q′] T†(nkd, φ0) = T [D + Q′] T† (D.25)

avec

D(S
′
; nd, φ0) = −i1

2
nd
[
S
′†R†(φ0)

(
Σ−ΣT

)
R(φ0)S

′ −R†(φ0)
(
Σ−ΣT

)
R(φ0)

]

(D.26)
On remarque immédiatement que l’effet du déplacement d sur D est linéaire, le paramètre
d n’apparaissant nulle part ailleurs dans son expression. On vérifie directement que D

est bien hermitique en distribuant l’imaginaire i sur la matrice
(
Σ−ΣT

)
qui devient

alors elle-même hermitique.

Par ailleurs, les valeurs propres de la matrice 1
2

(
iΣ− iΣT

)
forment un ensemble

{
cos

(
j

M + 1

π

2

)}
, j = 1, 2, 3, ..., 2M + 1 (D.27)

2La matrice Σ −ΣT apparaît donc comme une matrice possédant une diagonale d’éléments 1 en-
dessous de la diagonale principale et une diagonale d’éléments −1 au-dessus de la diagonale principale,
et 0 partout ailleurs,

Σ−ΣT =




. . .
0 −1 0 0

+1 0 −1 0

0 +1 0 −1

0 0 +1 0
. . .




. (D.21)
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dont le rayon spectral est inférieur à 1 3. Les valeurs propres apparaissent donc en
paires réelles opposées en signe, et on trouve une valeur propre égale à 0.

Puisque Tr{XY} = Tr{YX} et Tr{X + Y} = Tr{X} + Tr{Y}, que S′ est unitaire
et que Σ ne possède aucun élément sur sa diagonale principale, on a directement que
Tr{Q′} = Tr{Q}, i.e. la somme des délais des modes propres de la cavité non-déplacée
demeure inchangée. Ce résultat s’accorde aussi avec l’observation que les valeurs propres
de 1

2

(
iΣ− iΣT

)
apparaissent en paires opposées de signe.

On s’attend cependant à ce que les délais moyens individuels de ces modes varient
puisque, ayant déplacé la cavité, on retarde certaines portions du champ alors que
d’autres sont avancées. Le rayon spectral des matrices composant D étant strictement
inférieur à 1, le rayon spectral de D devrait donc être de l’ordre du déplacement optique
nd. Pour nd � q′ν , avec q′ν un délai propre de Q′, l’effet du déplacement sur le délai
propre déplacé qν sera donc typiquement perturbatif. Les modes présentant des densités
d’énergie élevées à l’intérieur de la cavité sont ainsi moins affectés par le déplacement
de la cavité que les modes de plus faible qualité pour lesquels q′ν ∼ nd.

3La matrice 1
2

(
iΣ− iΣT

)
est hermitique et tridiagonale. Pour une matrice de taille finie, 2M + 1,

le système aux valeurs propres
1

2

(
iΣ− iΣT

)
x = λx (D.28)

peut sécrire comme un problème aux différences

1

2
ixm+1 −

1

2
ixm−1 = λxm , (D.29)

+
1

2
ix−M+1 = λx−M , −1

2
ix+M−1 = λx+M . (D.30)

D’emblée, on détermine que le cas λ = 1 pour xm = 1 ∀ m est impossible.
La solution générale de l’équation aux différences est xm = c+r

m
+ +c−r

m
− avec r± = −i

(
λ±
√
λ2 − 1

)
.

En appliquant les conditions aux limites, on obtient les coefficients c± puis l’expression auxiliaire
permettant d’obtenir les valeurs propres,

(
r+

r−

)2M+2

= 1 . (D.31)

D’après cette expression, le rapport des racines r+/r− est ei
2πj

2M+2 avec j = 1, 2, 3..., 2M + 1. On
explique la limitation sur j par la condition λ 6= 1 mentionnée plus haut. En remplaçant les racines
r±, on obtient que les valeurs propres satisfont

λj = cos

(
j

M + 1

π

2

)
, j = 1, 2, 3..., 2M + 1 . (D.32)
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D.3 Matrice de diffusion S de la cavité annulaire

Soit la cavité diélectrique annulaire présentée à la Fig. D.3. On écrit les développements
en ondes partielles pour les différentes régions et les 2 référentiels, l’un au centre de
l’inclusion et l’autre au centre de la cavité,

ψ̃h(ρ, θ) =
∑

m

ãhmJm(nhkρ)eimθ (D.33)

ψ̃c(ρ, θ) =
∑

m

[
ãcmH

(2)
m (nckρ) + b̃cmH

(1)
m (nckρ)

]
eimθ (D.34)

ψc(r, φ) =
∑

m

[
acmH

(2)
m (nckr) + bcmH

(1)
m (nckr)

]
eimφ (D.35)

ψo(r, φ) =
∑

m

[
aomH

(2)
m (nokr) + bomH

(1)
m (nokr)

]
eimφ . (D.36)

Les 4 développements s’appliquent respectivement sur l’intérieur de l’inclusion (ρ ≤ r0,
index nh), sur l’extérieur immédiat de l’inclusion (r0 ≤ ρ ≤ R0 − d− r0, index nc), sur
l’intérieur de la cavité jusqu’à sa frontière extérieure (d + r0 ≤ r ≤ R0), et finalement
sur l’extérieur de la cavité (r ≥ R0, index no). Autrement dit, un coup d’oeil à la Fig.
D.3(b) nous indique que le développement (D.34) sera adéquat dans l’anneau formé par
les zones jaune et verte et le développement (D.35) conviendra à l’anneau formé des
zones bleue et verte. La fonction d’onde sera exprimée sur la totalité du domaine Dc

par l’union des développements (D.34) et (D.35) lorsque

r0/R0 ≤ 1− 3d/R0 . (D.37)

Cette condition géométrique assure que la restriction imposée sur les développements
en ondes partielles soit satisfaite. La zone rouge de la Fig. D.1 disparaît si (D.37) est
valide. On notera par ailleurs que la restriction est sur la représentation point-par-point
de la fonction d’onde et non sur la construction de la matrice de diffusion qui pourra
être obtenue même pour des cavités annulaires ne satisfaisant pas (D.37) .

Si la matrice de diffusion S̃c associée au domaine Dh est connue (b̃c = S̃c ãc), alors on
peut écrire la fonction d’onde (D.35) évaluée sur la frontière de rayon r = r0 + d avec
des coefficients exprimés au moyen de la matrice de déplacement (D.8) (évaluée sans
perte de généralité à φ0 = 0)

acν =
∑

m

Jν−m(nckd)ãcm , bcν =
∑

m

Jν−m(nckd)b̃cm , (D.38)

ou encore sous forme matricielle

ac = J(nckd)ãc , bc = J(nckd)b̃c. (D.39)
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(a) (b)

Fig. D.3 (a) Schéma de la cavité annulaire, ses paramètres et coordonnées, et (b) présentation des
différents domaines de développement en ondes partielles de la fonction d’onde. Le domaineDh (disque
blanc) d’indice nh repésente l’inclusion de la cavité annulaire, le domaine Dc (gris sur (a); vert, jaune,
bleu et rouge sur (b); indice nc) est le corps de la cavité et Do (blanc) est le milieu extérieur (indice no).
La fonction d’onde peut être développée en ondes partielles sur les coordonnées (ρ, θ) dans les zones
jaune et verte et sur (r, φ) dans les zones verte, bleue ainsi que sur la totalité de Do. La zone rouge
n’est pas toujours couverte par le développement en ondes partielles entrantes et sortantes autour de
l’origine de ces deux systèmes de coordonnées: les paramètres de construction doivent satisfaire (D.37)
afin que le développement en ondes partielles recouvre totalement Dc.

On obtient donc la matrice de diffusion modifiée Sc en fonction de la matrice de diffusion
S̃c obtenue par diffusion sur Dh

Sc = J(nckd) S̃c JT (nckd). (D.40)

L’application des conditions aux frontières (polarisation TM, continuité de la fonction
et de sa dérivée) mène au système linéaire d’équations

H(2)
m (Zc)acm +H(1)

m (Zc)
∑

m′

(Sc)mm′acm′ = H(2)
m (Zo)aom +H(1)

m (Zo)bom (D.41)

nc

[
H(2)′
m (Zc)acm +H(1)′

m (Zc)
∑

m′

(Sc)mm′acm′

]
= no

[
H(2)′
m (Zo)aom +H(1)′

m (Zo)bom

]

(D.42)

avec Zc = nckR0 et Zo = nokR0.

Solutionnant (D.41) et (D.42) par élimination des coefficients ac, on obtient finalement
la matrice de diffusion de la cavité annulaire, Sac, reliant les coefficients bo = Sac ao
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comme

Sac = −
[
ncGF−1H1(Zo)− noH1′(Zo)

]−1 [
ncGF−1H2(Zo)− noH2′(Zo)

]
(D.43)

avec

F = H2(Zc) + H1(Zc) Sc , G = H2′(Zc) + H1′(Zc) Sc , (D.44)

{H1,2(z)}mm′ = H(1,2)
m (z)δmm′ , {H1′,2′(z)}mm′ =

d

dz
H(1,2)
m (z)δmm′ . (D.45)

Ce résultat est une forme alternative, mais équivalente 4, à celui obtenu par [60].
Par contre, la limite de convergence (D.37) de l’approche n’est pas aussi bien définie
chez [60]. On complétera les opérations par le calcul de la matrice des délais grâce à
l’expression

Q = −iS† ∂S

∂k
. (D.50)

4On peut en effet obtenir une expression identique à celle de [60] par les manipulations suivantes.
On écrit d’abord le système d’équations (D.41-D.42) sous forme matricielle

(
H2 H1

noH
2′ noH

1′

)(
ao
bo

)
=

(
F ac

ncG ac

)
(D.46)

En général, on ne peut inverser facilement la matrice du côté gauche de cette équation. Par contre,
certaines observations nous permettrons de le faire. D’abord, la matrice est composée de blocs con-
tenant des matrices diagonales qui commutent entre elles. De plus ces matrices ne contiennent que
des fonctions de Hankel et leurs dérivées premières avec une propriété fondamentale que leur Wron-
skien, W [H

(1)
m (z), H

(2)
m (z)] = H

(1)
m (z)H

(2)′

m (z) −H(1)′

m (z)H
(2)
m (z) = −4i/(πz), est égal à une constante

indépendante de m. Ceci est suffisant pour pouvoir écrire
(

ao
bo

)
=

1

∆

(
noH

1′ −H1

−noH2′ H2

)(
F ac

ncG ac

)
. (D.47)

où ∆ est le déterminant de toute la matrice. On notera avec un certain étonnement que cette procédure
est identique à l’inversion d’une matrice 2 x 2! On inverse ensuite la première ligne de (D.47) pour
isoler ac en fonction de ao

ac = ∆
[
noH

1′F− ncH1G
]−1

ao . (D.48)

Résultat qu’on introduit dans la seconde ligne de (D.47) pour finalement obtenir

bo = −
[
noH

2′F− ncH2G
] [
noH

1′F− ncH1G
]−1

ao

= −
[
noH

2′ − ncH2GF−1
] [
noH

1′ − ncH1GF−1
]−1

ao. (D.49)

Cette expression correspond à celle de [60] .
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Annexe E

Modes d’un guide d’onde plan

En premier lieu, cette annexe présente la méthode de calcul des modes propagatoires
d’une plaque diélectrique d’épaisseur w sur l’axe Oy, et infinie sur le plan OxOz. La
condition permettant d’obtenir un guide monomode est obtenue et utilisée pour évaluer
l’évolution de l’indice effectif en fonction de l’épaisseur d’un guide d’onde. Ensuite, une
série de résultats analytiques, en partie inédits, complète le chapitre 5 où le modèle de
couplage cavité-guide d’onde est décrit en détails.

E.1 Modes d’un guide d’onde plan

Cette première partie recueille les équations principales de la section 2.1 de l’ouvrage de
K. Okamoto [92] dédiée au calcul des modes propres d’un guide d’onde planaire infini.
Les différents paramètres suivent la notation:

ng : indice de réfraction du guide (réel)
no : indice de réfraction de l’environnement (réel, ng > no)
w : largeur du guide d’onde
k : nombre d’onde (réel)

Pour le guide d’onde plan (slab waveguide) représenté à la Fig. E.1 et un champ
électrique (magnétique) orienté selon l’axe Oz, on obtient une solution générale aux
équations de Maxwell pour le champ électrique (magnétique) scalaire

Ez(x, y)

Hz(x, y)

}
=





A cos(γw/2− φ)e−α(y−w/2)+iβx y ≥ +w/2

A cos(γy − φ)eiβx −w/2 ≤ y ≤ +w/2

A cos(γw/2 + φ)e+α(y+w/2)+iβx y ≤ −w/2
(E.1)
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et
γ ≡

√
(ngk)2 − β2 , α ≡

√
β2 − (nok)2 . (E.2)

Ces expressions sont posées en Ansatz. Elles décrivent un champ transverse stationnaire
à l’intérieur du guide et un champ exponentiellement décroissant à l’extérieur. Il s’agit
de la solution physique au modèle de propagation dans le guide. Pour ce qui suit,
on nommera TE (Transverse Électrique) la polarisation où le champ électrique est
transverse au plan OxOy, et TM (Transverse Magnétique) la polarisation où le champ
magnétique est transverse au plan OxOy.

Fig. E.1 Représentation de la section du guide d’onde plan et de l’amplitude du champ. Il s’agit d’une
coupe sur le plan OxOy de la plaque diélectrique infinie apparaissant dans le coin supérieur droit de
la Fig.

L’application des conditions aux frontières1 permet d’isoler une expression reliant u =

γw/2 > 0, s = αw/2 > 0 et φ:

(TE) s = u tan (u± φ) , (TM) s =
n2
o

n2
g

u tan (u± φ) (E.3)

φ = j
π

2
, j ∈ N . (E.4)

Pour un nombre d’onde k fixe, on doit aussi avoir la relation

s2 + u2 = v2 ≡ (kw/2)2(n2
g − n2

o) . (E.5)

Les expressions (E.3) et (E.5) doivent être satisfaites simultanément (Fig. E.2(a)).

1Conditions aux frontières pour le guide plan:

TE :

{
Ez(x,±w/2)in = Ez(x,±w/2)out
d
dyEz(x,±w/2)in = d

dyEz(x,±w/2)out

TM :

{
Hz(x,±w/2)in = Hz(x,±w/2)out

1
n2
g

d
dyHz(x,±w/2)in = 1

n2
o

d
dyHz(x,±w/2)out
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Fig. E.2 (a) Solution graphique du système d’équations (E.3)-(E.5): en bleu, Eq. (E.3) pour les
différents modes du guide et en rouge, l’espression de la conservation du nombre d’onde Eq. (E.5)
pour v = 4. Les modes TE sont représentés en traits continus et les modes TM, en traits discontinus.
Un espace paramétrique continu d’indices de réfraction, de nombres d’onde et d’épaisseurs de guide
satisfont cette égalité. Dans ce cas d’espèce, le guide supporte trois modes propagatoires et le mode
TM est calculé pour un ratio d’indices no/ng = 2/3. (b) Solution du système d’équations (E.3)-(E.5)
pour un intervalle de v allant de 0 jusqu’à la fréquence de coupure du mode j = 1 pour les deux
polarisations (TE: trait continu; TM: trait discontinu, no/ng = 2/3). On obtient ainsi les solutions s
(rouge) et u (bleu) pour le guide monomode. La ligne verte est le résultat de

√
u2 + s2, soit v.

Pour chaque mode, il existe une fréquence de coupure vcutoff en deçà de laquelle le mode
n’existe pas:

vcutoff = j
π

2
. (E.6)

Comme nous sommes intéressés à la solution monomode du guide (Fig. E.2(b)), on
demande

(kw/2) <
1√

n2
g − n2

o

π

2
. (E.7)

Techniquement, une fois γ = u/(w/2) obtenu, on trouve directement la constante de
propagation β =

√
n2
gk

2 − γ2. L’indice effectif neff [19] d’un guide plan s’obtient alors
directement,

neff =
√
n2
g − γ2/k2 =

√
n2
g − 4

u2

k2w2
. (E.8)

Cette quantité revêt avant tout un intérêt expérimental: pour une source de longueur
d’onde connue (grandeur du nombre d’onde), on obtient directement la composante du
nombre d’onde se propageant dans la direction de l’axe Ox par une multiplication avec
l’indice effectif. Un résultat typique pour un guide monomode est présenté à la Fig.
(E.3).
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Fig. E.3 Indice effectif tel que défini par Eq. (E.8) en fonction de l’épaisseur normalisée au nombre
d’onde pour le premier mode (TE: trait continu; TM: trait discontinu). Les constantes utilisées sont
ng = 1.5 (verre), no = 1.0 et k = 1. L’indice effectif pour une épaisseur nulle est no, mais n’atteint
qu’asymptotiquement la valeur ng pour un guide infiniment épais.

E.2 Modèle de couplage cavité-guide d’onde: Anal-
yse

E.2.1 Représentation en ondes planes de H(1)
m (z)eimφ

On reprend ici le développement de l’harmonique cylindrique H(1)
m (z)eimφ présenté chez

Cincotti et al. [34]. Le but à atteindre est de représenter cette harmonique cylindrique
comme une superposition d’onde planes.

Suivant [50], la fonction de Hankel peut s’écrire

H(1)
m (z) = − 1

π

∫

C

dθ e−iz sin θ+imθ = −(−i)m
π

∫

C′
dθ eiz cos θ+imθ , m ∈ Z (E.9)

où C ′ est présentée à la Fig. E.4. La forme exacte de ce parcours est arbitraire mais
doit se plier aux exigences suivantes:

256



E.2. Modèle de couplage cavité-guide d’onde: Analyse

• C ′ passe par l’origine

• Im{C ′} rejoint +i∞ dans la région −π ≤ u ≤ 0

• Im{C ′} rejoint −i∞ dans la région 0 ≤ u ≤ +π.

• la projection de C ′ sur l’axe réel doit être égale à −π

Fig. E.4 Parcours C ′ de la représentation (E.9) de la fonction de Hankel H(1)(z); θ = u+ iv.

On peut donc déformer ce contour de sorte à obtenir trois intégrales distinctes (voir
Fig. E.5):

H(1)
m (z) = −(−i)m

π

[∫ π−α

π−α−i∞
dθ . . . +

∫ −α

π−α
dθ . . . +

∫ −α+i∞

−α
dθ . . .

]
(E.10)

= −(−i)m
π

[
(−1)mie−imα

∫ 0

−∞
dv e−iz cos(iv−α)−mv

− e−imα
∫ π

0

du eiz cos(u−α)+imu

+ ie−imα
∫ +∞

0

dv eiz cos(iv−α)−mv
]

(E.11)

où 0 ≤ α ≤ π.
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E.2. Modèle de couplage cavité-guide d’onde: Analyse

Fig. E.5 Parcours C ′ modifié en fonction de l’expression (E.10).

On peut donc écrire

H(1)
m (z)eimα = −(−i)m

π

[
(−1)mi

∫ 0

−∞
dv e−iz cos(iv−α)−mv

−
∫ π

0

du eiz cos(u−α)+imu

+ i

∫ +∞

0

dv eiz cos(iv−α)−mv
]

= −(−i)m
π

[
(−1)mi

∫ 0

−∞
dv e−iz(cosh v cosα+i sinh v sinα)−mv

−
∫ π

0

du eiz(cosu cosα+sinu sinα)+imu

+ i

∫ +∞

0

dv eiz(cosh v cosα+i sinh v sinα)−mv
]

. (E.12)

Si on exprime cette équation en coordonnées cartésiennes ξ ≡ z cosα, η ≡ z sinα, on
obtient

H(1)
m (z)eimα = −(−i)m

π

[
(−1)mi

∫ +∞

0

dv e−i(ξ cosh v−iη sinh v)+mv

−
∫ π

0

du ei(ξ cosu+η sinu)+imu

+ i

∫ +∞

0

dv ei(ξ cosh v+iη sinh v)−mv
]

. (E.13)

Puisque les intervalles d’intégration sont tous positifs, on substitue

v = ln
(
β +

√
β2 − 1

)
si β = cosh v

u = arccos β si β = cosu
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E.2. Modèle de couplage cavité-guide d’onde: Analyse

et on obtient

H(1)
m (z)eimα = −(−i)m

π


 (−1)mi

∫ −1

−∞
dβ




(
−β +

√
β2 − 1

)m
√
β2 − 1

e−η
√
β2−1


 e+iξβ

−
∫ +1

−1

dβ




(
β + i

√
1− β2

)m
√

1− β2
eiη
√

1−β2


 e+iξβ

+ i

∫ +∞

1

dβ


 1
√
β2 − 1

(
β +

√
β2 − 1

)m e−η
√
β2−1


 e+iξβ


 .

(E.14)

Plus succintement, on écrira

H(1)
m (z)eimα =

∫ +∞

−∞
dβ Fm(β, η)eiβξ (E.15)

avec

Fm(β, η) =





− (−i)m
π

(−1)mi

((
−β+
√
β2−1

)m
√
β2−1

e−η
√
β2−1

)
−∞ < β ≤ −1

+ (−i)m
π

((
β+i
√

1−β2
)m

√
1−β2

eiη
√

1−β2

)
−1 ≤ β ≤ +1

− (−i)m
π

i

(
1√

β2−1
(
β+
√
β2−1

)m e−η
√
β2−1

)
+1 ≤ β < +∞

.

(E.16)
L’intégrale sur [−1, +1] caractérise les modes propagatoires en η alors que les deux
autres sont associées aux ondes évanescentes. On trouve facilement l’extension du
développement précédent pour −π ≤ α ≤ 0 (η < 0) en considérant

H
(1)
−m(z)ei(−m)α = (−1)mH(1)

m (z)eim(−α) . (E.17)

On a donc
Fm(β,−|η|) = (−1)mF−m(β, |η|) . (E.18)

E.2.2 Résultat asymptotique de l’intégrale∫ +∞
x0

dx H
(1)
m (nokr)e

imφe∓iβx pour x0/y � |m|

On présente le calcul de l’intégrale

I1∓ ≡
∫ +∞

x0

dx H(1)
m (nokr)e

imφe∓iβx (E.19)
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E.2. Modèle de couplage cavité-guide d’onde: Analyse

pour la situation où x0/y � m et y 6= 0. Le résultat est obtenu dans un premier temps
pour x0 > 0 et m ≥ 0 puis est étendu aux autres cas. Ce calcul est motivé de deux
façons:

• L’évaluation numérique de l’intégrale sur l’ensemble de l’axe réel requiert un do-
maine d’intégration fini,

• Comme l’intégrale sur [−x0, x0] est finie pour y 6= 0, un résultat asymptotique
convergeant implique que l’intégrale sur l’axe réel converge elle aussi.

Fig. E.6 Convention de coordonnées pour le développement asymptotique de l’intégrale (E.19).

On pose η = x/y, |y| > 0 et ξ = noky. Pour |1/η0| = |y/x0| � 1 (φ ≈ 2π), on a

eimφ = (cosφ+ i sinφ)m ∼
(

1 + i
1

η

)m
=

m∑

j=0

(
m

j

)(
i
1

η

)j
= 1 + im

1

η
+O(η−2) .

(E.20)
De plus, comme on suppose ξη0 � |m|, on a

H(1)
m (nokr) ∼

√√√√
2

πξη
√

1 + 1
η2

e−imπ/2−iπ/4e
iξη
√

1+ 1
η2


1 + i

4m2 − 1

8ξη
√

1− 1
η2


+O(η−(2+1/2))

=

√
2

π|ξ|e
−imπ/2−iπ/4 1√

|η|
eiξηeiξ

1
2

1
η


1 + i

4m2 − 1

8ξη
√

1− 1
η2


+O(η−(2+1/2))

=

√
2

π|ξ|e
−imπ/2−iπ/4 1√

|η|
eiξη

(
1 + iξ

1

2

1

η

)
1 + i

4m2 − 1

8ξη
√

1− 1
η2


+O(η−(2+1/2))

=

√
2

π|ξ|e
−imπ/2−iπ/4 1√

|η|
eiξη

[
1 + i

(
ξ

1

2
+

4m2 − 1

8ξ

)
1

η

]
+O(η−(2+1/2))
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E.2. Modèle de couplage cavité-guide d’onde: Analyse

puis

H(1)
m (nokr)e

imφe∓iβx ∼
√

2

π|ξ|e
−imπ/2−iπ/4 1√

|η|

[
1 + i

(
ξ

1

2
+

4m2 − 1

8ξ
+m

)
1

η

]
ei(ξ∓ξ̃)η+O(η−(2+1/2))

où ξ̃ = βy. L’intégrale prend donc la forme

I1∓ ∼ y

∫ sign(y)∞

η0

dη

√
2

π|ξ|e
−imπ/2−iπ/4 1√

|η|

[
1 + i

(
ξ

1

2
+

4m2 − 1

8ξ
+m

)
1

η

]
ei(ξ∓ξ̃)η +O(|η0|−(1+1/2))

∼ |y|
√

2

π|ξ|e
−imπ/2−iπ/4

[∫ +∞

η0=sign(y)×x0/y

dη
1√
η

esign(y)i(ξ∓ξ̃)η

+sign(y)i

(
ξ

1

2
+

4m2 − 1

8ξ
+m

) ∫ +∞

η0=sign(y)×x0/y

dη
1

η3/2
esign(y)i(ξ∓ξ̃)η

]
+O(|η0|−(1+1/2)) (E.21)

Il y a donc deux intégrales à calculer. On procède au changement de variable

η′ =

√
(|ξ̃| ∓ |ξ|)
π/2

η1/2 =

√
(β ∓ nok)x

π/2
(E.22)

de sorte que
∫ +∞

η0

dη
1

η1/2
e∓i(|ξ̃|∓|ξ|)η =

√
2π

(|ξ̃| ∓ |ξ|)

∫ +∞

η′0

dη′ e∓i
π
2
η′2

=

√
2π

(|ξ̃| ∓ |ξ|)

[(
1

2
− C(η′0)

)
∓ i
(

1

2
− S(η′0)

)]
(E.23)

et
∫ +∞

η0

dη
1

η3/2
e∓i(|ξ̃|∓|ξ|)η =

2

{
1

η
1/2
0

e∓i(|ξ̃|∓|ξ|)η0 +

√
2π(|ξ̃| ∓ |ξ|)

[
∓i
(

1

2
− C(η′0)

)
−
(

1

2
− S(η′0)

)]}

(E.24)

où

η′0 =

√
(|ξ̃| ∓ |ξ|)
π/2

η
1/2
0 =

√
(β ∓ nok)x0

π/2
(E.25)

et

C(x) =

∫ x

0

dt cos
π

2
t2 ≤ 1

2
(E.26)

S(x) =

∫ x

0

dt sin
π

2
t2 ≤ 1

2
(E.27)
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sont les intégrales de Fresnel [1]. Finalement

I1∓ ∼ e−imπ/2−iπ/4
{

2√
nok(β ∓ nok)

[(
1

2
− C(η′0)

)
∓ i
(

1

2
− S(η′0)

)]}

+2iy

√
2

πnok|y|
e−imπ/2−iπ/4

(
noky

1

2
+

4m2 − 1

8noky
+m

)
×

{
1

(x0/|y|)1/2
e∓i(β∓nok)x0 +

√
2π(β ∓ nok)|y|

[
∓i
(

1

2
− C(η′0)

)
−
(

1

2
− S(η′0)

)]}

+O(|η0|−(1+1/2))

(E.28)

Pour un intervalle d’intégration ]−∞, −x0], x0 � 0, on a (voir la Fig. E.6)

I2∓ ≡
∫ −x0

−∞
dx H(1)

m (nokr)e
imφe∓iβx =

∫ −x0

−∞
dx H(1)

m (nokr)e
im(φ̄+π)e∓iβx . (E.29)

On développe l’exponentielle autour de φ̄ = 0:

eimφ̄ =
(
cos φ̄+ i sin φ̄

)m ≈
(

1 + i
−y
−x

)m
= 1 + im

−y
−x +O((y/x)2) (E.30)

de sorte que

I2∓ = (−1)m
∫ −x0

−∞
dx H(1)

m (nokr)

(
1 + im

−y
−x +O((y/x)2)

)
e∓iβx

= (−1)m
∫ +∞

x0

dx H(1)
m (nokr)

(
1− imy

x
+O((y/x)2)

)
e±iβx .

(E.31)

Le résultat de l’intégrale est donc similaire à celui obtenu précédemment pour un in-
tervalle d’intégration positif:

I2∓ ∼ (−1)me−imπ/2−iπ/4
{

2√
nok(β ± nok)

[(
1

2
− C(η′0)

)
± i
(

1

2
− S(η′0)

)]}

+(−1)m2iy

√
2

πnok|y|
e−imπ/2−iπ/4

(
noky

1

2
+

4m2 − 1

8noky
−m

)
×

{
1

(x0/|y|)1/2
e±i(β±nok)x0 +

√
2π(β ± nok)|y|

[
±i
(

1

2
− C(η′0)

)
+−

(
1

2
− S(η′0)

)]}

+O(|η0|−(1+1/2)).

(E.32)

Puisque les intégrales de Fresnel sont finies, le régime asymptotique des intégrales sur
la fonction de Hankel l’est aussi. Ces intégrales doivent donc converger.
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On a calculé l’erreur quadratique moyenne

Err(η0) =


 1

N

N∑

j=1

∣∣∣∣∣

∫

analytique, βj

−
∫

numerique, βj

∣∣∣∣∣

2



1/2

(E.33)

entre la forme fermée de l’intégrale sur l’intervalle de −∞ à +∞ et une intégration
numérique partielle complétée par le développement asymptotique présenté plus haut.
Pour m = +4, nok = 5, y = −1 et N = 100 valeurs de β entre nok + 0.1 et nok + 5

pour chaque valeur de η0, le résultat de la comparasion est présenté à la Fig. E.7.

 

 

log10η0 = log10(|x0/y|)
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log10Err = −2.3 log10η0 + 0.92

Fig. E.7 log10(Err) en fonction de log10(η0). Une régression linéaire a été calculée. La pente obtenue
est de −2.3 ce qui est plus élevé que prévu par le développement asymptotique (∼ −1.5). Nous
n’avons pas poussé l’investigation plus loin mais il se peut qu’une symétrie dans l’intégrale du terme
d’ordre −(2 + 1/2) augmente la convergence en η0. Un résultat semblable a été obtenu pour m = 3

(pente ∼ −2.5). Il faut probablement voir O(|η|−(1+1/2)) comme une borne supérieure.

E.2.3 Intégration de
∫ +∞
−∞ dx H

(1)
m (nokr)e

imφe∓iβx

Nous désirons calculer l’intégrale

I3∓ ≡
∫ +∞

−∞
dx H(1)

m (nokr)e
imφe∓iβx (E.34)

263



E.2. Modèle de couplage cavité-guide d’onde: Analyse

sur la ligne par une intégrale de contour dans le plan complexe. On procède tout d’abord
au changement de variable η ≡ x/y, puis η → sign(y)η:

I3∓ = y

∫ +∞·y/|y|

−∞·y/|y|
dη H(1)

m (nok|y|(1 + η2)1/2)eim arctan 1/ηe∓iβyη

= |y|
∫ +∞

−∞
dη H(1)

m (nok|y|(1 + η2)1/2)eimsign(y) arctan 1/ηe∓iβ|y|η .

(E.35)

On pose ξ ≡ nok|y| et ξ̃ ≡ β|y|. D’après le développement réalisé à la section E.1, on
a que ξ < ξ̃. De plus, puisque

arctan 1/η =
1

2i
ln
η + i

η − i (E.36)

on a

I3∓ = |y|
∫ +∞

−∞
dη H(1)

m (ξ(1 + η2)1/2)

(
η + i

η − i

)sign(y)m
2

e∓iξ̃η .

(E.37)

Le calcul à effectuer est donc

I4∓ ≡
∫ +∞

−∞
dη H(1)

m (ξ(1 + η2)1/2)

(
η + i

η − i

)sign(y)m
2

e∓iξ̃η . (E.38)

On remarque dans un premier temps que

I4∓ =

∫ +∞

−∞
dη H(1)

m (ξ(1 + η2)1/2)

(
η − i
η + i

)sign(y)m
2

e±iξ̃η , (E.39)

une relation qui peut être utile s’il était nécessaire d’inverser la fraction. On définit en
ce sens deux fonctions

f∓(z) = H(1)
m (ξ(1 + z2)1/2)

(
z + i

z − i

)sign(y)m
2

e∓iξ̃z , z ∈ C (E.40)

et

f̃±(z) = H(1)
m (ξ(1 + z2)1/2)

(
z − i
z + i

)sign(y)m
2

e±iξ̃z , z ∈ C . (E.41)

Comme ces fonctions possèdent le même comportement sur l’axe réel, on pourra en
choisir une plutôt que l’autre si la situation demande une condition de convergence
particulière. On pose

r+eiθ+ = z − i , r−eiθ− = z + i

(voir Fig. E.8) de sorte que

f∓(r+, r−, θ+, θ−) = H(1)
m (ξ
√
r+r−ei

1
2

(θ++θ−))

(
r−
r+

)sign(y)m
2

eisign(y)m
2

(θ−−θ+)e∓iξ̃(r+eiθ++i) .

(E.42)
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Fig. E.8 Convention des coordonnées polaires locales autour des points z = {±i}.

Une rotation complète autour de z = +i renvoie

f∓(r+, r−, θ+ + 2π, θ−) = H(1)
m (ξ
√
r+r−ei

1
2

(θ++θ−)eiπ)

(
r−
r+

)sign(y)m
2

×

eisign(y)m
2

(θ−−θ+)e−isign(y)mπe∓iξ̃(r+eiθ++i) . (E.43)

D’après [1], on a
H(1)
m (zeiπ) = −e−imπH(2)

m (z) (E.44)

et donc f∓(z) est une fonction multiforme autour de z = +i. On montre de la même
façon qu’un comportement semblable existe autour de z = −i. Les points z = {±i}
sont des points de branchement de f∓(z).

La fonction f̃±(z) possède les mêmes points de branchement.

Lorsque |m/ξ| � r+ ≈ r− → R → ∞ (r+eiθ+ ≈ r−eiθ− → Reiθ), la fonction de Hankel
prend la forme asymptotique [50]

H(1)(ξ
√
r+r−ei

1
2

(θ++θ−))→
[√

2

πR
e−i

1
2
θe−imπ/2−iπ/4

]
eiξReiθ (E.45)

de sorte que le régime asymptotique de f∓(z) est

f∓(z) ∼ ei(ξ∓ξ̃)Reiθ ∼ e−(ξ∓ξ̃)R sin θ . (E.46)

Puisque ξ̃ > ξ,

• f−(z)→ 0 pour |z| → ∞ lorsque −π < θ < 0,

• f+(z)→ 0 pour |z| → ∞ lorsque 0 < θ < +π.

La situation est l’opposée pour la fonction f̃±(z):
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• f̃−(z)→ 0 pour |z| → ∞ lorsque −π < θ < 0,

• f̃+(z)→ 0 pour |z| → ∞ lorsque 0 < θ < +π.

La forme des parcours retenus pour effectuer l’intégration est présentée aux Figs E.9
et E.10. Notons qu’une coupure a été introduite sur l’axe imaginaire pour uniformiser
la fonction. Il reste cependant à obtenir le comportement de f(z) près des points de
branchement. On utilise dans ce but le développement des petits arguments de la
fonction de Hankel:

H(1)
m (ξ
√
r+r−ei

1
2

(θ++θ−)) ∼ −i(|m| − 1)!2|m|

π

1

(r+r−)|m|/2
e−i

|m|
2

(θ++θ−)×
{

1 m ≥ 0

(−1)m m < 0
.

(E.47)
On obtient les cas où f∓ ou f̃± sont constants autour de ±i selon chacun des domaines
de convergence asymptotique:

• sign(y)m > 0:

– f−(z → −i)→ −i (|m|−1)!
π

e+i|m|π/2e−ξ̃ ×
{

1 m ≥ 0

(−1)m m < 0

– f̃+(z → +i)→ −i (|m|−1)!
π

e−i|m|π/2e−ξ̃ ×
{

1 m ≥ 0

(−1)m m < 0

• sign(y)m < 0:

– f+(z → +i)→ −i (|m|−1)!
π

e−i|m|π/2e−ξ̃ ×
{

1 m ≥ 0

(−1)m m < 0

– f̃−(z → −i)→ −i (|m|−1)!
π

e+i|m|π/2e−ξ̃ ×
{

1 m ≥ 0

(−1)m m < 0

Considérons le parcours de la Fig. E.9 pour f+(z) et sign(y)m < 0. D’après le théorème
intégrale de Cauchy, on a pour ce parcours

∮
= 0 =

∫

CR1

+

∫

CR2

+

∫

Cε

+

∫

C1

+

∫

C2

+

∫

R

. (E.48)

Suivant l’analyse asymptotique et le comportement autour de z = +i de f+(z), on
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Fig. E.9 Parcours d’intégration pour f+(z) et f̃+(z).

déduit que les trois premières intégrales sont nulles. Reste alors (voir [1], équations
9.1.39 (fonction de Hankel) et 9.6.3 et 9.6.6 (fonction de Bessel modifiée Im(z)))
∫

R

dz f+(z) = −
[∫

C1

+

∫

C2

]

= −
[ ∫ +i

+i∞
dz H(1)

m (ξ
√

1 + z2)

(
z + i

z − i

)sign(y)m
2

e+iξ̃z

+

∫ +i∞

+i

dz −H(2)
m (ξ
√

1 + z2)

(
z + i

z − i

)sign(y)m
2

e+iξ̃z

]

= +i

[ ∫ +∞

+1

du H(1)
m (iξ

√
u2 − 1)

(
u− 1

u+ 1

)−sign(y)m
2

e−ξ̃u

+

∫ +∞

+1

du H(2)
m (iξ

√
u2 − 1)

(
u− 1

u+ 1

)−sign(y)m
2

e−ξ̃u
]

= 2i

∫ +∞

+1

du Jm(iξ
√
u2 − 1)

(
u− 1

u+ 1

)−sign(y)m
2

e−ξ̃u

= 2ieimπ/2
∫ +∞

+1

du Im(ξ
√
u2 − 1)

(
u− 1

u+ 1

)−sign(y)m
2

e−ξ̃u

= 2ieimπ/2
∫ +∞

+1

du I−sign(y)m(ξ
√
u2 − 1)

(
u− 1

u+ 1

)−sign(y)m
2

e−ξ̃u .(E.49)

D’après le résultat 6.646.2 de Gradshteyn et Ryzhik [50], cette dernière intégrale est
égale à

∫

R

dz f+(z) = 2ie+imπ/2 e−
√
ξ̃2−ξ2

√
ξ̃2 − ξ2


 ξ

ξ̃ +

√
ξ̃2 − ξ2



−sign(y)m

(E.50)

expression valide pour sign(y)m < 0.
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Fig. E.10 Parcours d’intégration pour f−(z) et f̃−(z).

On trouve aussi que pour sign(y)m > 0

∫

R

dz f−(z) = 2ie−imπ/2
e−
√
ξ̃2−ξ2

√
ξ̃2 − ξ2


 ξ

ξ̃ +

√
ξ̃2 − ξ2




sign(y)m

. (E.51)

E.2.4 Calcul de
∫ +∞
x̃ dx e−αxH(1)

m (κx) pour x̃� |m|/κ

On s’intéresse au calcul de

I5 =

∫ +∞

x̃

dx e−αxH(1)
m (κx) (E.52)

pour x̃� |m|/κ avec α > 0 et κ > 0.

Le développement asymptotique de la fonction de Hankel H(1)
m (κx) pour x̃ � |m|/κ

s’écrit [1]

H(1)
m (κx) ∼

√
2

πκ
e−i(m

π
2

+π
4 )
[

1

x1/2
eiκx +

(
i
4m2 − 1

8κ

)
1

x3/2
eiκx
]

+O((κx)−5/2) (E.53)

ce qui permet la forme asymptotique de l’intégrale

I5 ∼
√

2

πκ
e−i(m

π
2

+π
4 )
[∫ +∞

x̃

dx x−1/2e−(α−iκ)x +

(
i
4m2 − 1

8κ

)∫ +∞

x̃

dx x−3/2e−(α−iκ)x

]
+ε5(x̃)

(E.54)
où

ε5(x̃) =

√
2

πκ
e−i(m

π
2

+π
4 )
(

(4m2 − 1)(4m2 − 9)

2(8κ)2

)∫ +∞

x̃

dx x−5/2e−(α−iκ)x (E.55)
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est le terme d’erreur sur l’intégrale I5. Le développement de la fonction de Hankel est
poussé à un ordre supérieur à 2 afin d’obtenir un terme d’erreur au moins linéairement
décroissant. Puisqu’on vérifie par intégration par parties que
∫ +∞

x̃

dx x−1/2x−ne−(α−iκ)x = −e−(α−iκ)x̃

n∑

j=1

(
j∏

p=1

1

p− n− 1
2

)
(α− iκ)j−1x̃j−n−

1
2

+

(
n∏

j=1

1

j − n− 1
2

)
(α− iκ)n

∫ +∞

x̃

dx x−1/2e−(α−iκ)x

(E.56)

avec n ∈ N, on s’attardera à l’intégrale

F (x̃) =

∫ +∞

x̃

dx x−1/2e−(α−iκ)x = 2

∫ +∞

√
x̃

dη e−(α−iκ)η2

. (E.57)

Considérons l’intégrale ∫

C

dz e−µz
2

(E.58)

avec arg(µ) = −θ0, −π < −θ0 < 0 suivant le parcours C présenté à la Fig. E.11.

Fig. E.11 Parcours d’intégration C composé des segments droits C+ et C− ainsi que des arcs de cercle
Cr et CR d’angle θ0/2 centrés sur l’origine. On considère CR dans sa limite à l’infini.

On a donc ∮

C

=

∫

C+

+

∫

CR

+

∫

C−

+

∫

Cr

. (E.59)

Puisque l’intégrande de (E.58) ne possède pas de pôles à l’intérieur de C, l’intégrale
fermée sur C est nulle. Comme −π < −θ0 < 0, l’intégrale sur CR ne contribue pas non
plus, et donc,

∫ +∞

η̃

dz eiµz
2

= +

∫ eiθ0/2·∞

eiθ0/2η̃

dz e−µz
2

+

∫ η̃eiθ0/2

η̃

dz e−µz
2

. (E.60)

Le changement de variable
z → e−i

θ0
2 z (E.61)
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dans la première intégrale et
z = e+i θ

2 η̃ (E.62)

dans la seconde renvoie
∫ +∞

η̃

dz eiµz
2

= eiθ0/2
∫ ∞

η̃

dz e−|µ|z
2

+ i
η̃

2
eiθ0/2

∫ θ0

0

dθ exp

[
−iθ

2
− |µ|η̃2e−iθ

]
(E.63)

ou encore
∫ +∞

η̃

dz eiµz
2

= eiθ0/2
1

2

√
π

|µ|erfc(
√
|µ|η̃) + i

η̃

2
eiθ0/2

∫ θ0

0

dθ exp

[
−iθ

2
− |µ|η̃2e−iθ

]

(E.64)
avec la fonction d’erreur complémentaire [1]

erfc(z) =
2√
π

∫ ∞

z

dt e−t
2

. (E.65)

Si η̃ =
√
x̃, µ = α− iκ et θ0 = arg(α− iκ), alors

F (x̃) = eiθ0/2
[√

π

|α− iκ|erfc(
√
|α− iκ|x̃) + i

√
x̃

∫ θ0

0

dθ exp

(
−iθ

2
− |α− iκ|x̃e−iθ

)]
.

(E.66)
On peut maintenant évaluer l’expression (E.56) pour quelques cas particuliers:
∫ +∞

x̃

dx x−3/2e−(α−iκ)x = 2x̃−1/2e−(α−iκ)x̃ − 2(α− iκ)F (x̃) (E.67)
∫ +∞

x̃

dx x−5/2e−(α−iκ)x =

[
2

3
x̃−3/2 − 4

3
(α− iκ)x̃−1/2

]
e−(α−iκ)x̃

+
4

3
(α− iκ)2F (x̃) (E.68)

∫ +∞

x̃

dx x−7/2e−(α−iκ)x =

[
2

5
x̃−5/2 − 4

15
(α− iκ)x̃−3/2 +

8

15
(α− iκ)2x̃−1/2

]
e−(α−iκ)x̃

− 8

15
(α− iκ)3F (x̃) . (E.69)

On obtient ainsi

I5 ∼
√

2

πκ
e−i(m

π
2

+π
4 )
[
F (x̃) + i

4m2 − 1

8κ

(
2x̃−1/2e−(α−iκ)x̃ − 2(α− iκ)F (x̃)

)]
+ ε5(x̃)

(E.70)
et

ε5(x̃) =

√
2

πκ
e−i(m

π
2

+π
4 )
(
−(4m2 − 1)(4m2 − 9)

2(8κ)2

)
×

[(
2

3
x̃−3/2 − 4

3
x̃−1/2(α− iκ)

)
e−(α−iκ)x̃ +

4

3
(α− iκ)2F (x̃)

]
. (E.71)
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De même manière, on peut examiner le comportement asymptotique de

I6 =

∫ +∞

x̃

dx x−1e−αxH(1)
m (κx) , (E.72)

soit

I6 ∼
√

2

πκ
e−i(m

π
2

+π
4 )
{

2x̃−1/2e−(α−iκ)x̃ − 2(α− iκ)F (x̃)

+

(
i
4m2 − 1

8κ

)[(
2

3
x̃−3/2 − 4

3
x̃−1/2(α− iκ)

)
e−(α−iκ)x̃ +

4

3
(α− iκ)2F (x̃)

]}
+ ε6(x̃)

(E.73)

avec

ε6(x̃) =

√
2

πκ
e−i(m

π
2

+π
4 )
(
−(4m2 − 1)(4m2 − 9)

2(8κ)2

)
×

[(
2

5
x̃−5/2 − 4

15
(α− iκ)x̃−3/2 +

8

15
(α− iκ)2x̃−1/2

)
e−(α−iκ)x̃ − 8

15
(α− iκ)3F (x̃)

]
.

(E.74)

Les expressions approximatives de |I5|/
√

2/(κπ) et |I6|/
√

2/(κπ) sont maintenant tracées
en fonction de ξ = κx̃ pour κ = 1, α/κ = 0.2. Le premier terme du membre de
droite des expressions (E.70), I50, et (E.73), I60, (trait plein) et le terme d’erreur as-
socié (trait discontinu) sont présentés aux Figs E.12(a)-E.12(d). On remarque que le
terme de correction ε5 (ε6) croise la contribution principale I50 (I60) plus loin en ξ avec
l’augmentation de m. Aussi, la convergence de I6 est plus lente que I5. Typiquement,
en choisissant ξ = κx̃ = 8m on parvient à obtenir une différence de 10% entre la con-
tribution principale et le terme de correction pour I50. En valeur absolue, la valeur de
I60 est de quelques ordres de grandeur inférieure à I50 pour une même valeur ξ. La
correction sur I60 est cependant plus importante, 50%, pour ξ = 8m.
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E.2.5 Calcul de
∫
dx′ χ(x′)e+i2βx′ pour le disque homogène et la

cavité annulaire

Cette dernière sous-section présente le calcul de l’intégrale de χ(x) pour le disque ho-
mogène et la cavité annulaire. On obtient tout d’abord le résultat de l’intégrale

I7(u, v; x0, y0) =

∫ R

0

∫ 2π

0

drrdφ eiu[y(r,φ)+y0]eiv[x(r,φ)+x0] (E.75)

avec u et v des quantités complexes et (x0, y0) le centre du domaine circulaire. Suivant
une représentation en terme d’harmoniques cylindriques [1], on a

I7(u, v; x0, y0) = eiuy0eivx0

∫ R

0

∫ 2π

0

drrdφ eiur sinφeivr cosφ

= eiuy0eivx0

∫ R

0

∫ 2π

0

drrdφ
+∞∑

j=−∞
Jj(ur)e

jφ

+∞∑

j′=−∞
ij
′
Jj′(vr)e

j′φ

= 2πeiuy0eivx0

∫ R

0

drr
+∞∑

j=−∞
i−jJj(ur)Jj(vr) . (E.76)

Ensuite, suivant l’identité de Graf [1], on a directement

I7(u, v; x0, y0) = 2πeiuy0eivx0

∫ R

0

drr J0(
√
u2 + v2r)

= 2πeiuy0eivx0
1

u2 + v2

∫ √u2+v2R

0

dρρ J0(ρ)

= 2πeiuy0eivx0
R√

u2 + v2
J1(
√
u2 + v2R) (E.77)

où la relation de récurrence J ′1(z) = J0(z) − z−1J1(z) a été utilisée [1]. Pour le disque
homogène de rayon R0 et d’indice nc centré à (x0, y0) = (0, d + R0) dans un milieu
d’indice no, on a
∫ +∞

−∞
dx′ χ(x′)ei2βx

′
= |A|2 cos2

(
γ
w

2

)
(n2

c − n2
o)

∫ R0

0

∫ 2π

0

drrdφ e−2α[y(r,φ)+(d+R0)]ei2βx(r,φ)

= |A|2 cos2
(
γ
w

2

)
(n2

c − n2
o)I7(i2α, 2β; 0, d+R0)

= |A|2 cos2
(
γ
w

2

)
(n2

c − n2
o)e
−2α(R0+d) 2πR0

ξ
J1(ξR0) .

(E.78)

avec ξ = 2
√
−α2 + β2.

Lorsque β = 0, alors J1(±iz) = iI1(±z), et comme I1(±z) = ±I1(z), le choix de la
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branche de la racine n’a pas d’importance et le résultat de l’intégrale est réel et positif
(nc > no). I1(z) dénote la fonction de Bessel modifiée [1].

Pour une cavité annulaire dont le défaut circulaire de rayon r0 et d’indice nh est situé
à (xh, yh) (le défaut est inclus à l’intérieur du disque décrit plus haut), on a

∫ +∞

−∞
dx′ χ(x′)ei2βx

′
= |A|2 cos2

(
γ
w

2

)
(n2

c − n2
o)2πe−2α(R0+d)R0

ξ
J1(ξR0)

−|A|2 cos2
(
γ
w

2

)
(n2

c − n2
h)2πe−2αyhei2βxh

r0

ξ
J1(ξr0)

= |A|2 cos2
(
γ
w

2

) 2π

ξ
×

[
(n2

c − n2
o)R0e−2α(R0+d)J1(ξR0)

−(n2
c − n2

h)r0e−2αyhei2βxhJ1(ξr0)
]

. (E.79)
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Fig. E.12 Convergence de I5 et I6 en fonction de ξ = κx̃ pour deux valeurs de m. Les traits bleus
continus sont associés à I50 et I60 alors que les traits bleus discontinus correspondent aux termes
correctifs ε5 et ε6. La ligne verte verticale indique la position ξ = m.
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Annexe F

Fonctions de Green

Cette annexe présente le calcul de la fonction de Green libre de l’équation de Helmholtz
2D, et les différentes fonctions de Green sortantes pour le disque diélectrique homogène.
On utilise la propriété de symmétrie de la fonction de Green sous inversion des positions
de la source et du point d’observation pour réduire le nombre de cas à considérer pour
le disque homogène.

F.1 Fonction de Green libre en 2D

La fonction de Green libre en 2D de l’équation de Helmholtz pour un milieu diélectrique
satisfait

∇2
rG0(r, r′; k) + n2k2G0(r, r′; k) = δ(r− r′) (F.1)

où δ(r− r′) agit en tant que point source de courant à r′ et n2 est la constante diélec-
trique. Sous transformation de coordonnées, R = r − r′, l’équation de Helmholtz
devient

∇2
RG0(R, 0; k) + n2k2G0(R, 0; k) = δ(R) . (F.2)

On suppose maintenant qu’il soit possible de développer G0(R, 0; k) en tant que trans-
formée de Fourier de G̃0(q, 0; k)

G0(R, 0; k) =
1

(2π)2

∫
d2q exp [−iq ·R] G̃0(q, 0; k) . (F.3)

Par conséquent, on a

(
∇2

R + n2k2
) ∫

d2q exp [−iq ·R] G̃0(q, 0; k) =

∫
d2q exp [−iq ·R] δ(R) (F.4)



F.1. Fonction de Green libre en 2D

d’où l’on tire
G̃0(q, 0; k) =

1

−q2 + n2k2
, (F.5)

pour la transformée de Fourier de la fonction de Green.

La transformée inverse s’écrit alors

G0(R, 0; k) =
1

(2π)2

∫
d2q exp [−iq ·R]

1

−q2 + n2k2

=
1

(2π)2

∫ ∞

0

dq
q

−q2 + n2k2

∫ 2π

0

dθ exp [−iqR cos θ] . (F.6)

D’après l’équation (8.411.1) de [50], l’intégrale sur l’angle polaire est simplement une
représentation de la fonction de Bessel J0(qR). Ainsi,

G0(R, 0; k) =
1

2π

∫ ∞

0

dq
qJ0(qR)

−q2 + n2k2
. (F.7)

L’intégrande est singulier à q = nk, de sorte que l’intégrale comme telle soit mal définie.
En définissant iβε = i(−ink + ε) sous la limite ε → 0+ (la singularité est déplacée de
l’axe réel positif vers le premier quadrant du plan complexe), on obtient

G0(R, 0; k) = lim
ε→0+

− 1

2π

∫ ∞

0

dq
qJ0(qR)

q2 + β2
ε

. (F.8)

Selon l’équation (6.532.4) de [50] (sous la condition Re{βε > 0}), l’intégrale (F.8) est
la fonction de Bessel modifiée K0(βεR). Finalement, suite à l’identité (8.407.1) de [50]
(K0(z) = iπ/2 H

(1)
0 (iz), −π < argz ≤ π/2) et l’évaluation de la limite, on trouve

G+
0 (r, r′; k) = − i

4
H

(1)
0 (nk|r− r′|). (F.9)

Cette solution est définie pour ε > 0 et est représentative d’une onde sortante au champ
lointain (partant de la source comme origine).

Si −iβε = −i(+ink+ε) pour ε→ 0+, alors la singularité est déplacée vers le 4e quadrant
du plan complexe, mais l’équation (F.8) demeure vraie. Comme ε > 0, la solution de
l’intégrale demeure la même, mais l’identité entre la fonction de Bessel modifiée et les
fonctions de Hankel renvoie plutôt

G−0 (r, r′; k) = +
i

4
H

(2)
0 (nk|r− r′|) (F.10)

qui correspond cette fois, au champ lointain, à une onde entrante au “puits” à r′.
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F.2 Fonctions de Green du disque homogène

A l’aide de l’identité de Graf [1] pour développer la fonction de Hankel d’ordre 0,

H
(1)
0 (nk|r− r′|) =





+∞∑

m=−∞
Jm(nkr′)H(1)

m (nkr)eim(φ−φ′) , r′ < r

+∞∑

m=−∞
Jm(nkr)H

(1)
m (nkr′)eim(φ′−φ) , r′ > r

, (F.11)

on pourra exprimer la fonction de Green sortante (F.9) dans les différentes régions de
l’espace possédant un indice de réfraction constant.

Le système d’intérêt est un disque diélectrique de rayon R0 et d’indice nc plongé dans
un milieu d’indice no. On se rappelle que la source ponctuelle est située en r′. Tout
dépendant de la position de cette source (à l’intérieur ou à l’extérieur du disque) et de
sa position relative au point d’observation r, six cas différents peuvent être identifiés
(Fig. F.1) dont deux seront par contre identiques sous échange simultané de r ↔ r′.

Pour une source localisée à l’intérieur du disque, r′ < R0, on aura une fonction de Green
intérieure pour r ≤ R0

Gcc(r, r
′) =

∑

m

acm

[
Jm(nckr

′)e−imφ
′
]
Jm(nckr)e

imφ +G+
0 (r, r′) (F.12)

et une fonction de Green extérieure pour r ≥ R0

Gco(r, r
′) =

∑

m

bcm

[
Jm(nckr

′)e−imφ
′
]
H(1)
m (nokr)e

imφ . (F.13)

Pour une source localisée à l’extérieur de la cavité, r′ > R0, on aura une fonction de
Green intérieure pour r ≤ R0

Goc(r, r
′) =

∑

m

aom

[
H(1)
m (nokr

′)e−imφ
′
]
Jm(nckr)e

imφ (F.14)

et une fonction de Green extérieure pour r ≥ R0

Goo(r, r
′) =

∑

m

bom

[
H(1)
m (nokr

′)e−imφ
′
]
H(1)
m (nokr)e

imφ +G+
0 (r, r′). (F.15)

Puisque de façon tout à fait générale [116], les fonctions de Green G(r, r′) seront
symétriques sous interchange de r ↔ r′, en autant que r et r′ sont dans les mêmes
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régions de l’espace, on s’attend donc que Gcc(r, r
′) = Gcc(r

′, r) et Goo(r, r
′) = Goo(r

′, r).
Ceci élimine, tel que mentionné, 2 cas de positions relatives de la source et du point
d’observation, i.e. les cas r < r′ et r > r′ mènent à des expressions identiques pour r ≤
R0 et r ≥ R0 respectivement. De plus, l’échange de la source et du point d’observation
doit mener au même résultat physique pour une source et un point d’observation situés
de part et d’autre de la frontière du disque, i.e. que Gco(r, r

′) = Goc(r
′, r). Ces con-

ditions imposent nécessairement des relations entre les coefficients des développements
(F.12-F.15). On vérifiera explicitement qu’il en est bien ainsi une fois les expressions
des coefficients obtenues.

Les coefficients {ac,om} et {bc,om} sont obtenus par l’application des conditions aux
frontières habituelles. Pour la polarisation TM (continuité de la fonction et de sa
première dérivée) et pour r′ < R0, on obtient directement 1

(TM) acm = − 1

4i

[
ncH

(1)
m (Zo)H

(1)′
m (Zc)− noH(1)′

m (Zo)H
(1)
m (Zc)

ncH
(1)
m (Zo)J ′m(Zc)− noH(1)′

m (Zo)Jm(Zc)

]
(F.16)

(TM) bcm = +
1

4i

[
ncH

(1)
m (Zc)J

′
m(Zc)− ncH(1)′

m (Zc)Jm(Zc)

ncH
(1)
m (Zo)J ′m(Zc)− noH(1)′

m (Zo)Jm(Zc)

]
(F.17)

= − 1

2πkR0

[
1

ncH
(1)
m (Zo)J ′m(Zc)− noH(1)′

m (Zo)Jm(Zc)

]
(F.18)

alors que pour r′ > R0, on a

(TM) aom = +
1

4i

[
noH

(1)
m (Zo)J

′
m(Zo)− noH(1)′

m (Zo)Jm(Zo)

ncH
(1)
m (Zo)J ′m(Zc)− noH(1)′

m (Zo)Jm(Zc)

]
(F.19)

= − 1

2πkR0

[
1

ncH
(1)
m (Zo)J ′m(Zc)− noH(1)′

m (Zo)Jm(Zc)

]
(F.20)

(TM) bom = − 1

4i

[
ncJm(Zo)J

′
m(Zc)− noJm(Zc)J

′
m(Zo)

ncH
(1)
m (Zo)J ′m(Zc)− noH(1)′

m (Zo)Jm(Zc)

]
(F.21)

avec Zc = nckR0, Zo = nokR0.

Pour la polarisation TE (continuité de la fonction et de sa dérivée normale pondérée

1Le Wronskien suivant est utile lors des simplifications

W [H(1)
m (z), Jm(z)] = iW [Ym(z), Jm(z)] = − 2i

πz
.
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par l’indice de réfraction) et pour r′ < R0, on obtient de même manière

(TE) acm = − 1

4i

[
n−1
c H

(1)
m (Zo)H

(1)′
m (Zc)− n−1

o H
(1)′
m (Zo)H

(1)
m (Zc)

n−1
c H

(1)
m (Zo)J ′m(Zc)− n−1

o H
(1)′
m (Zo)Jm(Zc)

]
(F.22)

(TE) bcm = +
1

4i

[
n−1
c H

(1)
m (Zc)J

′
m(Zc)− n−1

c H
(1)′
m (Zc)Jm(Zc)

n−1
c H

(1)
m (Zo)J ′m(Zc)− n−1

o H
(1)′
m (Zo)Jm(Zc)

]
(F.23)

= − 1

2πn2
ckR0

[
1

n−1
c H

(1)
m (Zo)J ′m(Zc)− n−1

o H
(1)′
m (Zo)Jm(Zc)

]
(F.24)

alors que pour r′ > R0, on a

(TE) aom = +
1

4i

[
n−1
o H

(1)
m (Zo)J

′
m(Zo)− n−1

o H
(1)′
m (Zo)Jm(Zo)

n−1
c H

(1)
m (Zo)J ′m(Zc)− n−1

o H
(1)′
m (Zo)Jm(Zc)

]
(F.25)

= − 1

2πn2
okR0

[
1

n−1
c H

(1)
m (Zo)J ′m(Zc)− n−1

o H
(1)′
m (Zo)Jm(Zc)

]
(F.26)

(TE) bom = − 1

4i

[
n−1
c Jm(Zo)J

′
m(Zc)− n−1

o Jm(Zc)J
′
m(Zo)

n−1
c H

(1)
m (Zo)J ′m(Zc)− n−1

o H
(1)′
m (Zo)Jm(Zc)

]
. (F.27)

Grâce aux relations

H(1)
m (z) = (−1)mH

(1)
−m(z) et Jm(z) = (−1)m J−m(z), (F.28)

on conclut d’abord que ac,om = ac,o−m et bc,om = bc,o−m, et ensuite que les relations
de symétrie énoncées plus haut pour les fonctions de Green sont bien respectées. Fi-
nalement, la relation de réciprocité Gco(r, r

′) = Goc(r
′, r) est aussi satisfaite puisque

bcm = aom.
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(a) Gcc(r, r′) (b) Gcc(r′, r)

(c) Goo(r, r′) (d) Goo(r′, r)

(e) Gco(r, r′) (f) Goc(r, r′)

Fig. F.1 Représentation des positions de la source r′ et du point d’observation r des six cas de fonction
de Green pour le disque homogène (disque gris). Sous échange des positions r et r′, les situations
présentées aux figures (a) et (b), et (c) et (d) sont équivalentes pour les fonctions de Green. La même
équivalence peut être établie entre Gco(r, r′), (e), et Goc(r, r′) , (f).
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