SIAM DS 2021

HETEROGENEOUS EXPOSURE ON HIGHER-ORDER NETWORKS LEADS TO NONLINEAR INFECTION KERNELS

Guillaume St-Onge, Hanlin Sun, Antoine Allard, Laurent Hébert-Dufresne & Ginestra Bianconi

2021/05/23

Département de physique, de génie physique, et d'optique Université Laval, Québec, Canada

Biological contagion modeling

Standard epidemiolocial models predict exponential growth

For a whole population, with *I* the fraction of infectious,

$$\frac{\mathrm{d}I}{\mathrm{d}t} \approx \lambda I \qquad (I \ll 1)$$

$$\implies I \propto e^{\lambda t}$$

1

Biological contagion modeling

Standard epidemiolocial models predict exponential growth

For a whole population, with *I* the fraction of infectious,

$$\frac{\mathrm{d}I}{\mathrm{d}t} \approx \lambda \, \, \boldsymbol{I} \qquad \qquad (I \ll 1)$$

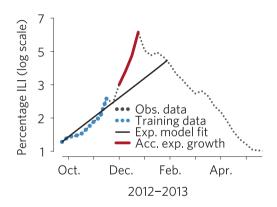
$$\implies I \propto \, \boldsymbol{e}^{\lambda t}$$

But this is because we assume that the risk of infection is linear

$$\theta(I) \propto I$$

1

Superexponential spread of Influenza-Like-Illness ¹



^{1.} Scarpino, S. V., Allard, A., & Hébert-Dufresne, L. (2016). The effect of a prudent adaptive behaviour on disease transmission. Nature Physics, 12(11), 1042-1046.

 $\theta(I) \propto I$

- (i) Why assume linearity?
- (ii) When is linearity valid?
- (iii) What other forms could it take?

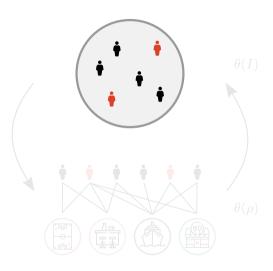
$$\theta(I) \propto I$$

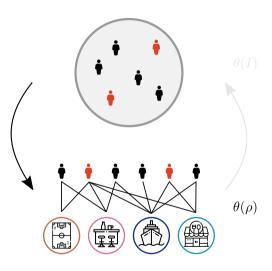
- (i) Why assume linearity?
- (ii) When is linearity valid?
- (iii) What other forms could it take?

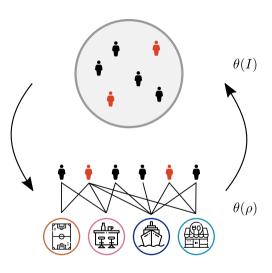
Take-home message

(iii) : For not too small I and heterogeneous exposure, we should consider

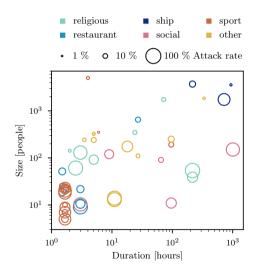
$$\theta(I) \propto I^{\nu} \quad \text{with } \nu \in \mathbb{R}^+$$







Framework for contagion at the level of environments

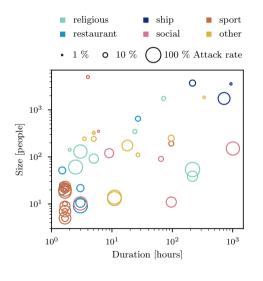


Model properties

- 1. Explicit group interactions in *environments*
- 2. Heterogeneous temporal patterns
 - Participation time τ

$$P(\tau) \propto \tau^{-\alpha - 1}$$

Framework for contagion at the level of environments



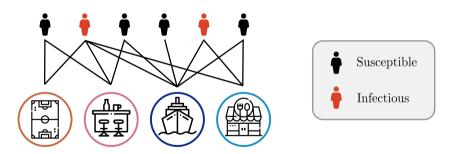
Model properties

- 1. Explicit group interactions in *environments*
- 2. Heterogeneous temporal patterns
 - ightharpoonup Participation time au

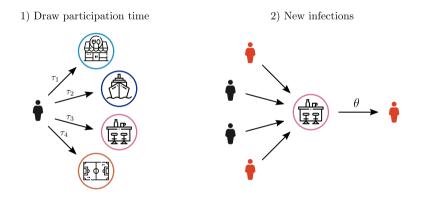
$$P(\tau) \propto \tau^{-\alpha - 1}$$

3. Minimal infective dose

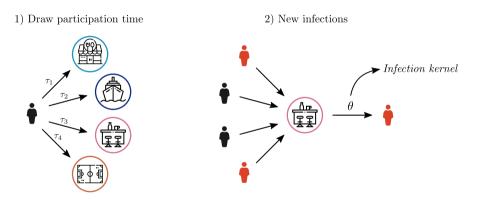
Property # 1 : Explicit group interactions – bipartite structure



Property # 2: heterogeneous temporal patterns – discrete-time contagion



Property # 2: heterogeneous temporal patterns – discrete-time contagion



 θ : probability of infection (per environment) during one time step

Property #3: minimal infective dose

- Our immune system is able to fight mild challenges
- A certain minimal dose of virus or bacteria is required to trigger an infection

Property #3: minimal infective dose

- Our immune system is able to fight mild challenges
- A certain minimal dose of virus or bacteria is required to trigger an infection
- *Threshold models*

VOLUME 92, NUMBER 21

PHYSICAL REVIEW LETTERS

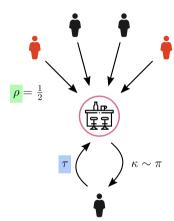
week ending 28 MAY 2004

Universal Behavior in a Generalized Model of Contagion

Peter Sheridan Dodds^{1,*} and Duncan J. Watts^{2,3,†}

Infection through dose accumulation

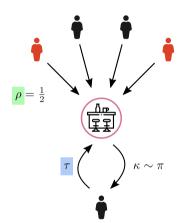
- \bigcirc The fraction of infectious participants is ρ
- \bigcirc Individual receives a dose $\kappa \sim \pi(\kappa; \rho, \tau)$



Infection through dose accumulation

- \bigcirc The fraction of infectious participants is ρ
- \bigcirc Individual receives a dose $\kappa \sim \pi(\kappa; \rho, \tau)$
- The mean dose received is

$$\langle \kappa \rangle \propto \rho \tau$$



Infection through dose accumulation

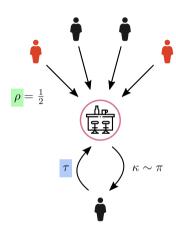
- \bigcirc The fraction of infectious participants is ρ
- \bigcirc Individual receives a dose $\kappa \sim \pi(\kappa; \rho, \tau)$
- The mean dose received is

$$\langle \kappa \rangle \propto \rho \tau$$

 \bigcirc An infection is triggered if $\kappa \geq K$, with probability

$$\bar{\Pi}(K; \rho, \tau) = \int_{K}^{\infty} \pi(\kappa; \rho, \tau) d\kappa$$

$$\neq \theta$$



Universal nonlinear infection kernel

The infection kernel is

$$\theta(\rho) = \int P(\tau) \bar{\Pi}(K; \rho, \tau) d\tau .$$

Universal nonlinear infection kernel

The infection kernel is

$$\theta(\rho) = \int P(\tau) \bar{\Pi}(K; \rho, \tau) d\tau$$
.

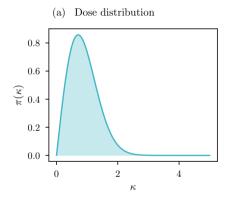
Assuming:

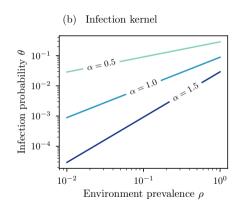
- 1. $P(\tau) \propto \tau^{-\alpha}^{-1}$;
- 2. Some technical conditions for the asymptotic analysis;

for a large class of dose distribution π , we recover the *universal* infection kernel

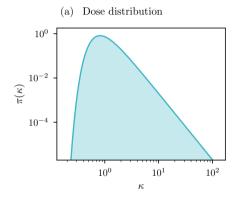
$$\theta(\rho) \propto \rho^{\alpha}$$

Weibull dose distribution





Fréchet dose distribution





When is linearity valid at the level of environments?

$$\alpha = 1$$
 $[P(\tau) \propto \tau^{-\alpha - 1}]$

- \bigcirc π is a Poisson distribution and K=1
- Some other limit cases

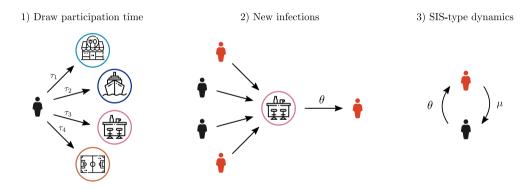
When is linearity valid at the level of environments?

$$\alpha = 1$$
 $[P(\tau) \propto \tau^{-\alpha - 1}]$

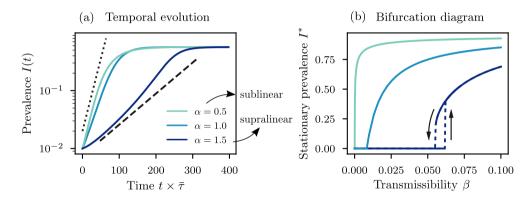
- \bigcirc π is a Poisson distribution and K=1
- Some other limit cases

LINEAR INFECTION KERNELS ARE THE **EXCEPTION** RATHER THAN THE NORM

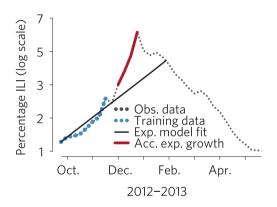
Consequences of nonlinear infection kernel



Superexponential spread and discontinuous phase transition



Superexponential spread of Influenza-Like-Illness²



^{2.} Scarpino, S. V., Allard, A., & Hébert-Dufresne, L. (2016). The effect of a prudent adaptive behaviour on disease transmission. Nature Physics, 12(11), 1042-1046.

Maybe we shouldn't, maybe we should adopt more general forms.

Maybe we shouldn't, maybe we should adopt more general forms.

At the level of environments, we found

$$\theta(\rho) \propto \rho^{\nu} \quad \text{with } \nu \in \mathbb{R}^+$$

Maybe we should adopt more general forms.

At the level of *environments*, we found

$$\theta(\rho) \propto \rho^{\nu} \quad \text{with } \nu \in \mathbb{R}^+$$

If we coarse-grain at the level of a whole population,

$$\theta(I) \propto \begin{cases} I & \text{if } I \ll 1 \\ I^{\nu} & \text{otherwise} \end{cases}$$

For a standard SIR model, this could look like

$$\frac{\mathrm{d}I}{\mathrm{d}t} \approx \beta(1-I) \left| \theta(I) \right| - \mu I ,$$

Aknowledgments

Thanks to my collaborators

Hanlin Sun, Antoine Allard, Laurent Hébert-Dufresne & Ginestra Bianconi

Preprint

arXiv:2101.07229

Funding and computational resources

APPENDIX

Mathematical description for $N \to \infty$

We track $\rho_k(t)$ the fraction of infected nodes of membership k using

$$\rho_k(t+1) = (1-\mu)\rho_k(t) + (1-\rho_k(t))\Theta_k ,$$

where

$$\Theta_k(\bar{\rho}) = 1 - [1 - \bar{\theta}(\bar{\rho})]^k , \quad \bar{\rho}(t) = \sum_k \rho_k(t) \frac{k\tilde{P}(k)}{\langle k \rangle} , \quad \bar{\theta}(\bar{\rho}) = \sum_m \bar{\theta}_m(\bar{\rho}) \frac{m\hat{P}(m)}{\langle m \rangle} ,$$

and

$$\bar{\theta}_m(\bar{\rho}) = \sum_{i=0}^{m-1} {m-1 \choose i} \bar{\rho}^i (1-\bar{\rho})^{m-1-i} \theta_m \left(\frac{i}{m-1}\right).$$