Firing rate distributions in plastic networks of spiking neurons

Marina Vegué Antoine Allard Patrick Desrosiers

Dynamica Research Group Université Laval, Québec, Canada

Neuronal network

Neuronal network

Neuronal activity

Network structure

Activity distribution

This problem has been studied^{*} for networks with

a fixed in/out-degree distribution

and

homogeneous and constant weights: $w_{ij}(t) = w$ for all i, j, t

* N. Brunel. J Comput Neurosci, 8(3): 183-208, 2000

A. Roxin et al. J Neurosci, 31(45): 16217-16226, 2011

M. Vegué and A. Roxin. Phys Rev E, 100(2): 022208, 2019

Goal:

from

the neuronal dynamics the connectivity structure the plasticity rule

infer

the stationary distribution of firing rates

Isolated neuron

Isolated neuron

- $\nu \qquad \text{firing rate}$
- K in-degree
- w_i synaptic weight of *i*-th input
- ν_i firing rate of *i*-th input

$$\nu = \phi(\mu, \sigma)$$

- ν firing rate
- K in-degree
- w_i synaptic weight of *i*-th input
- ν_i firing rate of *i*-th input

$$\nu = \phi(\mu, \sigma)$$

- $\nu \qquad \text{firing rate}$
- K in-degree
- w_i synaptic weight of *i*-th input
- ν_i firing rate of *i*-th input

$$\nu = \phi(\mu, \sigma)$$

$$\begin{pmatrix} \mu \\ \sigma^2 \end{pmatrix} = \sum_{i=1}^{K} \begin{pmatrix} w_i \nu_i \\ w_i^2 \nu_i \end{pmatrix} \approx K \begin{pmatrix} m_\mu \\ m_\sigma \end{pmatrix} + \sqrt{K} \begin{pmatrix} W \\ Z \end{pmatrix}$$
$$\begin{pmatrix} W \\ Z \end{pmatrix} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}), \quad \mathbf{\Sigma} = \begin{pmatrix} s_\mu^2 & c_{\mu\sigma} \\ c_{\mu\sigma} & s_\sigma^2 \end{pmatrix}$$

- $\nu \qquad \text{firing rate}$
- K in-degree
- w_i synaptic weight of *i*-th input
- ν_i firing rate of *i*-th input

$$\nu = \phi(\mu, \sigma)$$

$$\begin{pmatrix} \mu \\ \sigma^2 \end{pmatrix} = \sum_{i=1}^{K} \begin{pmatrix} w_i \nu_i \\ w_i^2 \nu_i \end{pmatrix} \approx K \begin{pmatrix} m_\mu \\ m_\sigma \end{pmatrix} + \sqrt{K} \begin{pmatrix} W \\ Z \end{pmatrix}$$
$$\begin{pmatrix} W \\ Z \end{pmatrix} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}), \quad \mathbf{\Sigma} = \begin{pmatrix} s_\mu^2 & c_{\mu\sigma} \\ c_{\mu\sigma} & s_\sigma^2 \end{pmatrix}$$

$$m_{\mu} = \mathbb{E}[w_{i}\nu_{i}]$$

$$m_{\sigma} = \mathbb{E}[w_{i}^{2}\nu_{i}]$$

$$s_{\mu}^{2} = \operatorname{Var}(w_{i}\nu_{i})$$

$$s_{\sigma}^{2} = \operatorname{Var}(w_{i}^{2}\nu_{i})$$

$$c_{\mu\sigma} = \operatorname{Cov}(w_{i}\nu_{i}, w_{i}^{2}\nu_{i})$$

- $\nu \qquad \text{firing rate}$
- K in-degree
- w_i synaptic weight of *i*-th input
- ν_i firing rate of *i*-th input

$$\nu = \phi(\mu, \sigma)$$

$$\begin{pmatrix} \mu \\ \sigma^2 \end{pmatrix} = \sum_{i=1}^{K} \begin{pmatrix} w_i \nu_i \\ w_i^2 \nu_i \end{pmatrix} \approx K \begin{pmatrix} m_\mu \\ m_\sigma \end{pmatrix} + \sqrt{K} \begin{pmatrix} W \\ Z \end{pmatrix} \qquad \begin{array}{c} m_\mu &= & \mathbb{E}[w_i \nu_i] \\ m_\sigma &= & \mathbb{E}[w_i^2 \nu_i] \\ s_\mu^2 &= & \operatorname{Var}(w_i \nu_i) \\ s_\mu^2 &= & \operatorname{Var}(w_i \nu_i) \\ s_\sigma^2 &= & \operatorname{Var}(w_i^2 \nu_i) \\ c_{\mu\sigma} &s_\sigma^2 \end{pmatrix} \qquad \begin{array}{c} m_\mu &= & \mathbb{E}[w_i \nu_i] \\ m_\sigma &= & \mathbb{E}[w_i^2 \nu_i] \\ s_\mu^2 &= & \operatorname{Var}(w_i \nu_i) \\ s_\sigma^2 &= & \operatorname{Var}(w_i^2 \nu_i) \\ c_{\mu\sigma} &= & \operatorname{Cov}(w_i \nu_i, w_i^2 \nu_i) \end{array}$$

$$\nu = \phi(\mu, \sigma) = \nu \left(\overbrace{K, W, Z}^{\text{random variables}} \underbrace{\mu}_{m_{\mu}, m_{\sigma}, s_{\mu}^{2}, s_{\sigma}^{2}, c_{\mu\sigma}}^{\text{parameters}} \right)$$

- $\nu \qquad \text{firing rate}$
- K in-degree
- w_i synaptic weight of *i*-th input
- ν_i firing rate of *i*-th input

$$\nu = \phi(\mu, \sigma)$$

$$\begin{pmatrix} \mu \\ \sigma^2 \end{pmatrix} = \sum_{i=1}^{K} \begin{pmatrix} w_i \nu_i \\ w_i^2 \nu_i \end{pmatrix} \approx K \begin{pmatrix} m_\mu \\ m_\sigma \end{pmatrix} + \sqrt{K} \begin{pmatrix} W \\ Z \end{pmatrix}$$

$$\begin{array}{c} m_\mu &= \mathbb{E}[w_i \nu_i] \\ m_\sigma &= \mathbb{E}[w_i^2 \nu_i] \\ s_\mu^2 &= \operatorname{Var}(w_i \nu_i) \\ s_\sigma^2 &= \operatorname{Var}(w_i \nu_i) \\ s_\sigma^2 &= \operatorname{Var}(w_i^2 \nu_i) \\ c_{\mu\sigma} &s_\sigma^2 \end{pmatrix}$$

$$\begin{array}{c} W \\ Z \end{pmatrix} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}), \quad \mathbf{\Sigma} = \begin{pmatrix} s_\mu^2 & c_{\mu\sigma} \\ c_{\mu\sigma} & s_\sigma^2 \end{pmatrix} \\ c_{\mu\sigma} &= \operatorname{Cov}(w_i \nu_i, w_i^2 \nu_i) \end{array}$$

- $\nu \qquad \text{firing rate}$
- K in-degree
- w_i synaptic weight of *i*-th input
- ν_i firing rate of *i*-th input

$$\nu = \phi(\mu, \sigma)$$

$$\begin{pmatrix} \mu \\ \sigma^2 \end{pmatrix} = \sum_{i=1}^{K} \begin{pmatrix} w_i \nu_i \\ w_i^2 \nu_i \end{pmatrix} \approx K \begin{pmatrix} m_\mu \\ m_\sigma \end{pmatrix} + \sqrt{K} \begin{pmatrix} W \\ Z \end{pmatrix}$$

$$\begin{array}{ccc} m_\mu & = & \mathbb{E}[w_i \nu_i] \\ m_\sigma & = & \mathbb{E}[w_i^2 \nu_i] \\ s_\mu^2 & = & \operatorname{Var}(w_i \nu_i) \\ s_\sigma^2 & = & \operatorname{Var}(w_i \nu_i) \\ s_\sigma^2 & = & \operatorname{Var}(w_i^2 \nu_i) \\ c_{\mu\sigma} & s_\sigma^2 \end{pmatrix}$$

$$\begin{array}{ccc} W \\ Z \end{pmatrix} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}), \quad \mathbf{\Sigma} & = & \begin{pmatrix} s_\mu^2 & c_{\mu\sigma} \\ c_{\mu\sigma} & s_\sigma^2 \end{pmatrix} \\ c_{\mu\sigma} & = & \operatorname{Cov}(w_i \nu_i, w_i^2 \nu_i) \end{array}$$

An observation...

in-neighbors

in-neighbors out-degree of in-neighbors

in-neighbors out-degree of in-neighbors

in-neighbors out-degree of in-neighbors

The **out-degree** of **in-neighbors tends to be larger** than the out-degree of nodes

 ρ_{K} in-degree density

- $ho_{
 m K}$ in-degree density
- ${oldsymbol{
 ho}}_{{oldsymbol{\kappa}}}^*$ in-degree density of in-neighbors

ρ_K in-degree density
 ρ_K^{}* in-degree density of in-neighbors

Closing the loop

$$m_{\mu} = \mathbb{E}[\nu_i w_i]$$

rate distribution

parameters $m_{\mu}, m_{\sigma}, s^2_{\mu}, s^2_{\sigma}, c_{\mu\sigma}$

plasticity rule dependent on pre-synaptic activity $w'_i(t) = g(w_i(t), \nu_i(t))$ steady state weight-rate relationship $w_i = f(\nu_i)$

$$m_{\mu} = \mathbb{E}[\nu_i w_i]$$

rate distribution

parameters $m_{\mu}, m_{\sigma}, s^2_{\mu}, s^2_{\sigma}, c_{\mu\sigma}$

plasticity rule dependent on pre-synaptic activity $w'_i(t) = g(w_i(t), \nu_i(t))$ steady state weight-rate relationship $w_i = f(\nu_i)$

$$m_{\mu} = \mathbb{E}[\nu_i w_i]$$

 $= \mathbb{E}[\nu_i f(\nu_i)]$

rate distribution

 parameters
$$m_{\mu}, m_{\sigma}, s_{\mu}^2, s_{\sigma}^2, c_{\mu\sigma}$$

$$m_{\mu} = \mathbb{E}[\nu_i w_i]$$

$$= \mathbb{E}[\nu_i f(\nu_i)]$$

$$= \int_{0}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \nu\left(k, w, z, m_{\mu}, m_{\sigma}, s_{\mu}^{2}, s_{\sigma}^{2}, c_{\mu\sigma}\right) f\left(\nu(k, w, z, m_{\mu}, m_{\sigma}, s_{\mu}^{2}, s_{\sigma}^{2}, c_{\mu\sigma})\right) \\ \rho_{K}^{*}(k) \rho_{W,Z}(w, z) \,\mathrm{d}w \,\mathrm{d}z \,\mathrm{d}k$$

rate distribution

 parameters
$$m_{\mu}, m_{\sigma}, s_{\mu}^2, s_{\sigma}^2, c_{\mu\sigma}$$

$$m_{\mu} = \mathbb{E}[\nu_i w_i]$$

$$= \mathbb{E}[\nu_i f(\nu_i)]$$

$$= \int_{0}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \nu\left(k, w, z, m_{\mu}, m_{\sigma}, s_{\mu}^{2}, s_{\sigma}^{2}, c_{\mu\sigma}\right) f\left(\nu(k, w, z, m_{\mu}, m_{\sigma}, s_{\mu}^{2}, s_{\sigma}^{2}, c_{\mu\sigma})\right) \\ \rho_{K}^{*}(k) \rho_{W,Z}(w, z) \,\mathrm{d}w \,\mathrm{d}z \,\mathrm{d}k$$

$$= F_{\mu}\left(m_{\mu}, m_{\sigma}, s_{\mu}^2, s_{\sigma}^2, c_{\mu\sigma}\right)$$

$$m_{\mu} = F_{\mu} \left(m_{\mu}, m_{\sigma}, s_{\mu}^2, s_{\sigma}^2, c_{\mu\sigma} \right)$$

$$m_{\mu} = F_{\mu} \left(m_{\mu}, m_{\sigma}, s_{\mu}^{2}, s_{\sigma}^{2}, c_{\mu\sigma} \right)$$

$$m_{\sigma} = F_{\sigma} \left(m_{\mu}, m_{\sigma}, s_{\mu}^{2}, s_{\sigma}^{2}, c_{\mu\sigma} \right)$$

$$s_{\mu}^{2} = G_{\mu} \left(m_{\mu}, m_{\sigma}, s_{\mu}^{2}, s_{\sigma}^{2}, c_{\mu\sigma} \right)$$

$$s_{\sigma}^{2} = G_{\sigma} \left(m_{\mu}, m_{\sigma}, s_{\mu}^{2}, s_{\sigma}^{2}, c_{\mu\sigma} \right)$$

$$c_{\mu\sigma} = H \left(m_{\mu}, m_{\sigma}, s_{\mu}^{2}, s_{\sigma}^{2}, c_{\mu\sigma} \right)$$

$$\begin{cases} m_{\mu} = F_{\mu} \left(m_{\mu}, m_{\sigma}, s_{\mu}^{2}, s_{\sigma}^{2}, c_{\mu\sigma} \right) \\ m_{\sigma} = F_{\sigma} \left(m_{\mu}, m_{\sigma}, s_{\mu}^{2}, s_{\sigma}^{2}, c_{\mu\sigma} \right) \\ s_{\mu}^{2} = G_{\mu} \left(m_{\mu}, m_{\sigma}, s_{\mu}^{2}, s_{\sigma}^{2}, c_{\mu\sigma} \right) \\ s_{\sigma}^{2} = G_{\sigma} \left(m_{\mu}, m_{\sigma}, s_{\mu}^{2}, s_{\sigma}^{2}, c_{\mu\sigma} \right) \\ c_{\mu\sigma} = H \left(m_{\mu}, m_{\sigma}, s_{\mu}^{2}, s_{\sigma}^{2}, c_{\mu\sigma} \right) \end{cases}$$

rate distribution
$$\swarrow$$
 parameters $m_{\mu}, m_{\sigma}, s_{\mu}^2, s_{\sigma}^2, c_{\mu\sigma}$

$$\begin{pmatrix}
m_{\mu} = F_{\mu} (m_{\mu}, m_{\sigma}, s_{\mu}^{2}, s_{\sigma}^{2}, c_{\mu\sigma}) \\
m_{\sigma} = F_{\sigma} (m_{\mu}, m_{\sigma}, s_{\mu}^{2}, s_{\sigma}^{2}, c_{\mu\sigma}) \\
s_{\mu}^{2} = G_{\mu} (m_{\mu}, m_{\sigma}, s_{\mu}^{2}, s_{\sigma}^{2}, c_{\mu\sigma}) \\
s_{\sigma}^{2} = G_{\sigma} (m_{\mu}, m_{\sigma}, s_{\mu}^{2}, s_{\sigma}^{2}, c_{\mu\sigma}) \\
c_{\mu\sigma} = H (m_{\mu}, m_{\sigma}, s_{\mu}^{2}, s_{\sigma}^{2}, c_{\mu\sigma})
\end{cases}$$

Solve (*) for the unknowns $m_{\mu}, m_{\sigma}, s^2_{\mu}, s^2_{\sigma}, c_{\mu\sigma}$

Once the parameters $m_{\mu}, m_{\sigma}, s^2_{\mu}, s^2_{\sigma}, c_{\mu\sigma}$ are computed:

Once the parameters $m_{\mu}, m_{\sigma}, s_{\mu}^2, s_{\sigma}^2, c_{\mu\sigma}$ are computed:

the distribution of K and (W, Z) is known

and

the firing rate of a neuron with K = k, (W = w, Z = z)can be computed through $\nu = \nu \left(k, w, z, m_{\mu}, m_{\sigma}, s_{\mu}^2, s_{\sigma}^2, c_{\mu\sigma}\right)$ Once the parameters $m_{\mu}, m_{\sigma}, s^2_{\mu}, s^2_{\sigma}, c_{\mu\sigma}$ are computed:

 $\begin{array}{l} \text{ the distribution of } K \text{ and } (W,Z) \text{ is known} \\ \\ \text{ and} \\ \\ \text{ the firing rate of a neuron with } K=k, (W=w,Z=z) \\ \\ \\ \text{ can be computed through} \\ \\ \nu=\nu\left(k,w,z,m_{\mu},m_{\sigma},s_{\mu}^2,s_{\sigma}^2,c_{\mu\sigma}\right) \end{array}$

This allows us to reconstruct the firing rate distribution

Once the parameters $m_{\mu}, m_{\sigma}, s_{\mu}^2, s_{\sigma}^2, c_{\mu\sigma}$ are computed:

This allows us to reconstruct the firing rate distribution

This formalism ...

can be extended to networks

with different neuronal populations with plasticity rules dependent on pre- and post-synaptic activities

and can help to

explore the way in which plasticity shapes activity in neuronal networks