NETWORKS 2021

UNIVERSAL NONLINEAR INFECTION KERNEL FROM

HETEROGENEOUS EXPOSURE ON HIGHER-ORDER NETWORKS

Guillaume St-Onge

2021/07/05

Département de physique, de génie physique, et d'optique Université Laval, Québec, Canada

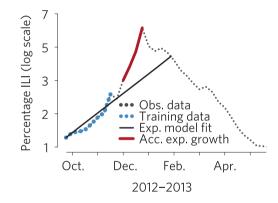
Centre Interdisciplinaire en Modélisation Mathématique de l'Université Laval

Standard epidemiological models predict exponential growth

For a whole population, with *I* the fraction of infectious,

$$\frac{\mathrm{d}I}{\mathrm{d}t} \approx \lambda \ I \qquad (I \ll 1)$$
$$\implies I \propto e^{\lambda t}$$

Standard epidemiological models predict exponential growth

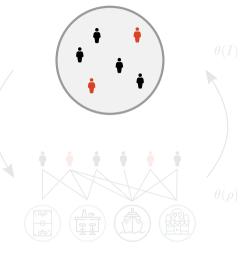

For a whole population, with *I* the fraction of infectious,

$$\frac{\mathrm{d}I}{\mathrm{d}t} \approx \lambda \mathbf{I} \qquad (I \ll 1)$$
$$\implies I \propto e^{\lambda t}$$

But this is because we assume that the risk of infection is *linear*

 $\theta(I) \propto I$

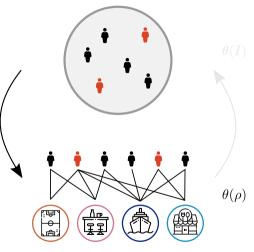
Superexponential spreading of Influenza-Like-Illness



Scarpino, S. V., Allard, A., & Hébert-Dufresne, L. (2016). The effect of a prudent adaptive behaviour on disease transmission. Nature Physics, 12(11), 1042-1046.

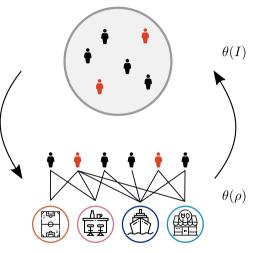
$\theta(I) \propto I$

- (i) Why assume linearity?
- (ii) When is linearity valid?
- (iii) What other forms could it take?


Population level

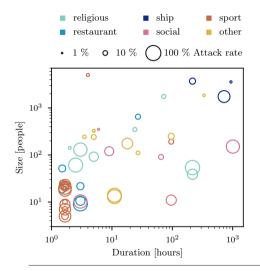
Individual level

Icons made by Freepik from www.flaticon.com


Population level

Individual level

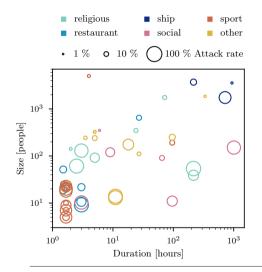
Icons made by Freepik from www.flaticon.com


Population level

Individual level

Icons made by Freepik from www.flaticon.com

Motivation for the framework : superspreading events

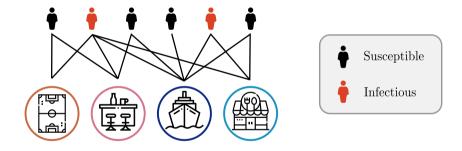


Model properties

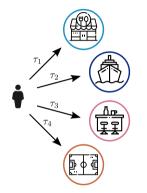
- 1. Explicit group interactions in *environments*
- 2. Heterogeneous temporal patterns

St-Onge, G., Sun, H., Allard, A., Hébert-Dufresne, L., & Bianconi, G. (2021). Universal nonlinear infection kernel from heterogeneous exposure on higher-order networks. arXiv :2101.07229.

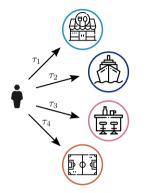
Motivation for the framework : superspreading events



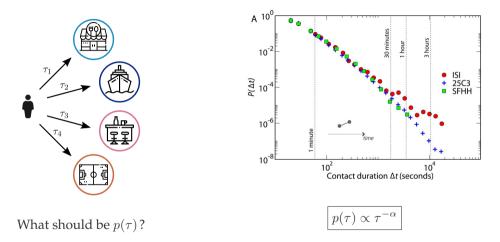
Model properties


- 1. Explicit group interactions in *environments*
- 2. Heterogeneous temporal patterns
- 3. *Minimal infective dose* (threshold model)

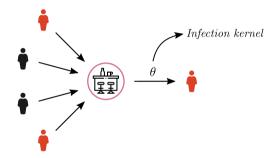
St-Onge, G., Sun, H., Allard, A., Hébert-Dufresne, L., & Bianconi, G. (2021). Universal nonlinear infection kernel from heterogeneous exposure on higher-order networks. arXiv :2101.07229.


Property # 1 : Higher-order interactions – bipartite structure

Property # 2 : heterogeneous temporal patterns



Property # 2 : heterogeneous temporal patterns

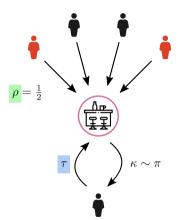

What should be $p(\tau)$?

Property # 2 : heterogeneous temporal patterns

Cattuto, C., Van den Broeck, W., Barrat, A., Colizza, V., Pinton, J. F., & Vespignani, A. (2010). Dynamics of person-to-person interactions from distributed RFID sensor networks. PLOS ONE, 5(7), e11596.

Risk of infection in an environment

 $\boldsymbol{\theta}$: probability of infection (per environment) during one time step

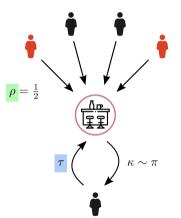

Property #3 : threshold model

○ Individual receives a dose $\kappa \sim \pi(\kappa; \rho, \tau)$

 \bigcirc The fraction of infectious participants is ρ

○ The mean dose received is

$$\langle\kappa
angle\propto~
ho~~ au$$



Property #3 : threshold model

- Individual receives a dose $\kappa \sim \pi(\kappa; \rho, \tau)$
- \bigcirc The fraction of infectious participants is ρ
- The mean dose received is

 $\langle\kappa
angle\propto~
ho~~ au$

- Our immune system is able to fight mild challenges
- \bigcirc A minimal infective dose *K* is required for infection

Universal nonlinear infection kernel

The infection kernel is

$$\theta(\rho) = P(\kappa \ge K) = \int_1^T \int_0^K p(\tau) \pi(\kappa; \rho, \tau) \, \mathrm{d}\kappa \, \mathrm{d}\tau$$

The infection kernel is

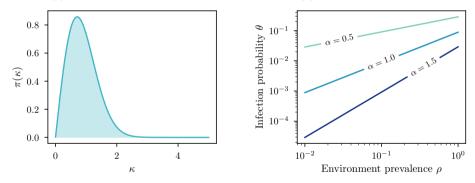
$$\theta(\rho) = P(\kappa \ge K) = \int_1^T \int_0^K p(\tau) \pi(\kappa; \rho, \tau) \, \mathrm{d}\kappa \, \mathrm{d}\tau$$

Assuming :

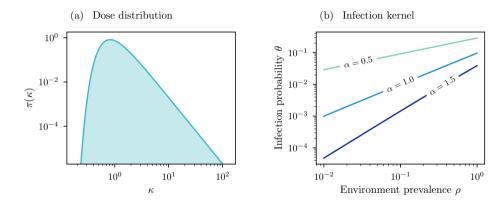
1. $p(\tau) \propto \tau^{-\alpha} - 1;$

2. Some technical conditions for the asymptotic analysis;

for a large class of dose distribution π , we recover the *universal* infection kernel


$$\theta(\rho) \propto \rho^{\alpha}$$

St-Onge, G., Sun, H., Allard, A., Hébert-Dufresne, L., & Bianconi, G. (2021). Universal nonlinear infection kernel from heterogeneous exposure on higher-order networks. arXiv :2101.07229.

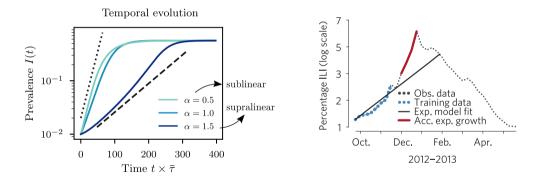

Weibull dose distribution

(a) Dose distribution

(b) Infection kernel

Fréchet dose distribution

When is linearity valid at the *individual level*?


- $\bigcirc \alpha = 1 \quad [P(\tau) \propto \tau^{-\alpha 1}]$
- $\odot~\pi$ is a Poisson distribution and K=1
- \bigcirc Some other limit cases

When is linearity valid at the *individual level*?

- $\bigcirc \alpha = 1 \quad [P(\tau) \propto \tau^{-\alpha 1}]$
- $\odot~\pi$ is a Poisson distribution and K=1
- Some other limit cases

LINEAR INFECTION KERNELS ARE THE EXCEPTION RATHER THAN THE NORM

Supralinear infection kernel lead to superexponential spreading

MAYBE WE SHOULDN'T, maybe we should adopt more general forms.

MAYBE WE SHOULDN'T, maybe we should adopt more general forms. At the *individual level*, we found

 $\theta(\rho) \propto \rho^{\alpha} \quad \text{with } \alpha \in \mathbb{R}^+$

MAYBE WE SHOULDN'T, maybe we should adopt more general forms. At the *individual level*, we found

$$heta(
ho) \propto
ho^lpha \quad ext{with} \ lpha \in \mathbb{R}^+$$

If we coarse grain at the *population level*,

$$heta(I) \propto egin{cases} I & ext{if } I \ll 1 \ I^lpha & ext{otherwise} \end{cases}$$

For a standard SIR model, this could look like

$$\frac{\mathrm{d}I}{\mathrm{d}t} \approx \lambda S \,\theta(I) - \mu I \;,$$

Thanks to my collaborators

Hanlin Sun, Antoine Allard, Laurent Hébert-Dufresne, Ginestra Bianconi

Contact

guillaume.st-onge.4@ulaval.ca
@stonge_g
www.gstonge.ca

Preprint available! arXiv :2101.07229

Funding and computational resources

Fonds de recherche Nature et technologies Ouébec 💀 🕸

