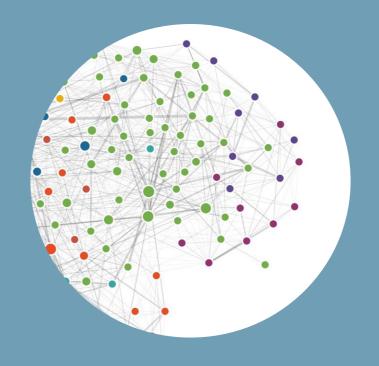
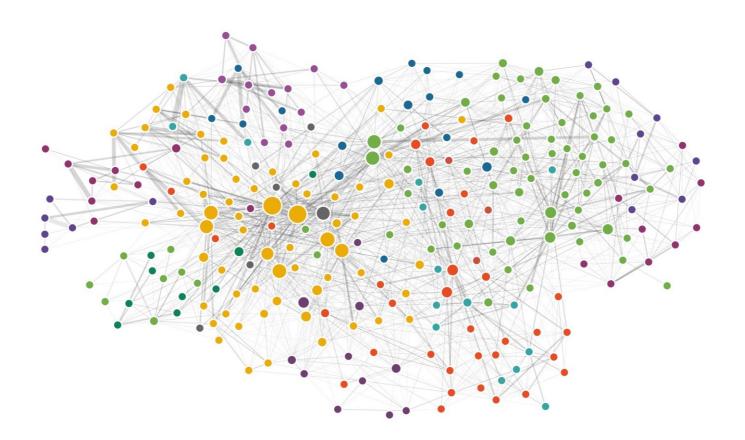
Dimension reduction on heterogeneous networks



Marina Vegué Vincent Thibeault Patrick Desrosiers Antoine Allard

Dynamica Research Group Université Laval, Québec, Canada

Why dimension reduction?



Goal

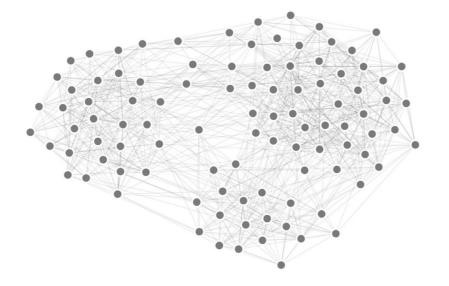
Find a network of reduced size whose dynamics can be used to infer some basic properties of the original, high dimensional, dynamics.

Use it to study systems whose units exhibit **non-symmetric**, **weighted** and **heterogeneous interactions**.

Previous work

Gao et al., Nature, 2016 Jiang et al., PNAS, 2018 Laurence et al., PRX, 2019 Thibeault et al., PRResearch, 2020

N nodes

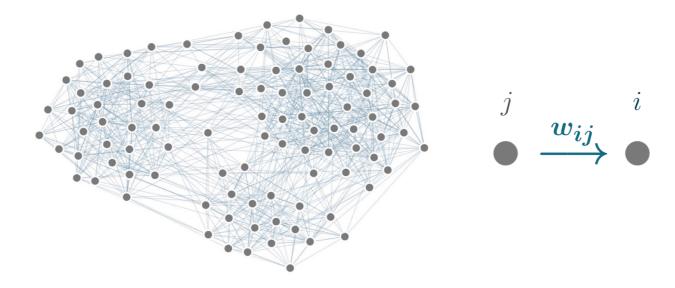


Dynamics
$$\dot{x}_i = f(x)$$

Network

Dynamics
$$\dot{x}_i = f(x_i) + \sum_{j=1}^{N} w_{ij} g(x_i, x_j)$$

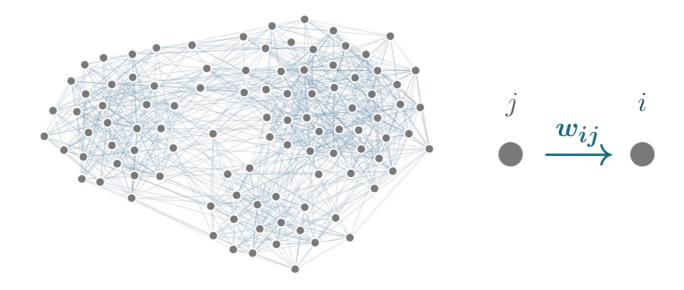
N nodes



Dynamics
$$\dot{x}_i = f(x_i) + \sum_{j=1}^{N} \boldsymbol{w}_{ij} g(x_i, x_j)$$

Network

N nodes



Dynamics

Network

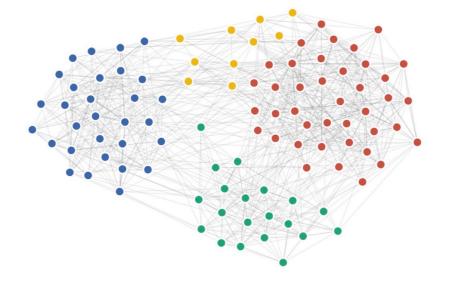
$$\dot{x}_i = f(x_i) + \sum_{j=1}^{N} \boldsymbol{w}_{ij} g(x_i, x_j)$$

$$f(x) = -x$$
$$g(x,y) = \frac{1}{1 + \exp(-\tau(y - \mu))}$$

Additive model (Hopfield, PNAS, 1984)

N nodes

Network



Dynamics
$$\dot{x}_i = f(x_i) + \sum_{j=1}^{N} w_{ij} g(x_i, x_j)$$

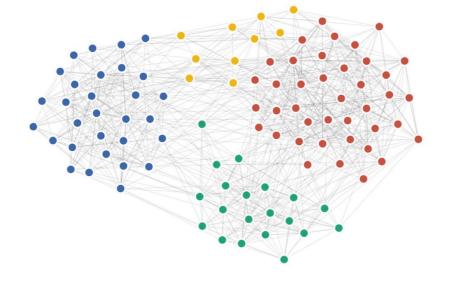
Steps

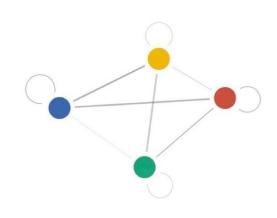
1. Community / group detection

Reduced

N nodes

n nodes





Dynamics

$$\dot{x}_i = f(x_i) + \sum_{j=1}^{N} w_{ij} g(x_i, x_j)$$

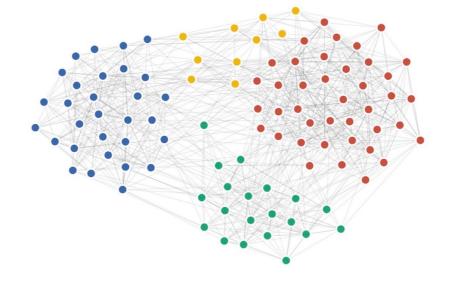
Steps

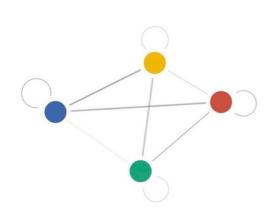
1. Community / group detection

Reduced

N nodes

n nodes





Dynamics

$$\dot{x}_i = f(x_i) + \sum_{j=1}^{N} w_{ij} g(x_i, x_j)$$

$$\dot{x}_i = f(x_i) + \sum_{j=1}^N w_{ij} g(x_i, x_j) \qquad \dot{\mathcal{X}}_{\nu} = f(\mathcal{X}_{\nu}) + \sum_{\rho=1}^n \mathcal{W}_{\nu\rho} g(\mathcal{X}_{\nu}, \mathcal{X}_{\rho})$$

Steps

- 1. Community / group detection
- 2. Define $\{\mathcal{X}_{\nu}, \mathcal{W}_{\nu\rho}\}_{\nu,\rho}$ from $\{x_i, w_{ij}\}_{i,j}$

1. Observables are linear combinations of the node activities within each group

$$\mathcal{X}_{\nu} = \sum_{i=1}^{N} [\boldsymbol{a}_{\nu}]_{i} x_{i}, \quad [\boldsymbol{a}_{\nu}]_{i} = 0 \text{ if } i \notin G_{\nu}, \quad \sum_{i=1}^{N} [\boldsymbol{a}_{\nu}]_{i} = 1$$

1. Observables are linear combinations of the node activities within each group

$$\mathcal{X}_{\nu} = \sum_{i=1}^{N} [\boldsymbol{a}_{\nu}]_{i} x_{i}, \quad [\boldsymbol{a}_{\nu}]_{i} = 0 \text{ if } i \notin G_{\nu}, \quad \sum_{i=1}^{N} [\boldsymbol{a}_{\nu}]_{i} = 1$$

Exact observable dynamics

$$\dot{\mathcal{X}}_{\nu} = \sum_{i=1}^{N} [\mathbf{a}_{\nu}]_{i} f(x_{i}) + \sum_{i,j=1}^{N} [\mathbf{a}_{\nu}]_{i} w_{ij} g(x_{i}, x_{j})$$

$$\mathcal{X}_{\nu} = \sum_{i=1}^{N} [\boldsymbol{a}_{\nu}]_{i} x_{i}, \quad [\boldsymbol{a}_{\nu}]_{i} = 0 \text{ if } i \notin G_{\nu}, \quad \sum_{i=1}^{N} [\boldsymbol{a}_{\nu}]_{i} = 1$$

Exact observable dynamics

$$\dot{\mathcal{X}}_{\nu} = \sum_{i=1}^{N} [\mathbf{a}_{\nu}]_{i} f(x_{i}) + \sum_{i,j=1}^{N} [\mathbf{a}_{\nu}]_{i} w_{ij} g(x_{i}, x_{j})$$

Assume that the activity of each node is *close enough* to the corresponding observable

$$x_i \approx \mathcal{X}_{\nu} \text{ for } i \in G_{\nu}$$

$$\mathcal{X}_{\nu} = \sum_{i=1}^{N} [\boldsymbol{a}_{\nu}]_{i} x_{i}, \quad [\boldsymbol{a}_{\nu}]_{i} = 0 \text{ if } i \notin G_{\nu}, \quad \sum_{i=1}^{N} [\boldsymbol{a}_{\nu}]_{i} = 1$$

$$\dot{\mathcal{X}}_{\nu} = \sum_{i=1}^{N} [\mathbf{a}_{\nu}]_{i} f(x_{i}) + \sum_{i,j=1}^{N} [\mathbf{a}_{\nu}]_{i} w_{ij} g(x_{i}, x_{j})$$

Assume that the activity of each node 2. is *close enough* to the corresponding observable

$$x_i \approx \mathcal{X}_{\nu} \text{ for } i \in G_{\nu}$$

3. For $i \in G_{\nu}, j \in G_{\rho}$, approximate

a)
$$f(x_i) \approx f(\mathcal{X}_{\nu}), g(x_i, x_j) \approx g(\mathcal{X}_{\nu}, \mathcal{X}_{\rho})$$

The observable dynamics becomes closed without imposing any additional condition on $\{a_{\nu}\}_{\nu}$

$$\mathcal{X}_{\nu} = \sum_{i=1}^{N} [\boldsymbol{a}_{\nu}]_{i} x_{i}, \quad [\boldsymbol{a}_{\nu}]_{i} = 0 \text{ if } i \notin G_{\nu}, \quad \sum_{i=1}^{N} [\boldsymbol{a}_{\nu}]_{i} = 1$$

$$\dot{\mathcal{X}}_{\nu} = \sum_{i=1}^{N} [\mathbf{a}_{\nu}]_{i} f(x_{i}) + \sum_{i,j=1}^{N} [\mathbf{a}_{\nu}]_{i} w_{ij} g(x_{i}, x_{j})$$

Assume that the activity of each node is *close enough* to the corresponding observable

$$x_i \approx \mathcal{X}_{\nu} \text{ for } i \in G_{\nu}$$

3. For $i \in G_{\nu}, j \in G_{\rho}$, approximate

a)
$$f(x_i) \approx f(\mathcal{X}_{\nu}), g(x_i, x_j) \approx g(\mathcal{X}_{\nu}, \mathcal{X}_{\rho})$$

The observable dynamics becomes closed without imposing any additional condition on $\{a_{\nu}\}_{\nu}$

b) $f(x_i), g(x_i, x_j)$ by 1st-order Taylor polynomials around $\mathcal{X}_{\nu}, (\mathcal{X}_{\nu}, \mathcal{X}_{\rho})$

Some conditions have to be imposed on $\{a_{\nu}\}_{\nu}$ to close the observable dynamics

$$[\boldsymbol{a}_{\boldsymbol{\nu}}]_i = \begin{cases} 1/|G_{\boldsymbol{\nu}}| & i \in G_{\boldsymbol{\nu}} \\ 0 & i \notin G_{\boldsymbol{\nu}} \end{cases} \qquad \mathcal{W}_{\boldsymbol{\nu}\rho} = \frac{1}{|G_{\boldsymbol{\nu}}|} \sum_{i \in G_{\boldsymbol{\nu}}} \sum_{j \in G_{\rho}} w_{ij}$$

$$[\boldsymbol{a}_{\boldsymbol{\nu}}]_i = \begin{cases} 1/|G_{\boldsymbol{\nu}}| & i \in G_{\boldsymbol{\nu}} \\ 0 & i \notin G_{\boldsymbol{\nu}} \end{cases} \qquad \mathcal{W}_{\boldsymbol{\nu}\rho} = \frac{1}{|G_{\boldsymbol{\nu}}|} \sum_{i \in G_{\boldsymbol{\nu}}} \sum_{j \in G_{\rho}} w_{ij}$$

Homogeneous reduction

$$[\boldsymbol{a}_{\nu}]_{i} = \begin{cases} 1/|G_{\nu}| & i \in G_{\nu} \\ 0 & i \notin G_{\nu} \end{cases} \qquad \mathcal{W}_{\nu\rho} = \frac{1}{|G_{\nu}|} \sum_{i \in G_{\nu}} \sum_{j \in G_{\rho}} w_{ij}$$

Homogeneous reduction

b) Some conditions have to be imposed on $\{a_{\nu}\}_{\nu}$ to close the observable dynamics

$$\boldsymbol{a}_{\nu} = (0, \cdots, 0, \overbrace{*, \cdots, *}^{\widehat{a}_{\nu}}, 0, \cdots, 0)^{T}$$

 $oldsymbol{W}_{
u
ho}$

Interaction matrix from nodes in G_{ρ} to nodes in G_{ν}

 $oldsymbol{K}_{
u
ho}$

Diagonal in-degree matrix of nodes in G_{ν} for interactions coming from G_{ρ}

$$[\boldsymbol{a}_{\nu}]_{i} = \begin{cases} 1/|G_{\nu}| & i \in G_{\nu} \\ 0 & i \notin G_{\nu} \end{cases} \qquad \mathcal{W}_{\nu\rho} = \frac{1}{|G_{\nu}|} \sum_{i \in G_{\nu}} \sum_{j \in G_{\rho}} w_{ij}$$

Homogeneous reduction

b) Some conditions have to be imposed on $\{a_{\nu}\}_{\nu}$ to close the observable dynamics

$$oldsymbol{W_{
u
ho}^T} \widehat{oldsymbol{a}}_{
u} = \mathcal{W}_{
u
ho} \widehat{oldsymbol{a}}_{oldsymbol{
ho}} \qquad \qquad oldsymbol{K_{
u
ho}} \widehat{oldsymbol{a}}_{
u} = \mathcal{W}_{
u
ho} \widehat{oldsymbol{a}}_{oldsymbol{
u}}$$

$$\boldsymbol{a}_{\nu} = (0, \cdots, 0, \overbrace{*, \cdots, *}^{\widehat{a}_{\nu}}, 0, \cdots, 0)^{T}$$

 $W_{\nu\rho}$ Interaction matrix from nodes in G_{ρ} to nodes in G_{ν} $K_{\nu\rho}$ Diagonal in-degree matrix of nodes in G_{ν} for interactions coming from G_{ρ}

$$[\boldsymbol{a}_{\boldsymbol{\nu}}]_i = \begin{cases} 1/|G_{\boldsymbol{\nu}}| & i \in G_{\boldsymbol{\nu}} \\ 0 & i \notin G_{\boldsymbol{\nu}} \end{cases} \qquad \mathcal{W}_{\boldsymbol{\nu}\rho} = \frac{1}{|G_{\boldsymbol{\nu}}|} \sum_{i \in G_{\boldsymbol{\nu}}} \sum_{j \in G_{\rho}} w_{ij}$$

Homogeneous reduction

b) Some conditions have to be imposed on $\{a_{\nu}\}_{\nu}$ to close the observable dynamics

$$oldsymbol{W_{
u
ho}^T} \widehat{a}_{oldsymbol{
u}} = \mathcal{W}_{
u
ho} \widehat{a}_{oldsymbol{
ho}} \hspace{1cm} oldsymbol{K_{
u
ho}} \widehat{a}_{oldsymbol{
u}} = \mathcal{W}_{
u
ho} \widehat{a}_{oldsymbol{
u}}$$

$$K_{oldsymbol{
u}oldsymbol{
ho}}\widehat{a}_{oldsymbol{
u}}=\mathcal{W}_{
u
ho}\widehat{a}_{oldsymbol{
u}}$$

Compatibility equations

$$[\boldsymbol{a}_{\nu}]_{i} = \begin{cases} 1/|G_{\nu}| & i \in G_{\nu} \\ 0 & i \notin G_{\nu} \end{cases} \qquad \mathcal{W}_{\nu\rho} = \frac{1}{|G_{\nu}|} \sum_{i \in G_{\nu}} \sum_{j \in G_{\rho}} w_{ij}$$

Homogeneous reduction

b) Some conditions have to be imposed on $\{a_{\nu}\}_{\nu}$ to close the observable dynamics

$$m{W}_{
u
ho}^T \widehat{a}_
u = \mathcal{W}_{
u
ho} \widehat{a}_{m{
ho}} \qquad m{K}_{
um{
ho}} \widehat{a}_
u = \mathcal{W}_{
u
ho} \widehat{a}_
u$$

Compatibility equations

Spectral reduction

$$[\boldsymbol{a}_{\boldsymbol{\nu}}]_i = \begin{cases} 1/|G_{\boldsymbol{\nu}}| & i \in G_{\boldsymbol{\nu}} \\ 0 & i \notin G_{\boldsymbol{\nu}} \end{cases} \qquad \mathcal{W}_{\boldsymbol{\nu}\rho} = \frac{1}{|G_{\boldsymbol{\nu}}|} \sum_{i \in G_{\boldsymbol{\nu}}} \sum_{j \in G_{\rho}} w_{ij}$$

Homogeneous reduction

b) Some conditions have to be imposed on $\{a_{\nu}\}_{\nu}$ to close the observable dynamics

$$oldsymbol{W}_{
u
ho}^T \widehat{a}_{oldsymbol{
u}} = \mathcal{W}_{
u
ho} \widehat{a}_{oldsymbol{
ho}} \hspace{1cm} oldsymbol{K}_{
u
ho} \widehat{a}_{oldsymbol{
u}} = \mathcal{W}_{
u
ho} \widehat{a}_{oldsymbol{
u}}$$

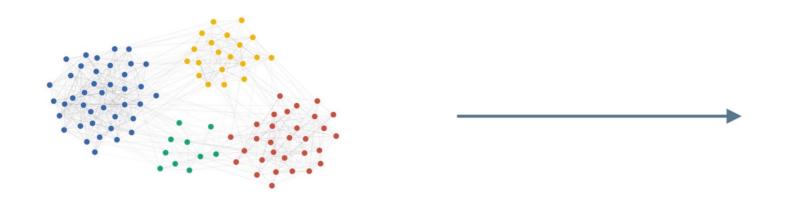
$$oldsymbol{K_{
u
ho}} \widehat{a}_{oldsymbol{
u}} = \mathcal{W}_{
u
ho} \widehat{a}_{oldsymbol{
u}}$$

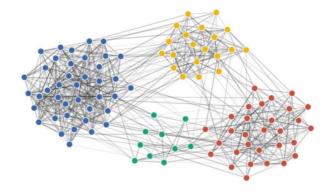
Compatibility equations

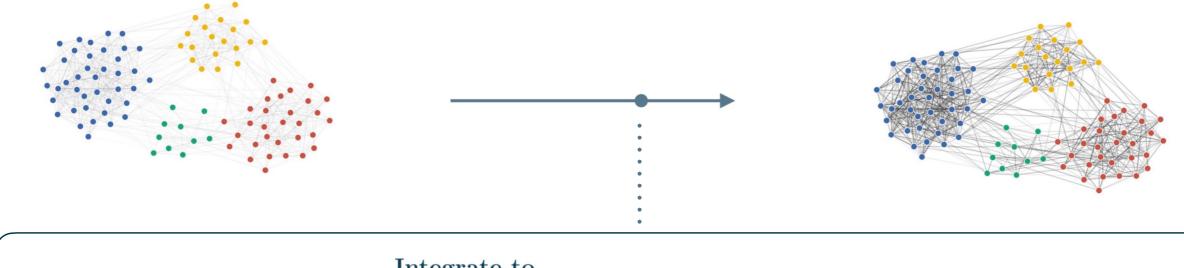
Spectral reduction

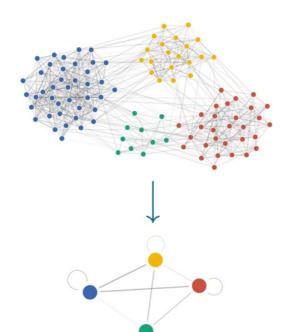
$$\dot{\mathcal{X}}_{\nu} = f(\mathcal{X}_{\nu}) + \sum_{\rho=1}^{n} \mathcal{W}_{\nu\rho} g(\mathcal{X}_{\nu}, \mathcal{X}_{\rho})$$

Approximate reduced dynamics







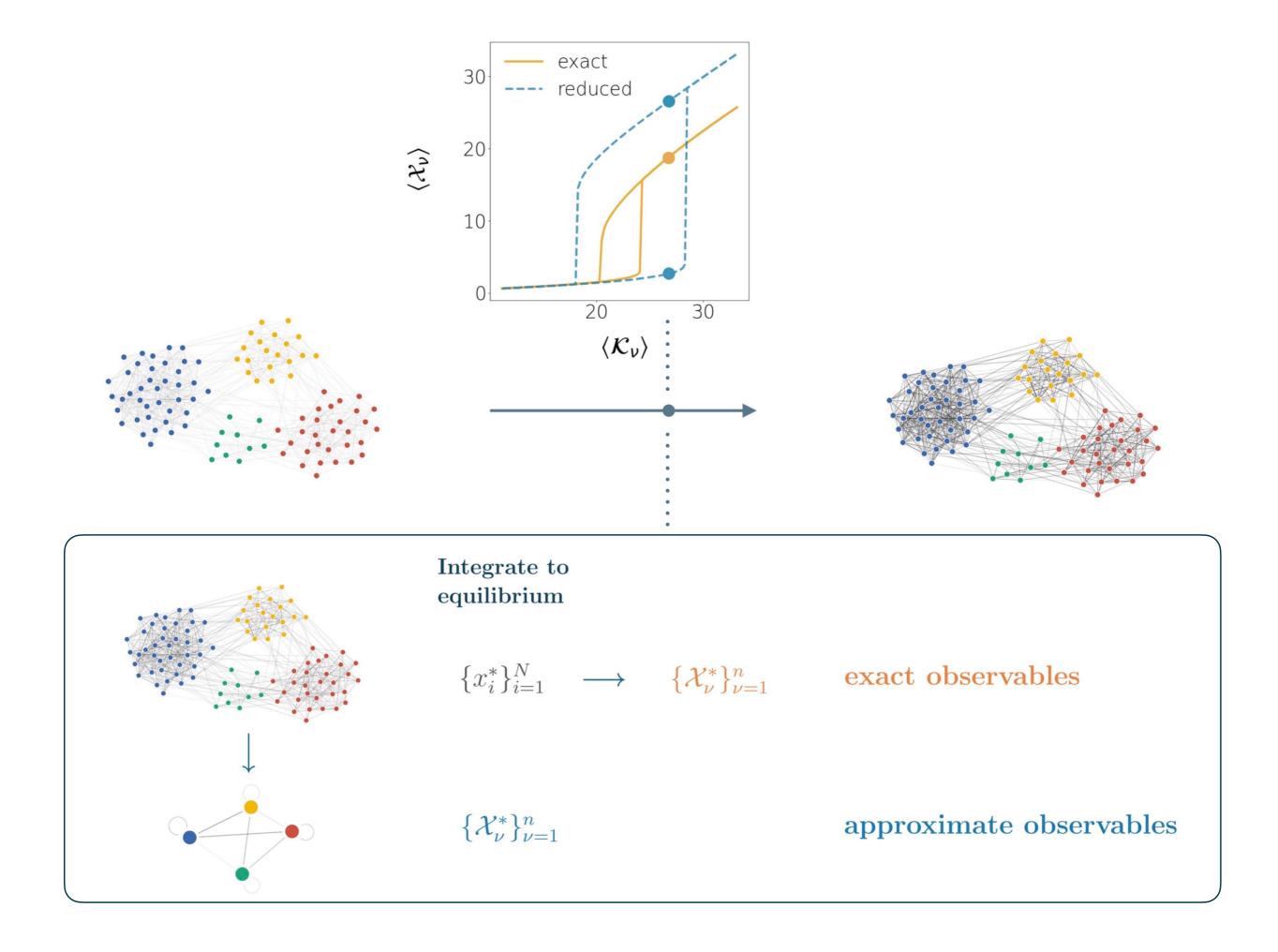


Integrate to equilibrium

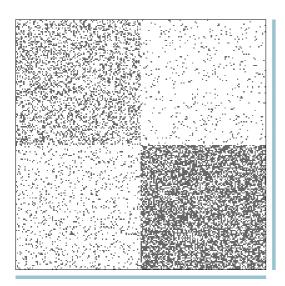
$$\{x_i^*\}_{i=1}^N \longrightarrow \{\mathcal{X}_{\nu}^*\}_{\nu=1}^n$$
 exact observables

 $\{\mathcal{X}_{\nu}^*\}_{\nu=1}^n$

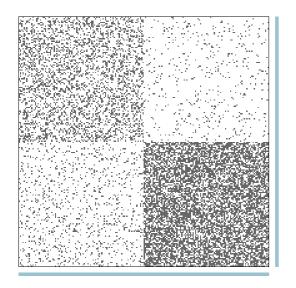
approximate observables

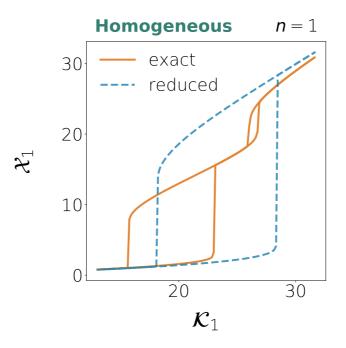


$$N = 200$$



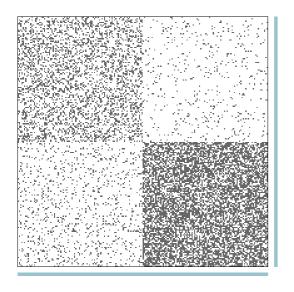
$$N = 200$$

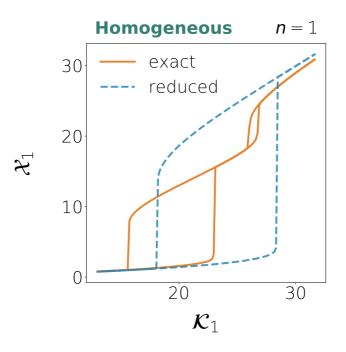


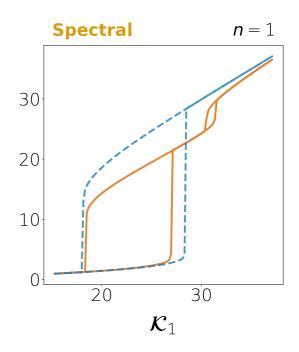


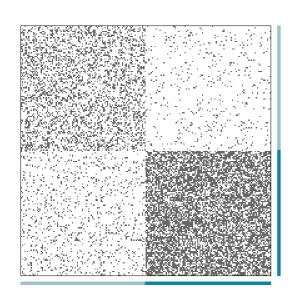


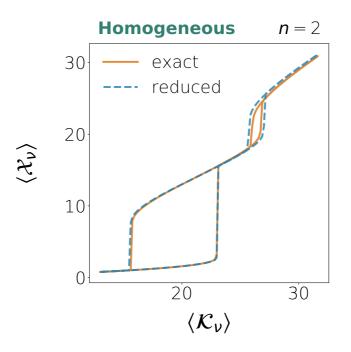
$$N = 200$$

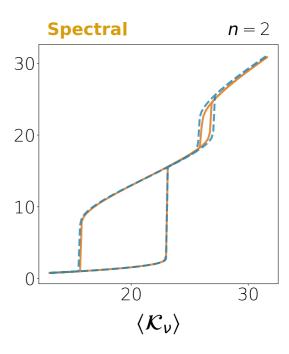








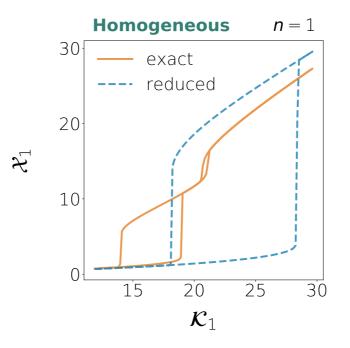


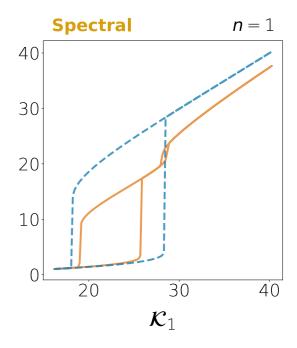


N = 200

N = 200

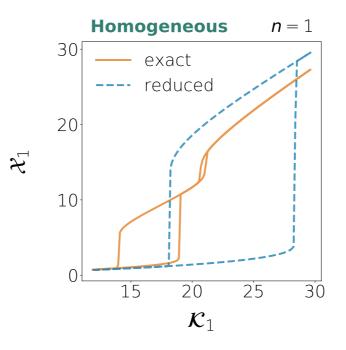
を (報告) (表) (
のできません。大きに対象には、大きに対象には、大きに対象には、大きに対象には、大きに対象には、大きに対象には、大きに対象には、大きに対象には、大きに対象に対象に対象に対象に対象に対象に対象に対象に対象に対象に対象に対象に対象に
は、 は、 は、 は、 は、 は、 は、 は、 は、 は、

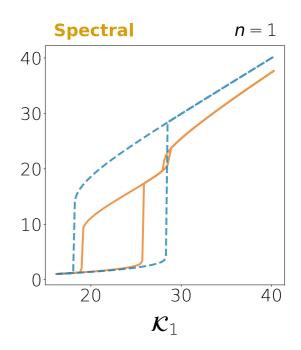


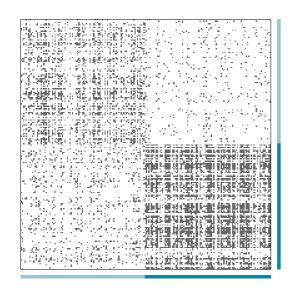


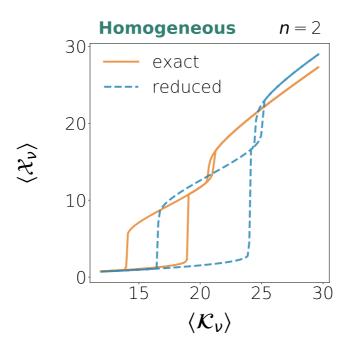
N = 200

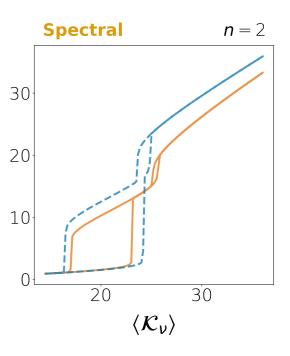
传送教师, 36、章 中的 1885。 《西京诗》 28、章 中的 1855。 《西京诗》 28、章 中的 1885。 《西京诗》 28、章 中的 18。章 中的 1885。 《西京诗》 28、章 中的 18。章 中的 1885。 《西京诗》 28、章 中的 18。章 中的 1885。 《西京诗》 28、章 中的 18。章 中的 1885。 《西京诗》 28、章 中的 18。章 中的 1885。 《西京诗》 28、章 中的 18。章 中的 1885。 《西京诗》 28、章 中的 18。
--





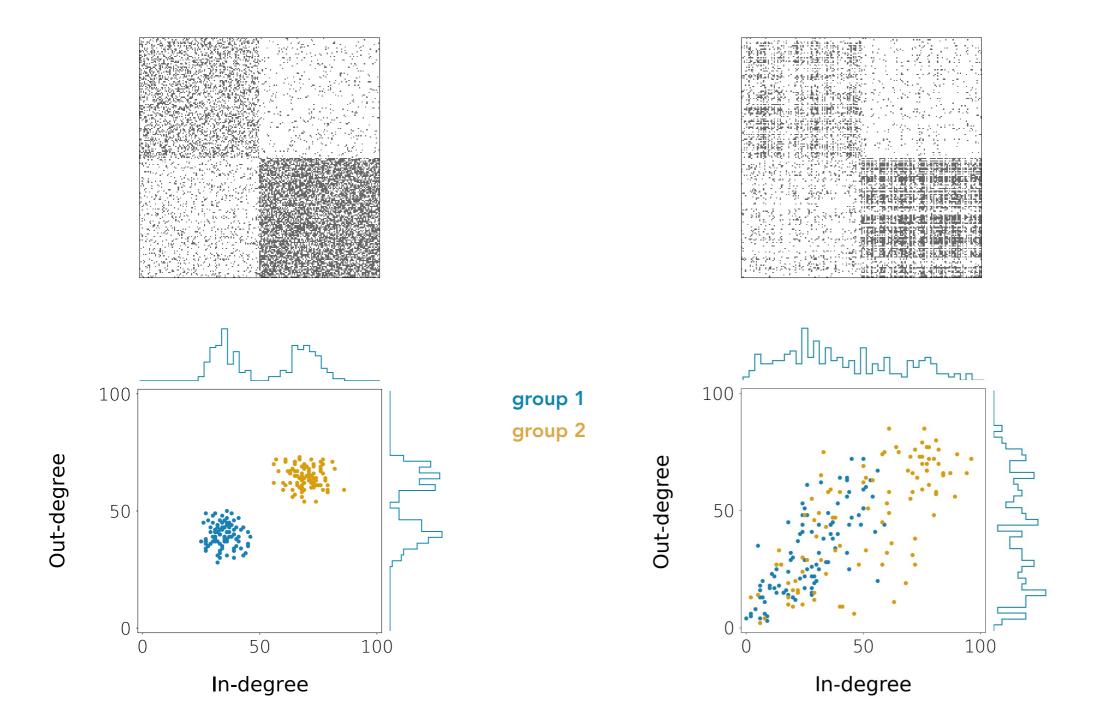






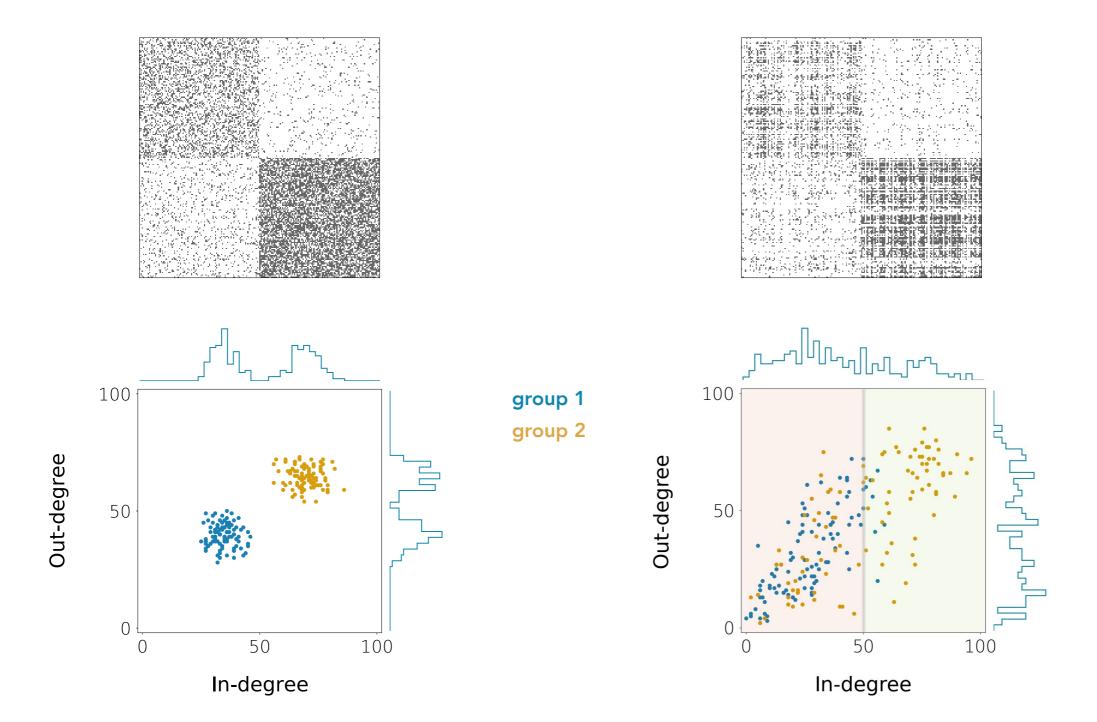
Homogeneous

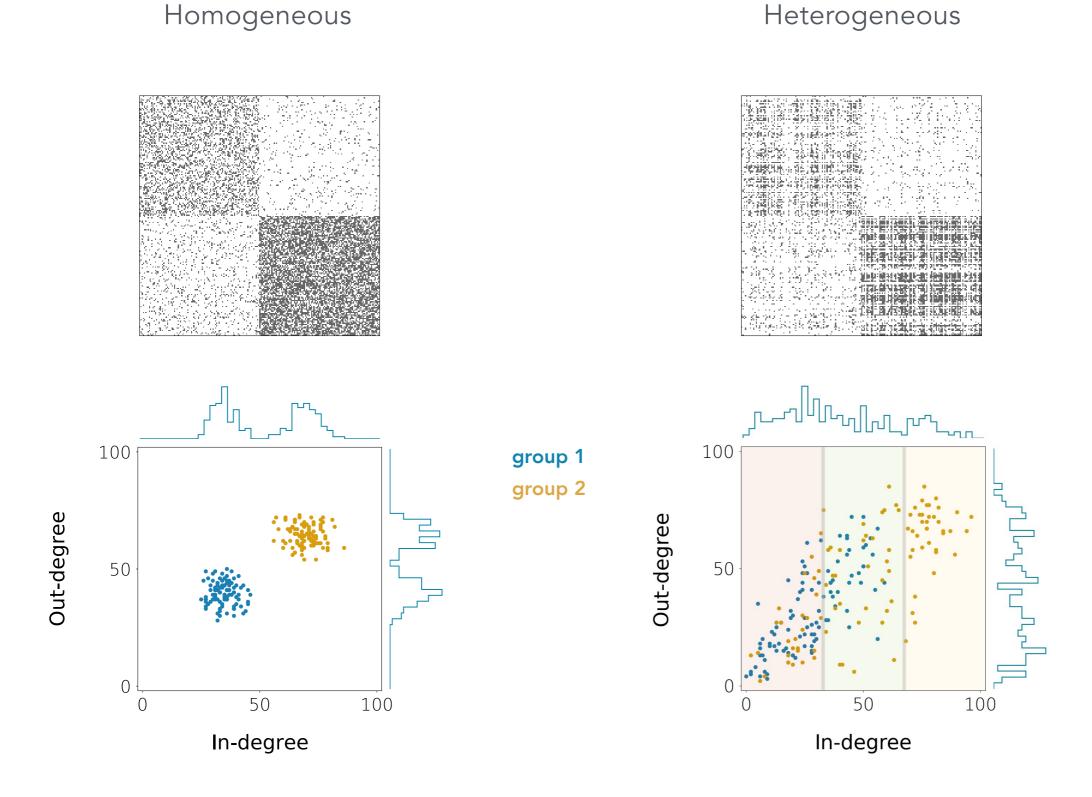
Heterogeneous



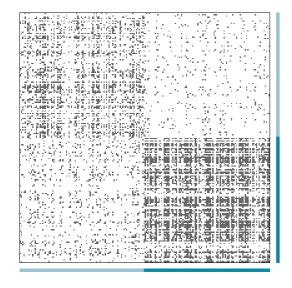
Homogeneous

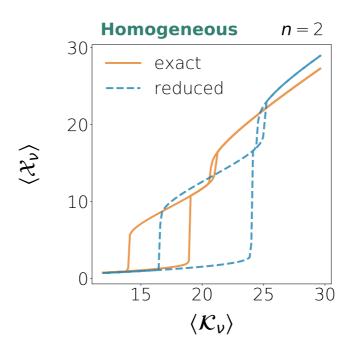
Heterogeneous

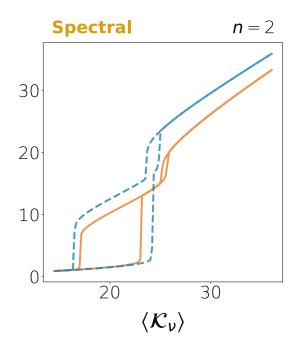


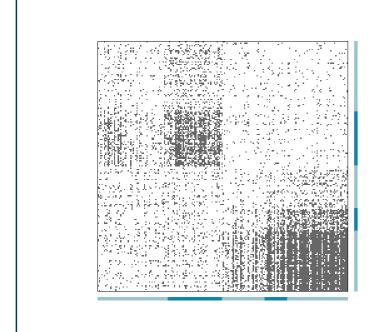


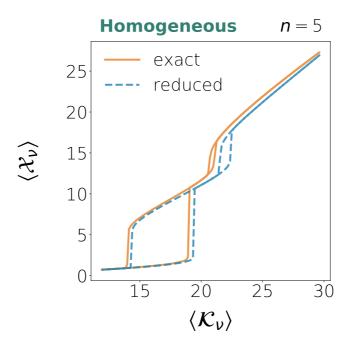
We can define more groups by partitioning the nodes within each group according to their connectivity properties

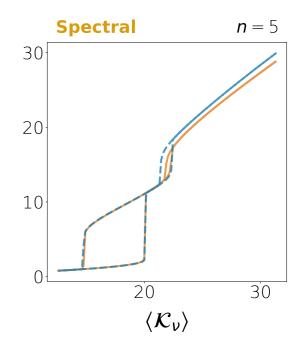




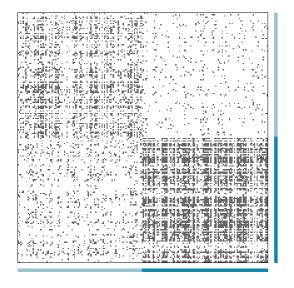


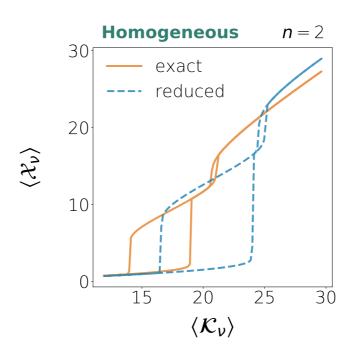


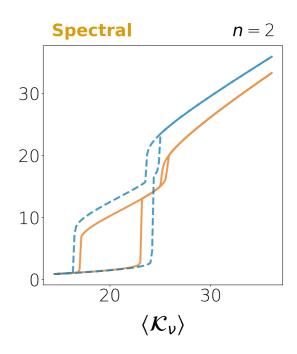


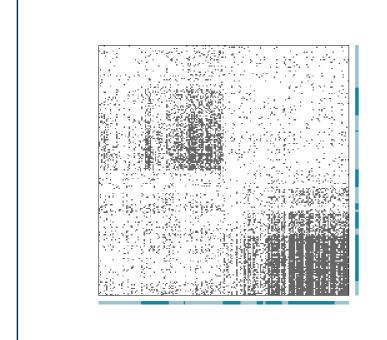


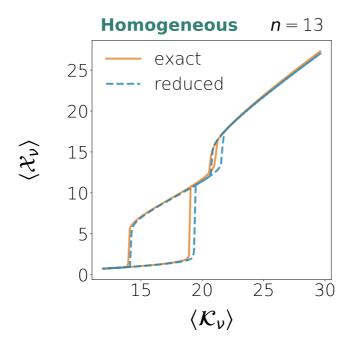
Partition refinement

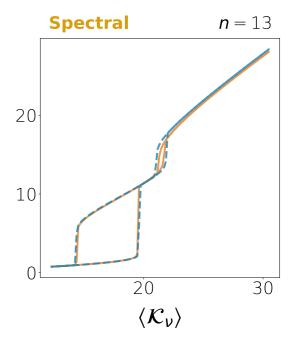






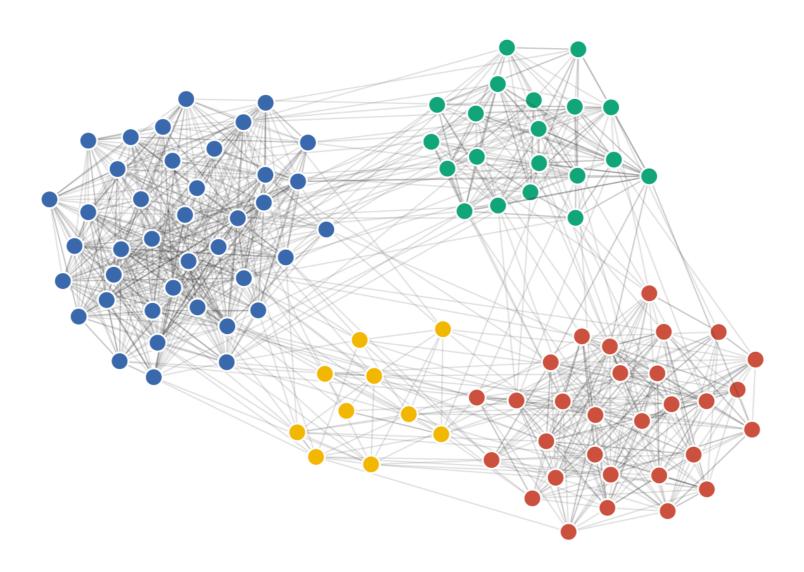




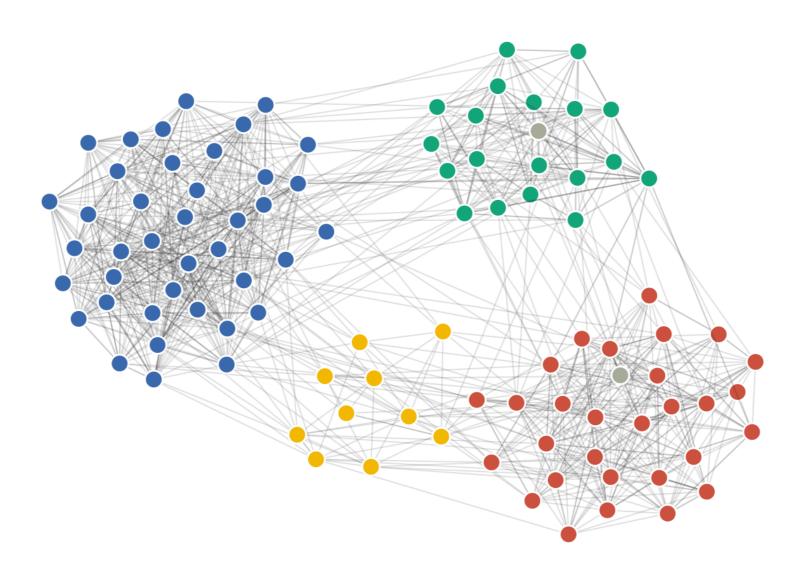


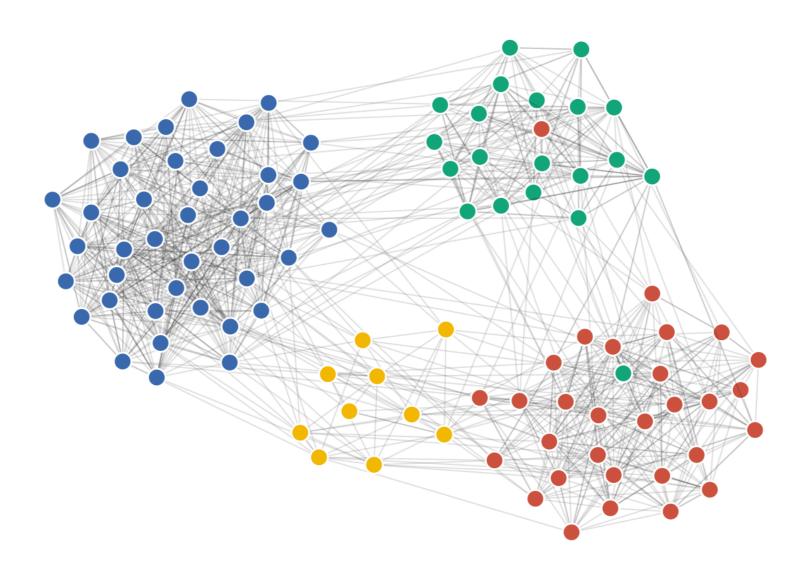
Partition refinement

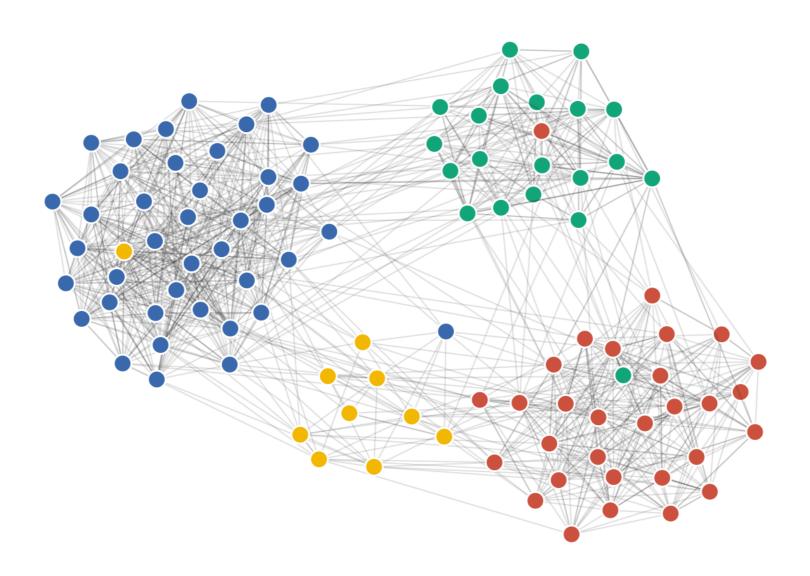
Sensitivity to partition choice

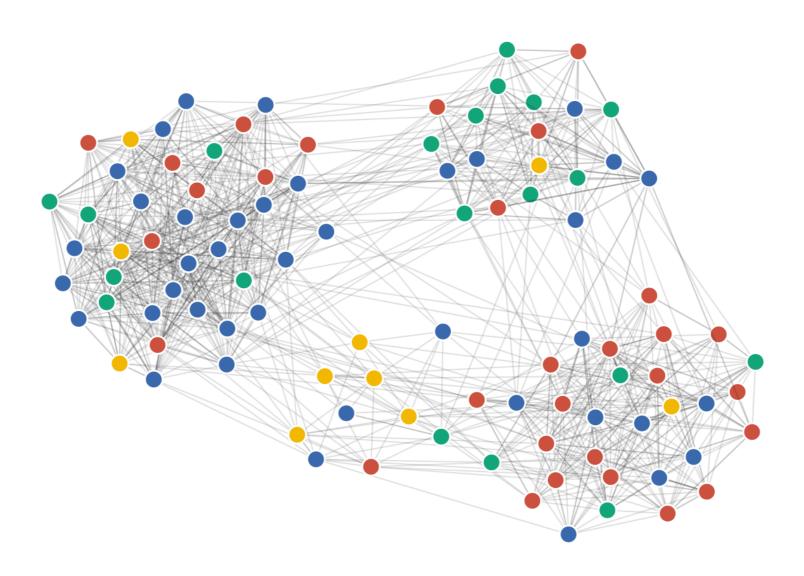


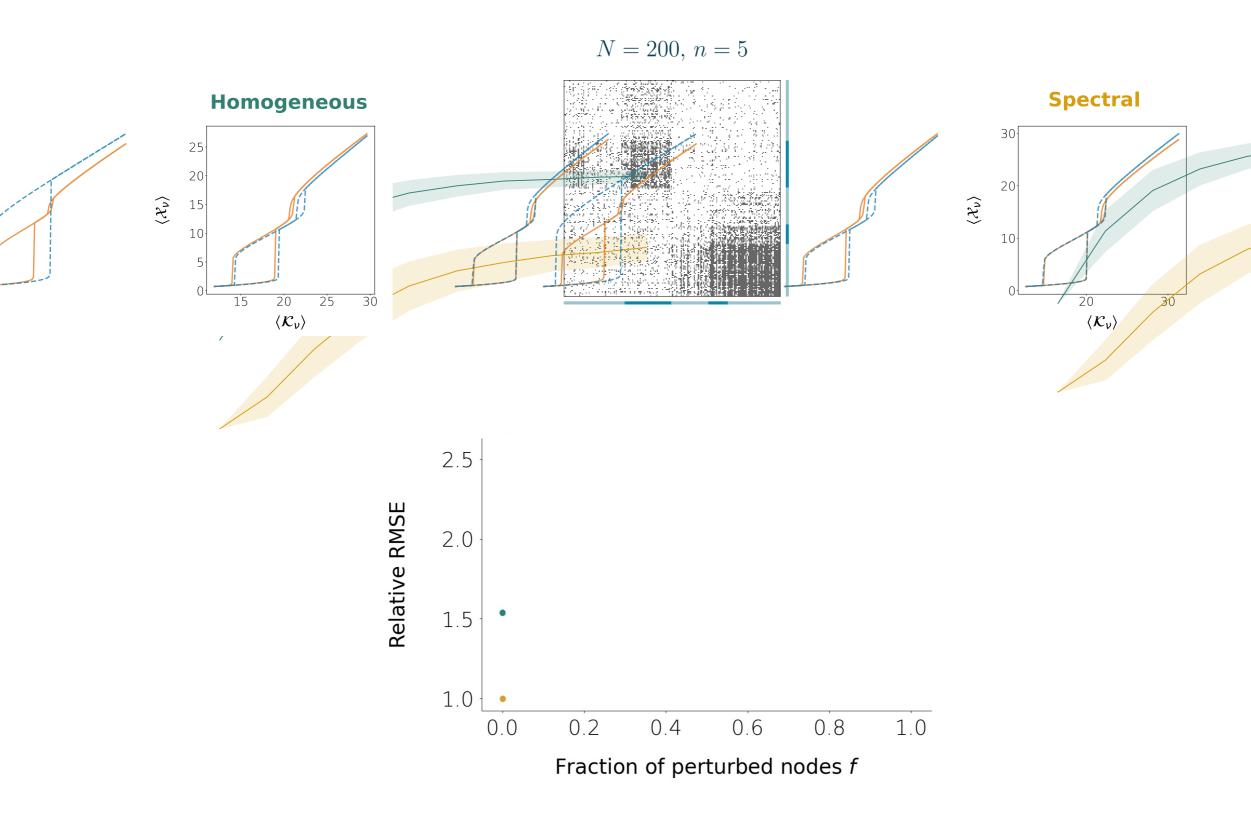
Sensitivity to partition choice

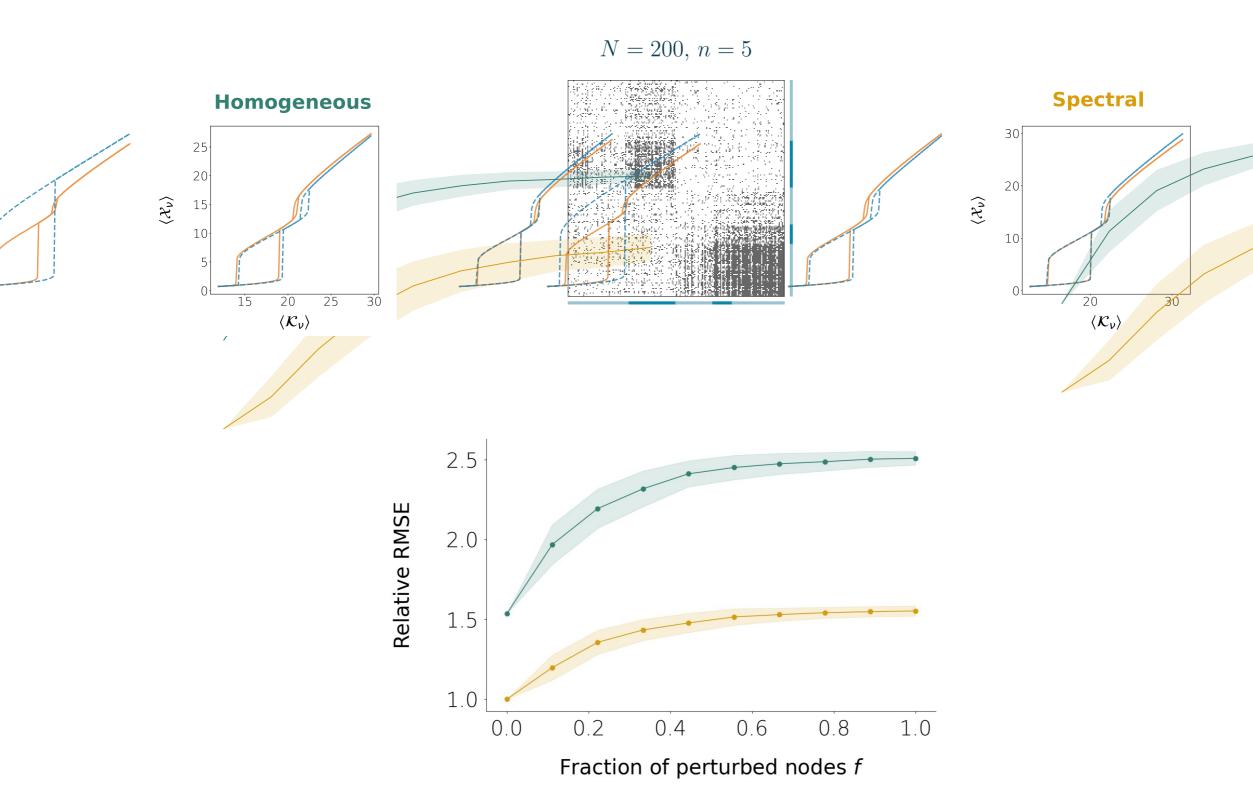












To summarize...

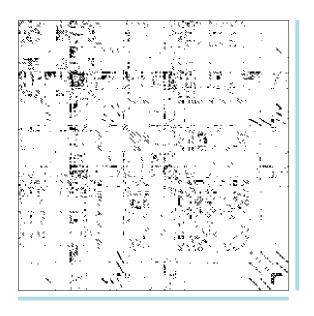
- Dimension reduction can be used to extract dynamical properties (e.g., bifurcation points) of complex networks, such as neuronal networks.
- The Spectral reduction:
 - * performs well on directed, weighted, and heterogeneous networks.
 - * outperforms the homogeneous method.
 - * is robust to perturbations of node partitions.

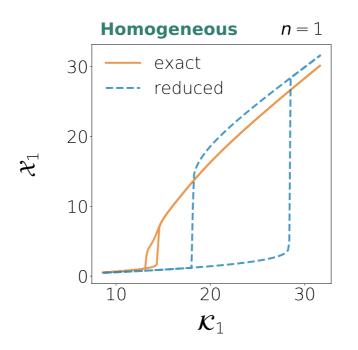
To summarize...

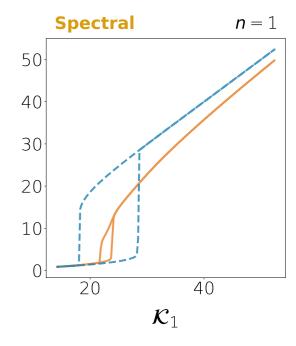
- Dimension reduction can be used to extract dynamical properties (e.g., bifurcation points) of complex networks, such as neuronal networks.
- The Spectral reduction:
 - * performs well on directed, weighted, and heterogeneous networks.
 - * outperforms the homogeneous method.
 - * is robust to perturbations of node partitions.

Thank you! Questions?

$$N = 279$$

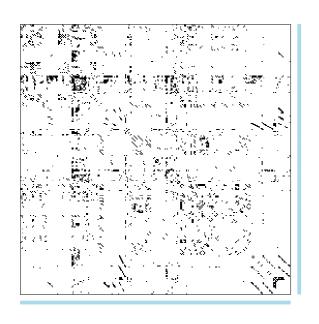


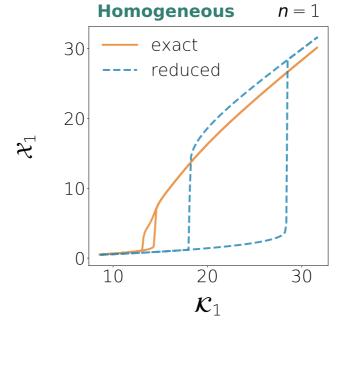


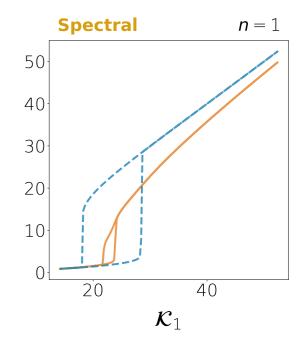


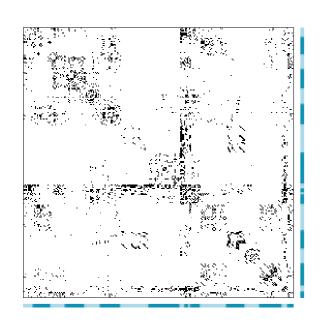
^{*} Chen et al., PNAS, 2006

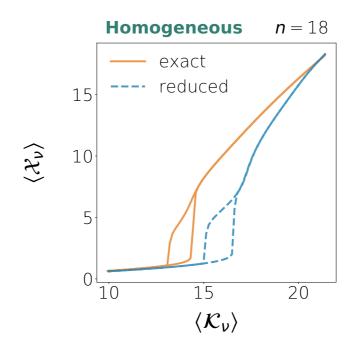
$$N = 279$$

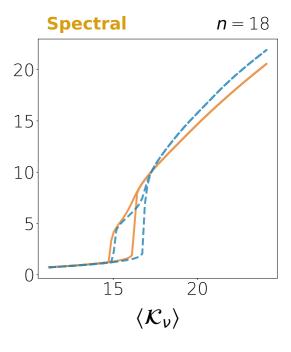




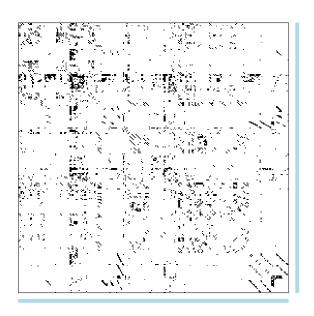


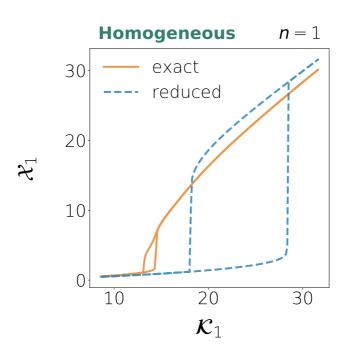


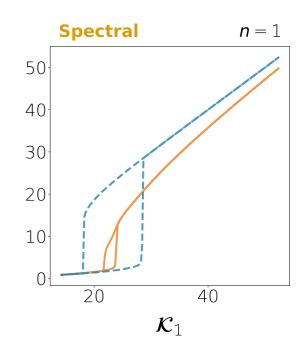


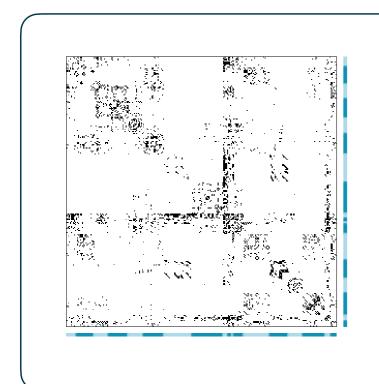


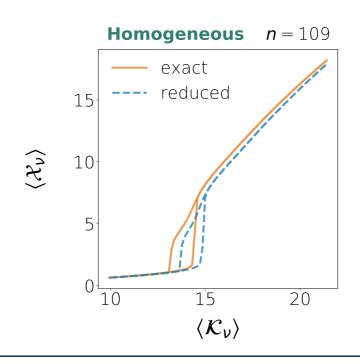
^{*} Chen et al., PNAS, 2006

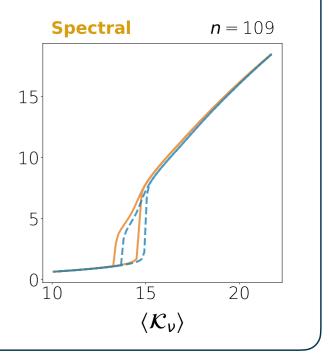






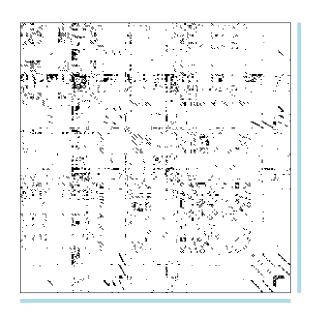


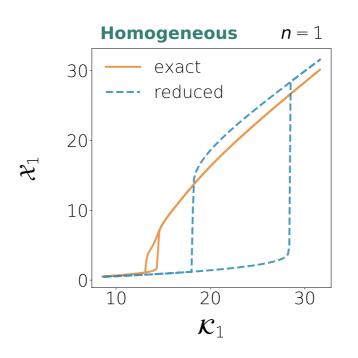


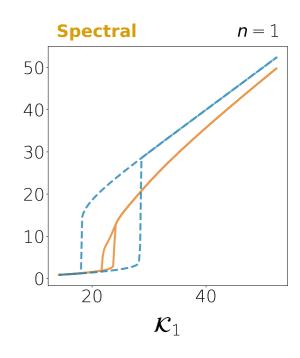


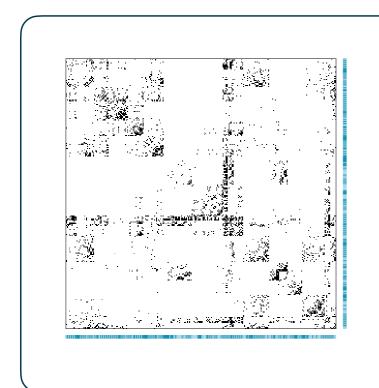
Partition refinement

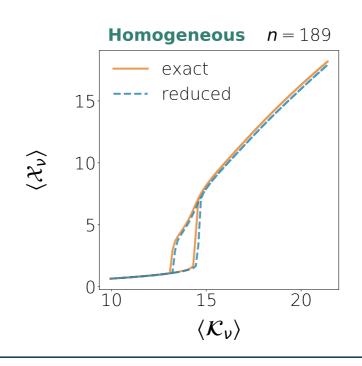
N = 279

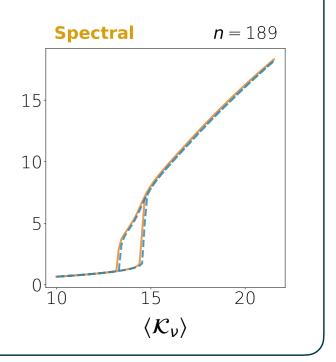












Partition refinement