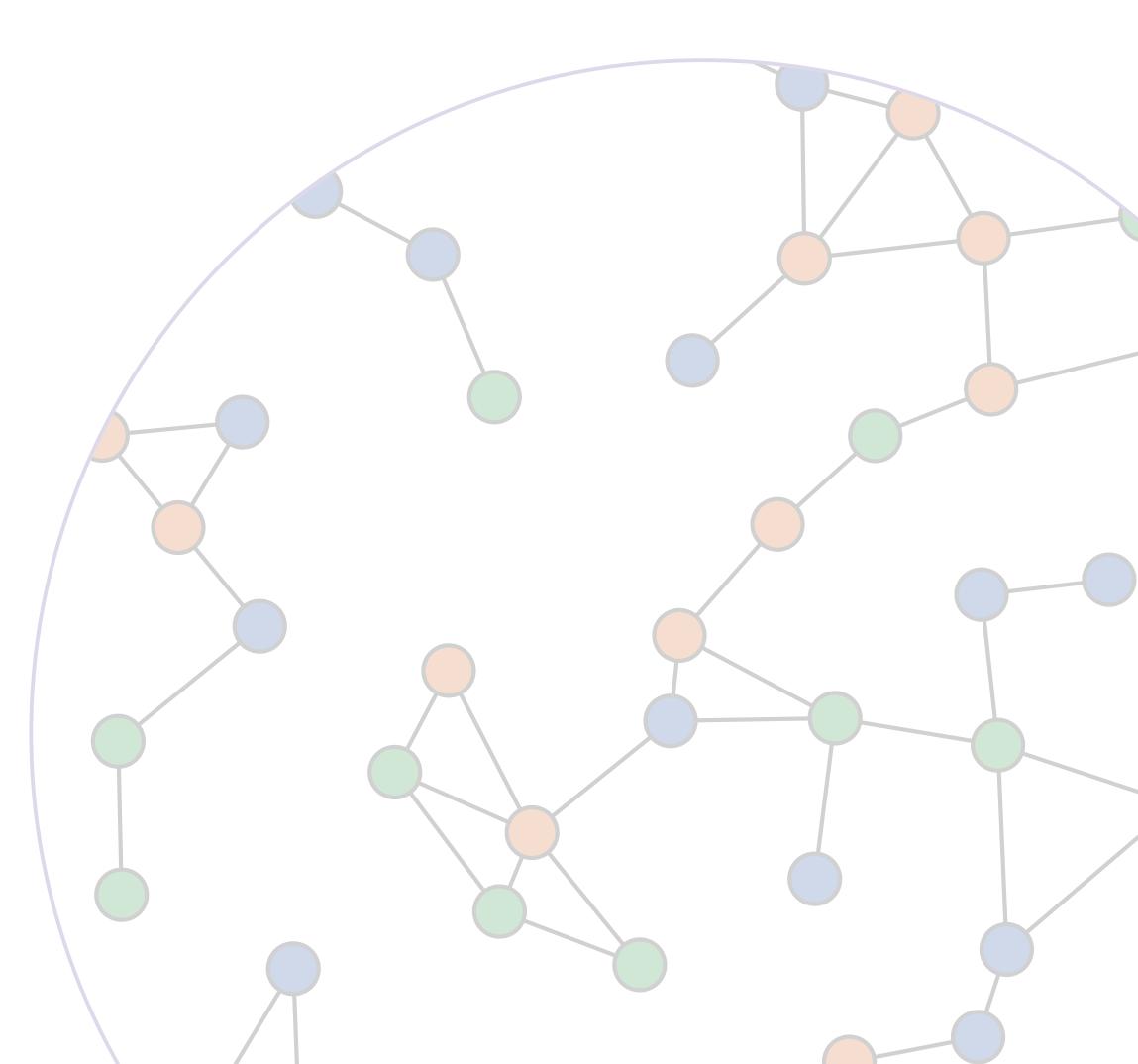
Realistic clustering patterns in directed geometric networks

Antoine Allard

- 🗈 Université Laval, Québec, Canada
- antoineallard.info
- ♥ @all_are



Network models

Why?

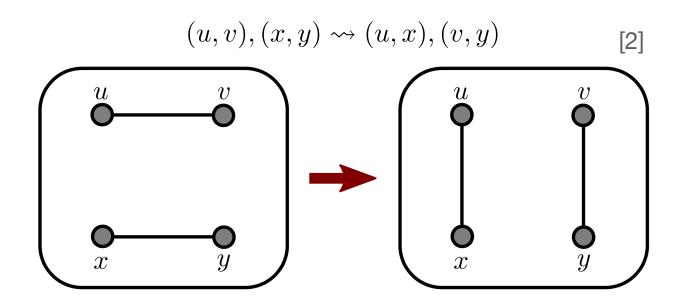
- Mathematical representation -> analytical results and predictions.
- Identify the mechanisms behind a set of topological properties.
- Identify significant patterns of connection in real networks (i.e. null models).
- Perform in silico controlled experiments (e.g. simulation of epidemic spreading).

• ...

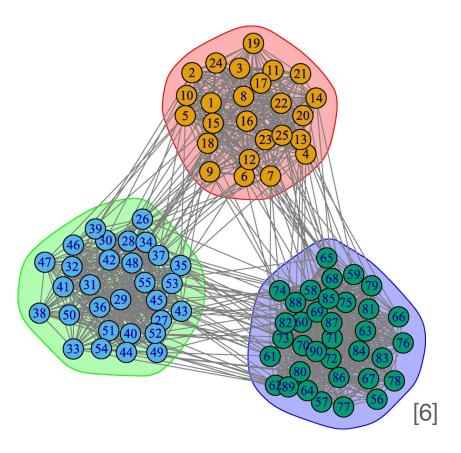
Some examples of *equilibrium* (fixed size) network models

Configuration model (and variations)

- degree sequence/distribution [2]
- degree-degree correlations [3]
- ▶ k-core/onion decomposition [4]



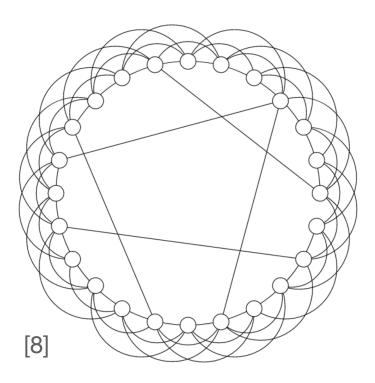
Stochastic block models community structure/detection [5]



• Disentangle the effect of various topological properties (e.g. assortative mixing vs. clustering on the percolation threshold [1]).

Watts-Strogatz model

small-world effect [7]



[1] Phys. Rev. E 80, 020901 (2009)
[2] SIAM Rev. 60, 315 (2018)
[3] Phys. Rev. Lett. 89, 208701 (2002
[4] Phys. Rev. X 9, 011023 (2019)

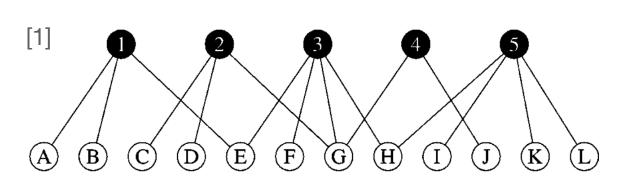
- [5] Soc. Networks 5, 109 (1983) [6] Appl. Netw. Sci. 4, 122 (2019)
- 2) [7] Nature 393, 440 (1998)
- [8] SIAM Rev. 45, 167 (2003)

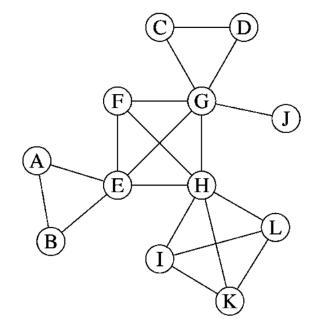
Modeling clustering

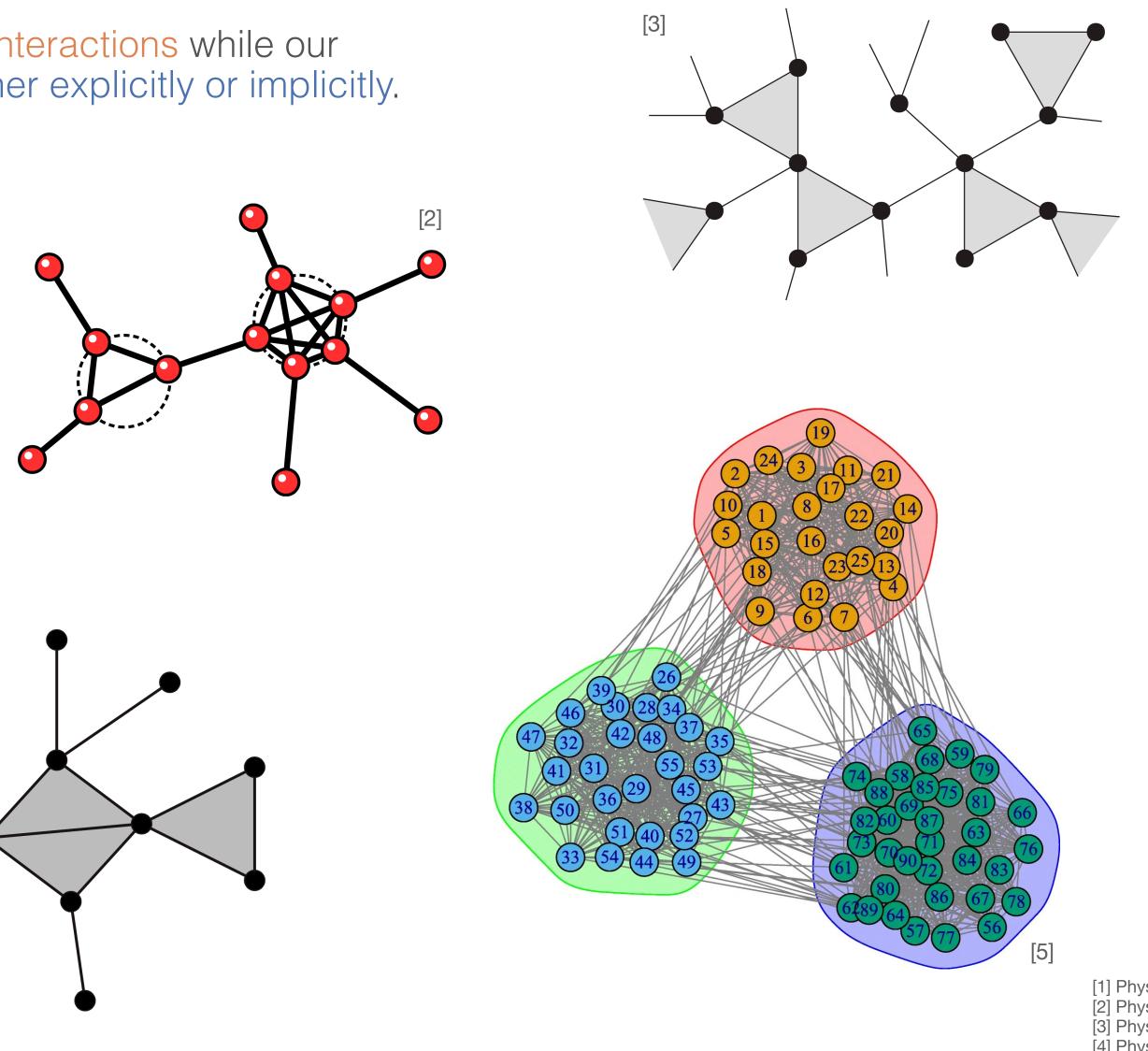
Trickier because clustering consists in three-node interactions while our mathematical tools rely on pairwise interactions either explicitly or implicitly.

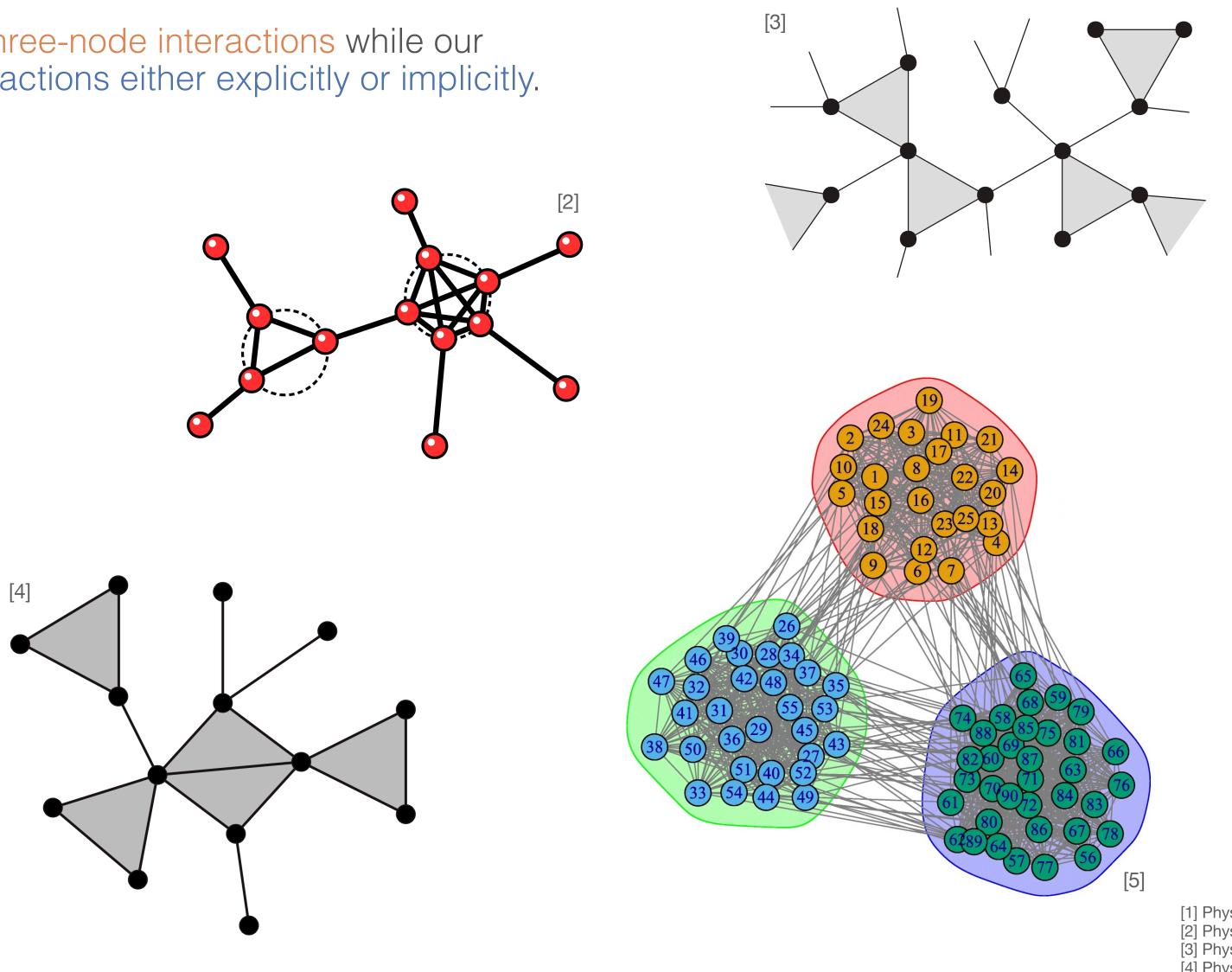
Most models therefore assume

- ▶ an underlying tree-like structure
- ► the networks to be dense



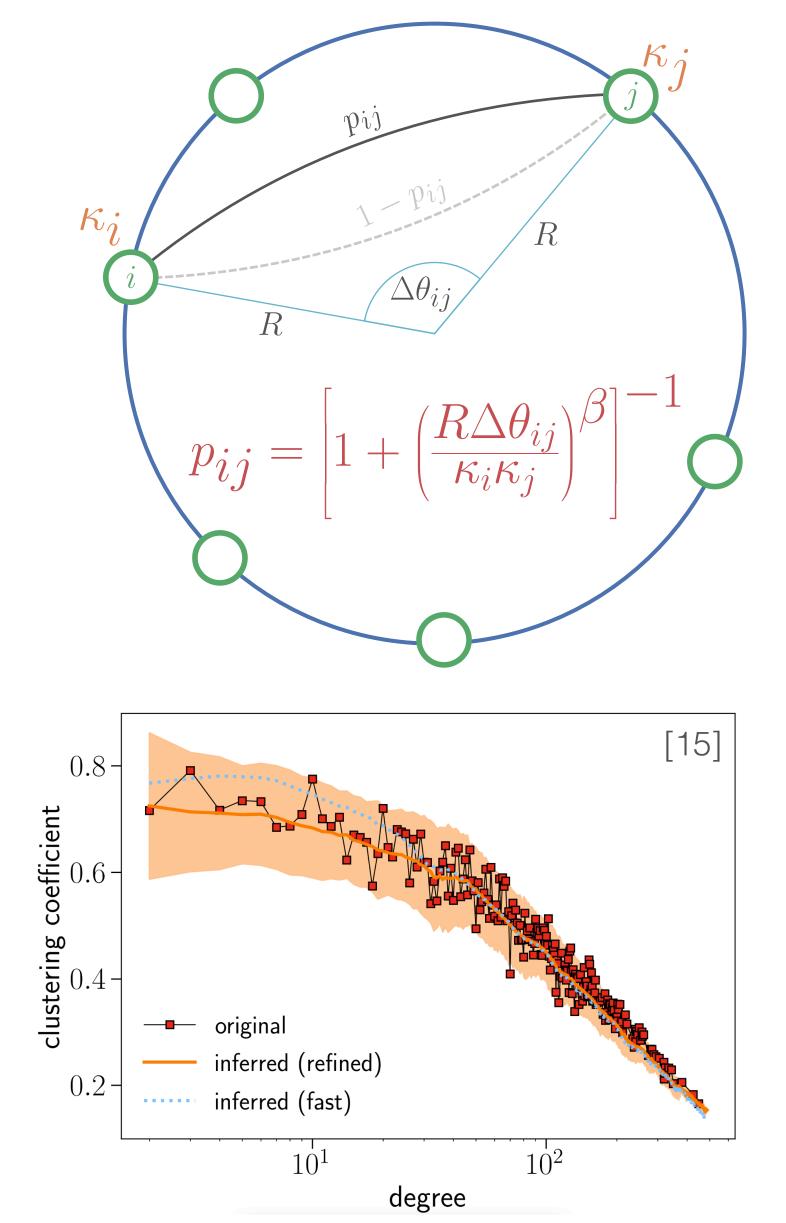






[1] Phys. Rev. E 68, 026121 (2003) [2] Phys. Rev. E 80, 036107 (2009) [3] Phys. Rev. Lett. 103, 058701 (2009) [4] Phys. Rev. E 82, 066118 (2010) [5] Appl. Netw. Sci. 4, 122 (2019)

A geometric approach to clustering: the $\mathbb{S}^1/\mathbb{H}^2$ model



The \mathbb{S}^1 model

- 2. Assign an expected degree κ to each node according to some pdf $\rho(\kappa)$.
- 3. Draw a link between node *i* and node *j* with probability p_{ij} .

Other properties and generalizations

- Amenable to many analytical calculations

- Efficient Internet routing protocols [17]

- ...

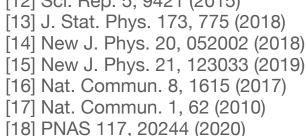
1. Sprinkle N nodes uniformly on a circle of radius R.

 \star fixes the expected degree of nodes (κ) ~> soft configuration model (CM) \star triangle inequality of the underlying metric space ~> triangles from pairwise interactions \star level of clustering tuned with parameter β

• Geometric interpretation in terms of hyperbolic geometry (the \mathbb{H}^2 model) [1,2] Parsimonious explanation of self-similarity [3,4] ▶ Generalizable to weighted [5], bipartite [6,7,8], multiplex [9,10] and growing [11] networks ► Generalizable to networks with community structure [12,13, 14] Mapping of real complex networks unto hyperbolic space [15,16] Identification of biochemical pathways in E. Coli [8] [1] Phys. Rev. E 80, 035101 (2009) [10] Phys. Rev. Lett. 118, 218301 (2017) Multiscale organization of the human connectome [18] [11] Nature 489, 537 (2012) [2] Phys. Rev. E 82, 036106 (2010) [3] Phys. Rev. Lett. 100, 078701 (2008) [12] Sci. Rep. 5, 9421 (2015) • Geometrical interpretation of preferential attachment [11] [4] Nat. Rev. Phys. 3, 114 (2021) [13] J. Stat. Phys. 173, 775 (2018) [5] Nat. Commun. 8, 14103 (2017) [14] New J. Phys. 20, 052002 (2018) [6] Phys. Rev. E 84, 026114 (2011) [15] New J. Phys. 21, 123033 (2019) [7] Phys. Rev. E 95, 032309 (2017)

[8] Mol. Biosyst. 8, 843 (2012)

[9] Nat. Phys. 12, 1076 (2016)



Three challenges in modeling directed networks

Properties of any metric space

Identity of indiscernibles $d(x,y) = 0 \quad \Leftrightarrow \quad x = y$

Non-negativity

Symmetry

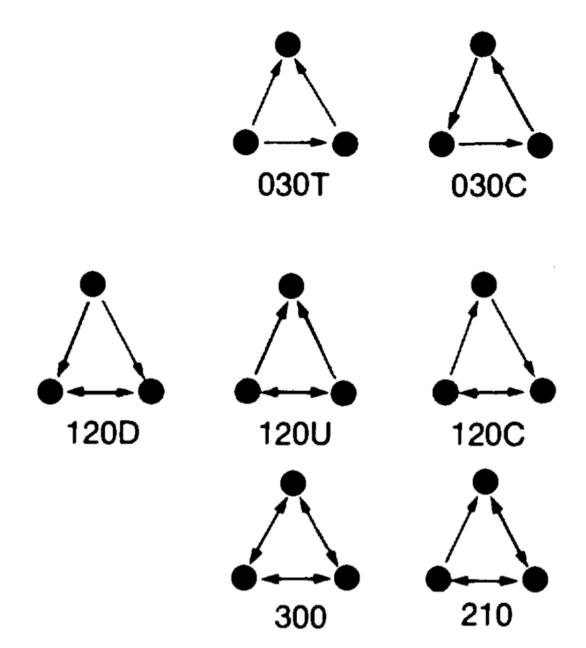
$$d(x, y) \ge 0$$

$$d(x, y) = d(y, x)$$

$$d(x, y) \le d(x, z) + d(z, y)$$

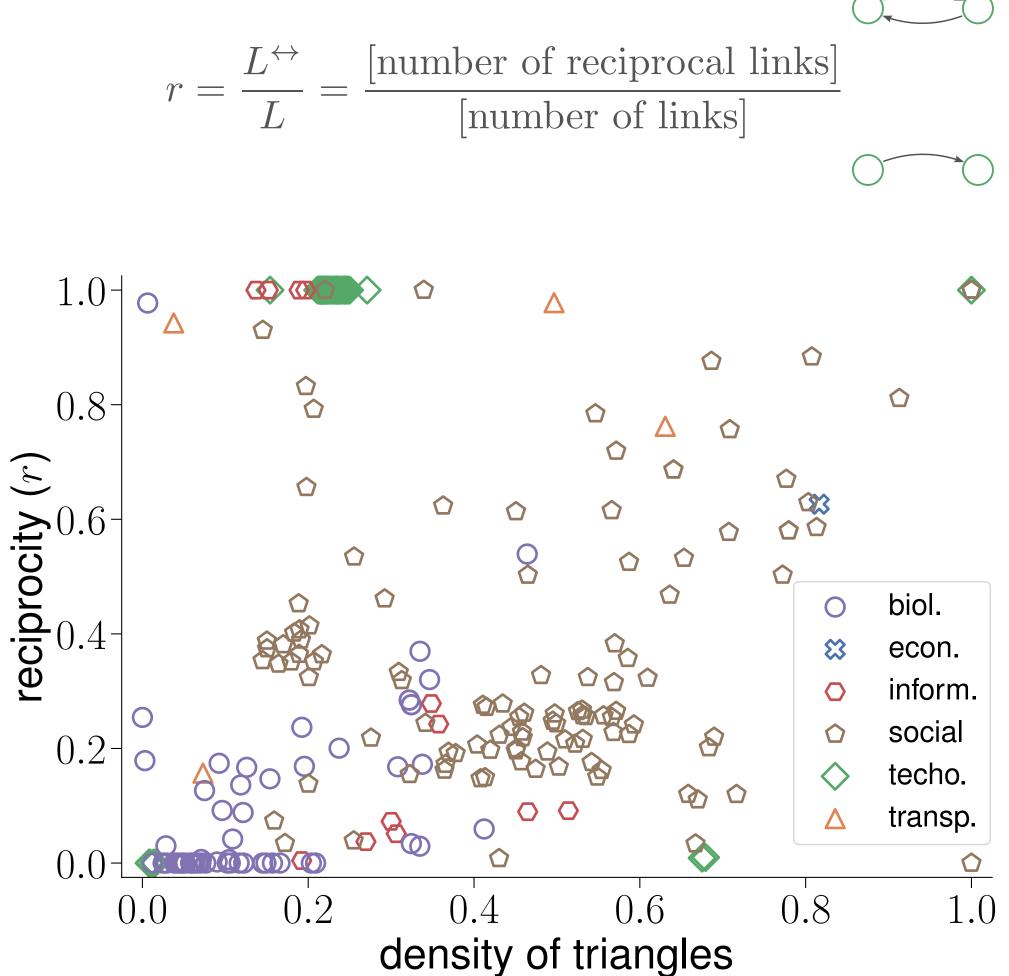
Triangle inequality

Clustering: 7 cycles of length 3



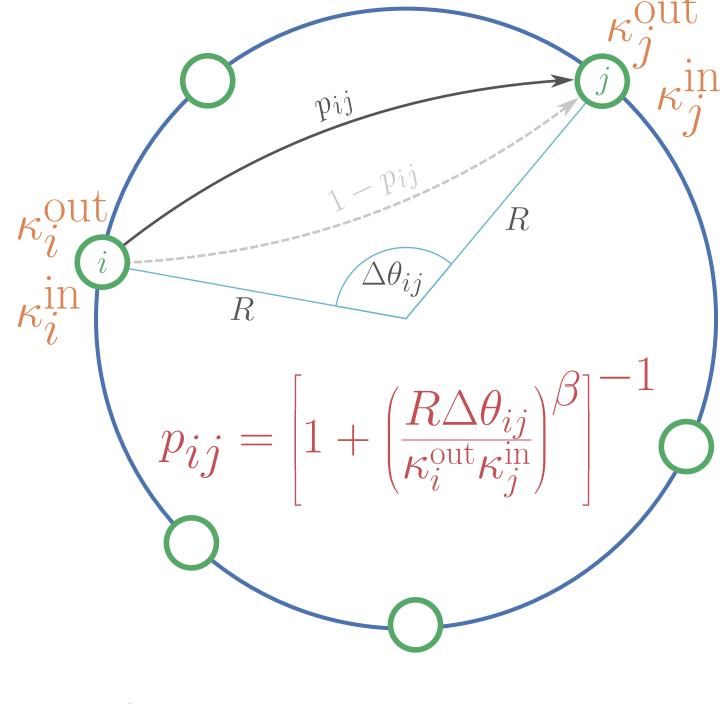
Adapted from Holland & Leinhardt. Local Structure in Social Networks. Sociol. Methodol., 7, 1-45 (1976)

Reciprocity: cycles of length 2



²⁸⁷ network datasets downloaded from Netzschleuder (networks.skewed.de).

The directed \mathbb{S}^1 model

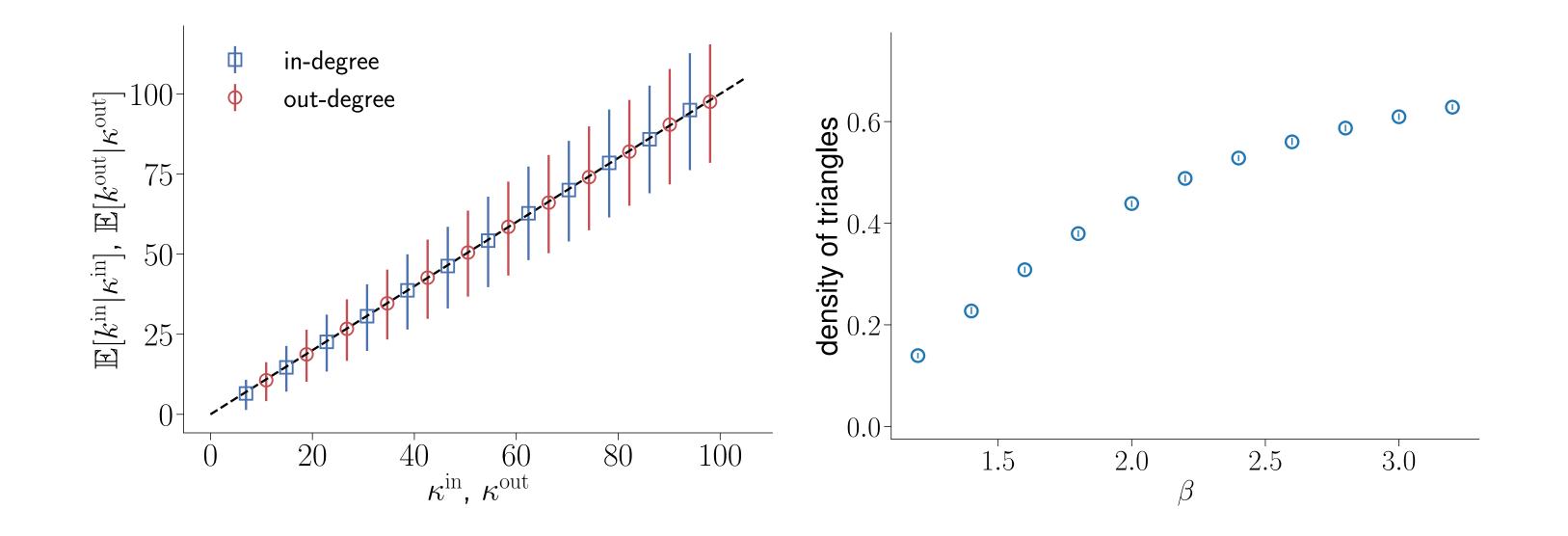


 $\mathbb{E}\left[k^{\mathrm{in}}|\kappa^{\mathrm{in}}\right] \simeq \kappa^{\mathrm{in}}$ $\mathbb{E}\left[k^{\mathrm{out}}|\kappa^{\mathrm{out}}\right] \simeq \kappa^{\mathrm{out}}$

$$P(k^{\text{in}}, k^{\text{out}}) \simeq \iint \frac{[\kappa^{\text{in}}]^{k^{\text{in}}} e^{-\kappa^{\text{in}}}}{k^{\text{in}}!} \frac{[\kappa^{\text{out}}]^{k^{\text{out}}} e^{-\kappa^{\text{out}}}}{k^{\text{out}}!}$$
$$\times \rho(\kappa^{\text{in}}, \kappa^{\text{out}}) d\kappa^{\text{in}} d\kappa^{\text{out}}$$

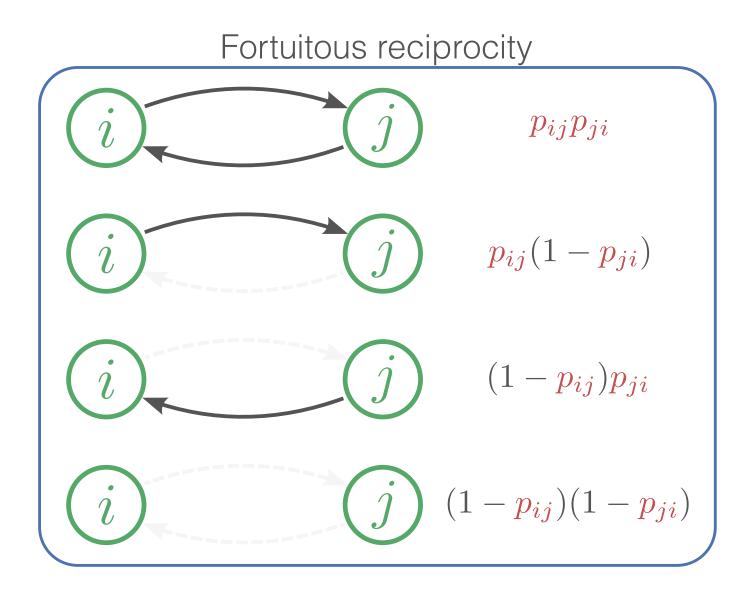
The directed \mathbb{S}^1 model

- 1. Sprinkle N nodes uniformly on a circle of radius R.
- 2. Assign expected in-degree κ^{in} and out-degree κ^{out} to each node according to some joint pdf $\rho(\kappa^{\text{in}}, \kappa^{\text{out}})$.
- 3. Draw a link from node *i* to node *j* with probability p_{ii} .
- \star fixes the expected in-degree and out-degree of nodes ($\kappa^{in}, \kappa^{out}$) ~> soft directed CM
- * triangle inequality of the underlying metric space -> triangles from pairwise interactions \star density of triangles tuned with parameter β



Reciprocity in the directed \mathbb{S}^1 model

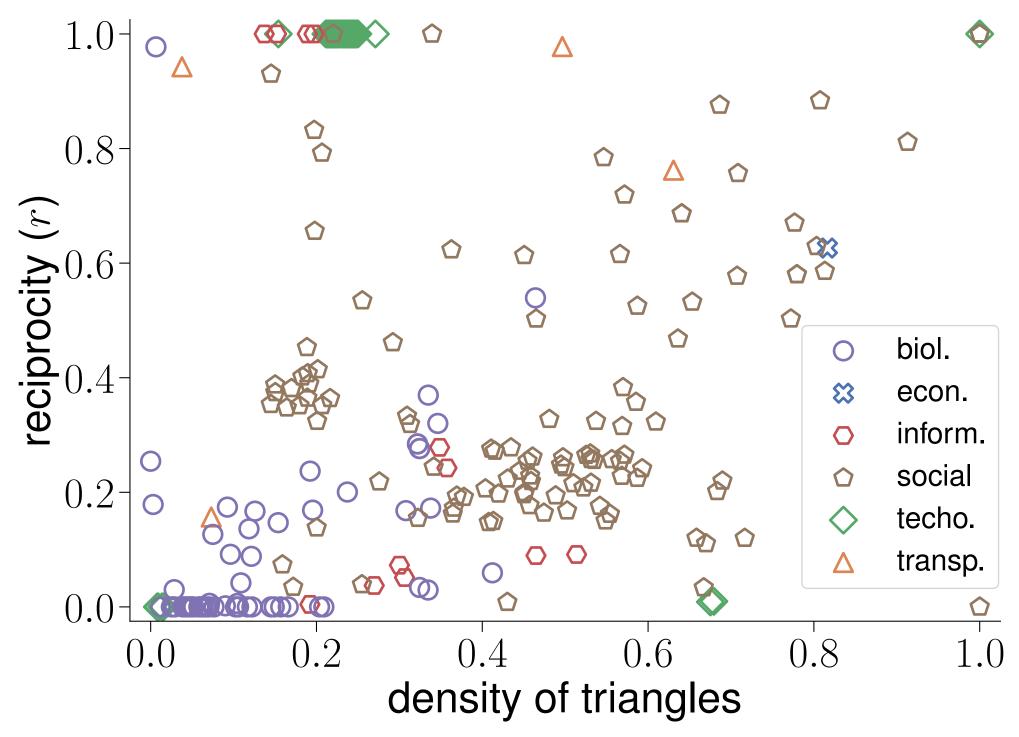
A reciprocal connection between node *i* to node *j* occurs with probability $p_{ii}p_{ii}$.



$$\begin{split} \mathbb{E}\left[r\right] &= \mathbb{E}\left[\frac{L^{\leftrightarrow}}{L}\right] = \mathbb{E}\left[\frac{k^{\leftrightarrow}}{k^{\text{out}}}\right] \approx \frac{\mathbb{E}\left[k^{\leftrightarrow}\right]}{\mathbb{E}\left[k^{\text{out}}\right]} \\ &\simeq \iiint \frac{\kappa_i^{\text{out}}\kappa_j^{\text{in}}}{\langle \kappa^{\text{in}} \rangle \langle \kappa^{\text{out}} \rangle} \frac{1 - \left(\frac{\kappa_i^{\text{out}}}{\kappa_i^{\text{in}}} \frac{\kappa_j^{\text{in}}}{\kappa_j^{\text{out}}}\right)^{\beta - 1}}{1 - \left(\frac{\kappa_i^{\text{out}}}{\kappa_i^{\text{in}}} \frac{\kappa_j^{\text{in}}}{\kappa_j^{\text{out}}}\right)^{\beta}}{\kappa_j^{\text{out}}} \end{split}$$

 $\kappa^{\text{in}}, \kappa^{\text{out}}$: in-degree and out-degree β : density of triangles

Reciprocity vs. triangles in real directed networks

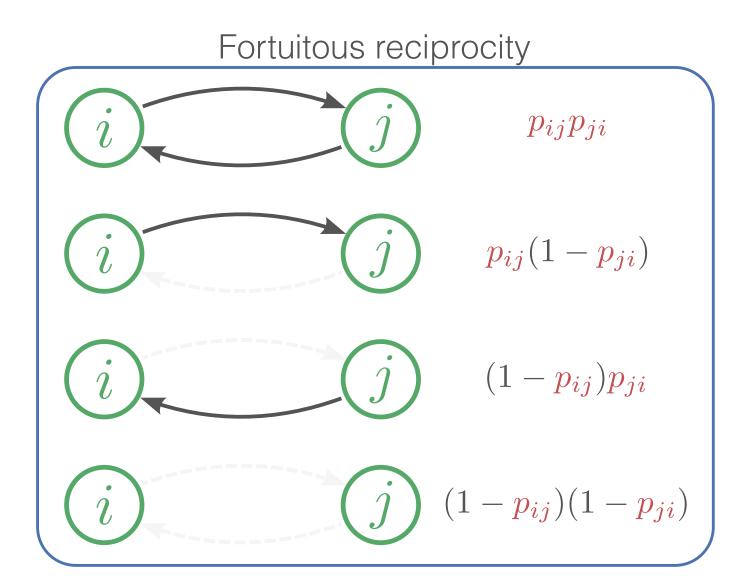


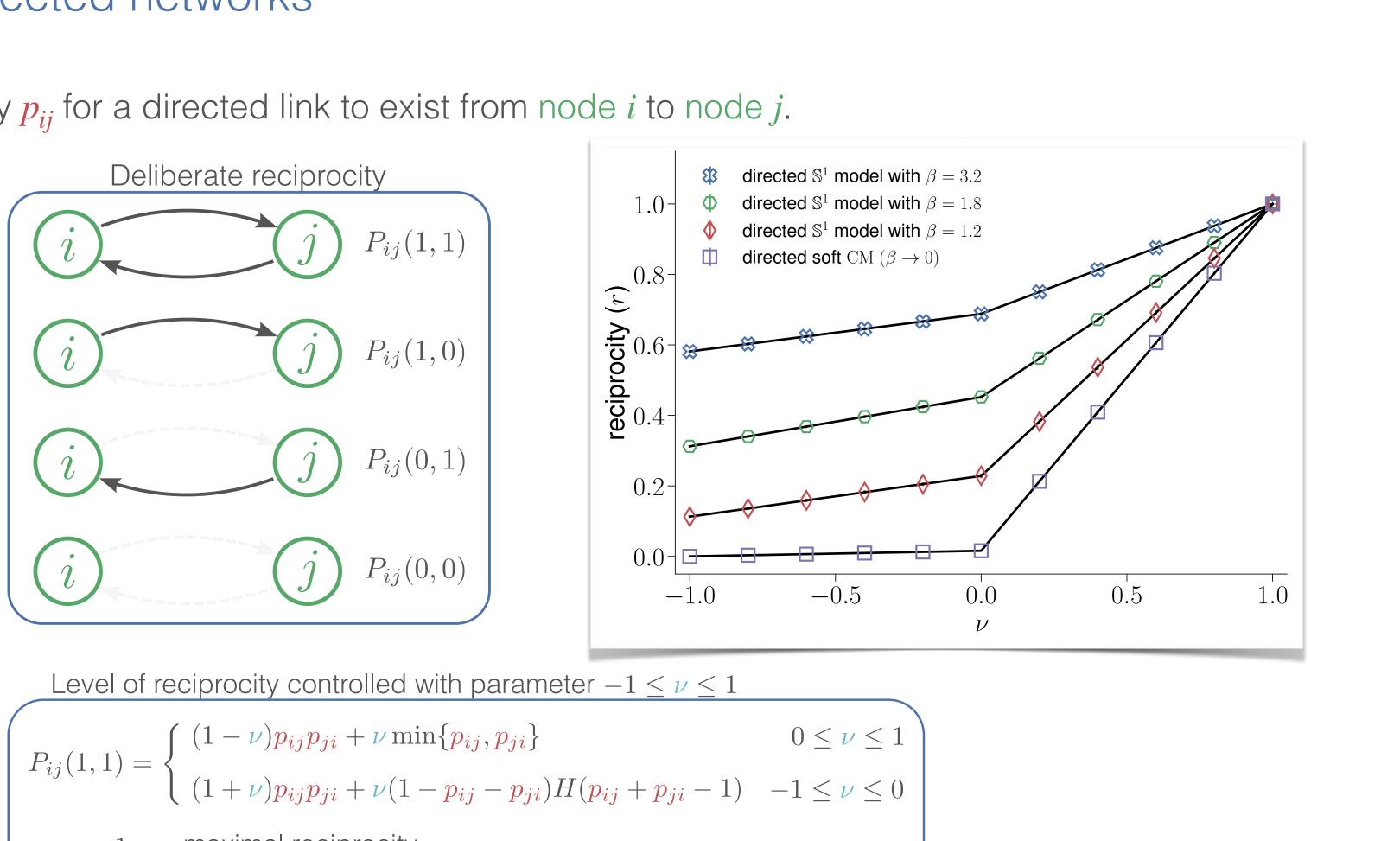
287 network datasets downloaded from Netzschleuder (networks.skewed.de).

A realistic model will need to go beyond fortuitous reciprocity.

Deliberate reciprocity in random directed networks

A random network model defines the probability p_{ij} for a directed link to exist from node i to node j.





Condition 1: Preserves marginal probabilities $P_{ij}(1,0) + P_{ij}(1,1) = p_{ij}$ $P_{ij}(0,1) + P_{ij}(1,1) = p_{ji}$

Condition 2: Normalized 1 1 $\sum \sum P_{ij}(a_{ij}, a_{ji}) = 1$ $a_{ij}=0 a_{ji}=0$

 $\nu = 1$: $\nu = 0$: $\nu = -1$: minimal reciprocity

maximal reciprocity fortuitous reciprocity

Fitting the directed \mathbb{S}^1 model to real networks

Inputs from a real network:

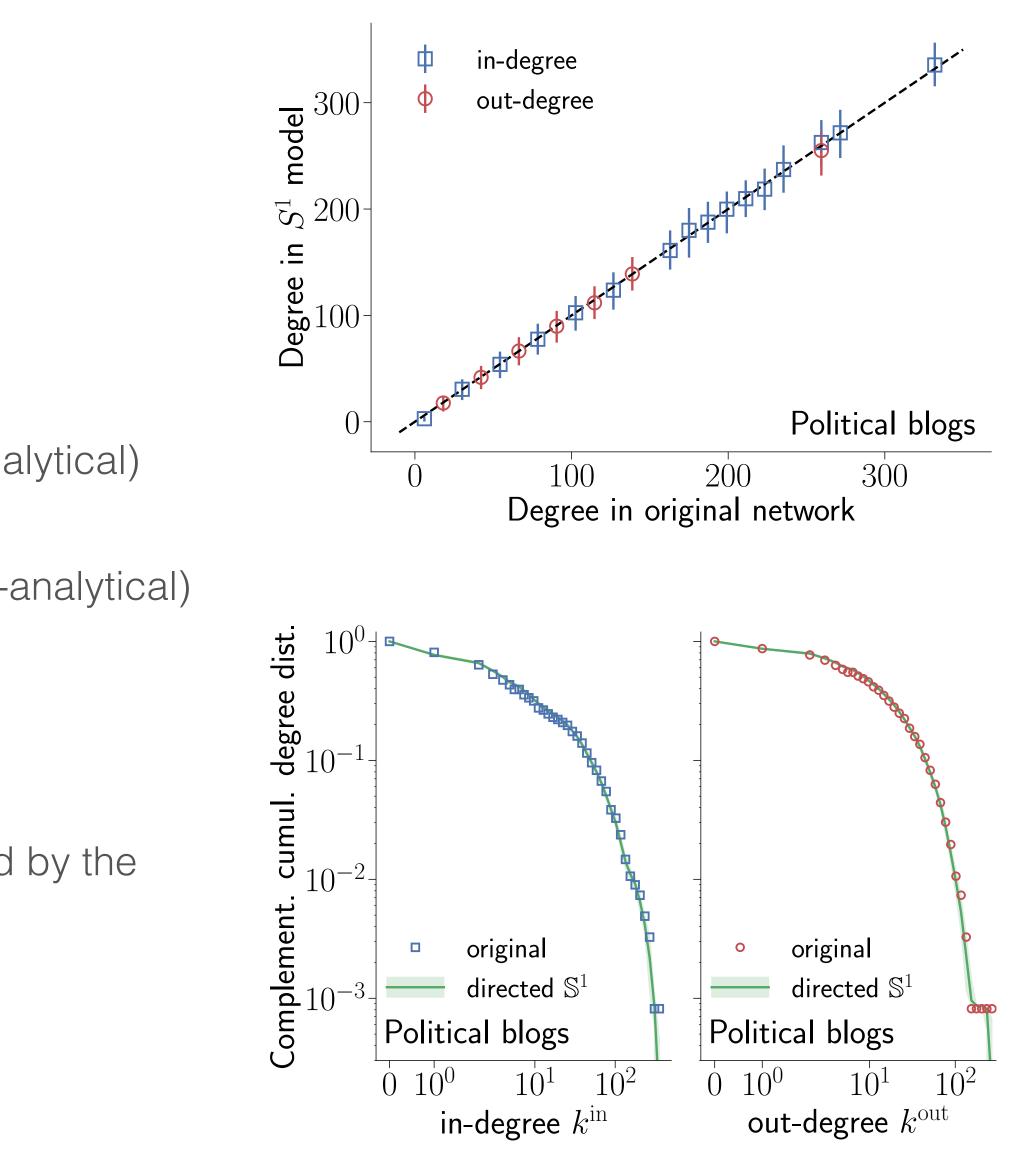
- 1. joint degree distribution $P(k^{\text{in}}, k^{\text{out}})$
- 2. reciprocity r
- 3. density of triangles

Assuming uniform angular positions for nodes,

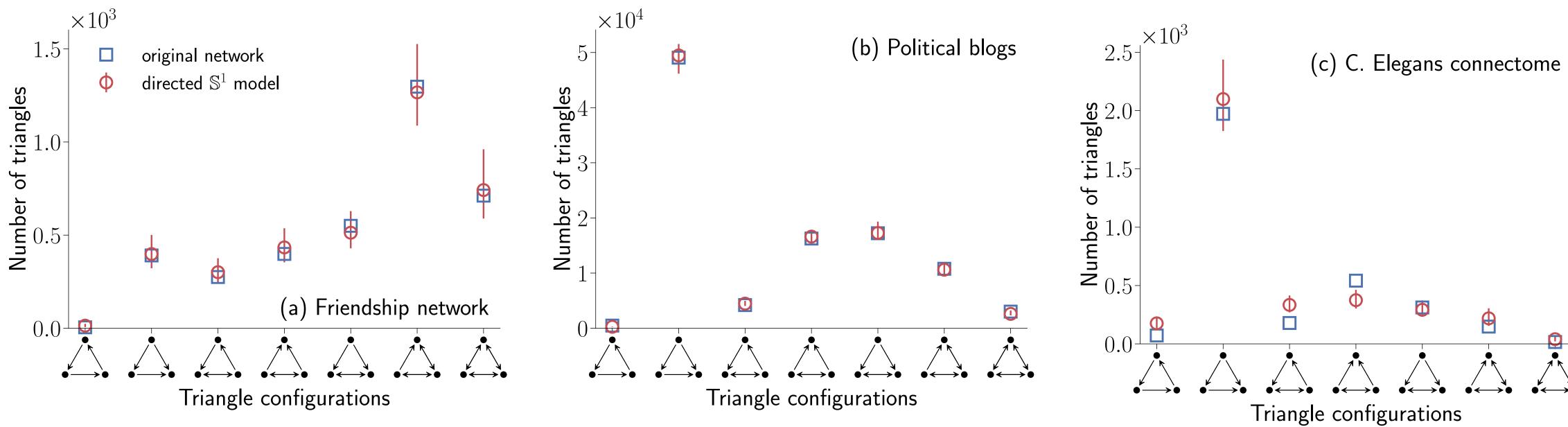
- 1. infer κ^{in} , κ^{out} to replicate $P(k^{\text{in}}, k^{\text{out}})$ on average (analytical)
- 2. set ν to reproduce r (analytical)
- 3. adjust β to recreate the density of triangles (semi-analytical)

Generate a sample of random directed networks:

- 1. assign angular positions randomly
- 2. draw directed links using the probabilities defined by the framework for deliberate reciprocity



Realistic clustering patterns in directed geometric networks



Coupled with an underlying geometry,

- 1. the joint degree distribution,
- the reciprocity and 2.
- the density of triangles 3.

fix the clustering patterns in the network.

Summary

- 1. Presented a generalization of the \mathbb{S}^1 model to directed networks.
- 2. Proposed a general approach to control reciprocity in any random network model.
- 3. Showed that the interplay between in/out-degree, reciprocity and clustering in directed networks can be accurately captured by a geometric approach.

Further details

□ antoineallard.info

♥ @all_are

EXCELLENCE

FUND

- **O** github.com/networkgeometry/directed-geometric-networks
- i on arXiv soon

D'EXCELLENCE EN RECHERCHE

Fonds de recherche Nature et technologies * * Québec 🐱 🐱

Work done in collaboration with

M. Ángeles Serrano Universitat de Barcelona

ICREA

Marián Boguñá Universitat de Barcelona

