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Hyperbolic space: a natural network geometry

Networks obtained from hyperbolic

geometry have properties that match
empirical observations:

* degree sequence;
e small-worldness;
* shortest paths;

* community structure.
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Hyperbolic space: a natural network geometry

Networks obtained from hyperbolic
geometry have properties that match
empirical observations:

* degree sequence;

e small-worldness;

* shortest paths;

* community structure.

Chiefly, the triangle inequality
dj, < dij + djg

naturally induces clustering.
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Current embedding algorithms’ main limitation

Current methods rely on heuristics
and use likelihood optimization.

These approaches yield fast and
good results, but they provide little
insight on the likelihood’s landscape.
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Current embedding algorithms’ main limitation

Current methods rely on heuristics
and use likelihood optimization.

These approaches yield fast and
good results, but they provide little
insight on the likelihood’s landscape.

Goal: characterize the enbeddings’ landscape.
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S model

The likelihood of the S' model® is 2%"'8
P[G:g|07’£76]:HIP[Aij:aijle’ﬁ’BL :?:j
i<y =
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1. Closely related to the H? model which directly uses hyperbolic geometry (Krioukov, 2010).



S model
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1. Closely related to the H? model which directly uses hyperbolic geometry (Krioukov, 2010).



S model
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The likelihood of the S! model® is 2‘“‘
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where v Distance d
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k;: expected degree of vertex i; i

: controls the sharpness of the sigmoid; i 0; 0,

A(+,-): angular separation. A(0:,6;)
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1. Closely related to the H? model which directly uses hyperbolic geometry (Krioukov, 2010).



Embedding inference scheme

We infer the coordinates that generated a synthetic graph.

1. Choose the S' model’s parameters 6, x and £3.

2. Generate a synthetic graph with the likelihood g ~ P|G = ¢|0, &, 5].
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Stan Development Team. 2022. https://mc-stan.org.
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Embedding inference scheme

We infer the coordinates that generated a synthetic graph.

1. Choose the S' model’s parameters 6, x and £3.
2. Generate a synthetic graph with the likelihood g ~ P|G = ¢|0, &, 5].

3. Sample! the posterior obtained using Bayes’ rule
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Issues with out-of-the-box HMC

Hamiltonian Monte Carlo (HMC) has poor mixing because of the
multimodality of the posterior.

Figure: Multidimensional scaling (MDS)
of the posterior sample obtained from
4 chains initialized randomly (red) and
initialized at the ground truth (green).



Issues with out-of-the-box HMC

Hamiltonian Monte Carlo (HMC) has poor mixing because of the
multimodality of the posterior.
Solved issues:

1. incorrect boundary periodicity;

2. symmetry-equivalent embeddings;

3. incoherent cluster alignments.

Figure: Multidimensional scaling (MDS)
of the posterior sample obtained from
4 chains initialized randomly (red) and
initialized at the ground truth (green).



Issues with out-of-the-box HMC

Hamiltonian Monte Carlo (HMC) has poor mixing because of the
multimodality of the posterior.

Solved issues:

2. symmetry-equivalent embeddings;

3. incoherent cluster alignments.
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Issue #2: Symmetries cause equivalent embeddings
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Issue #2: Symmetries cause equivalent embeddings
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We fix the vertex of the largest degree at # = 0 to limit rotations. Samples are
aligned? after running HMC.

2. Rotation ¢ which minimizes Y=, A(0; + ¢, 0;)? across all combinations of automorphisms and reflections.



Issue #3: Clusters have different alignments

Superposition of the samples obtained from 4 chains. Each chain has a
different color. Maximum a posterori (MAP) shown with [.

A straight line signals a perfect inference.
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Issue #3: Clusters have different alignments

Superposition of the samples obtained from 4 chains. Each chain has a
different color. Maximum a posterori (MAP) shown with [.

A straight line signals a perfect inference.
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Fixing cluster alignments with a new MCMC move

A cluster angle swap move helps the HMC sampler exit some local maxima.

1. Cluster
identification

This move is its own inverse. Its acceptance probability depends only on the posterior ratio.
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A cluster angle swap move helps the HMC sampler exit some local maxima.

1. Cluster
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This move is its own inverse. Its acceptance probability depends only on the posterior ratio.



Fixing cluster alignments with a new MCMC move

A cluster angle swap move helps the HMC sampler exit some local maxima.

1. Cluster
identification

@@/ 7

This move is its own inverse. Its acceptance probability depends only on the posterior ratio.

2. Select cluster 3. Reverse angles in cluster




Sampling with HMC and cluster angle swap

Sample position 6*

With cluster angle swaps
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Sampling with HMC and cluster angle swap

Issue #4: clusters have incorrect relative positions.

With cluster angle swaps Only HMC
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Sampling with HMC and cluster angle swap

Issue #4: clusters have incorrect relative positions.

However, we believe these clusters translations could be, for certain graphs,
nearly equally probable.

) With cluster angle swaps
To be continued. . .
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Summary

Next we want to

* improve the MCMC mixing such that the ground truth is accessible
from any initialization;
e evaluate confidence intervals;

* infer the expected degrees &;

e compare our method to other algorithms on a large variety of graphs.

Takeaways:
* Our Bayesian approach can characterize the embeddings” landscape.
* The posterior is multimodal and thus difficult to explore with MCMC.
* There could be multiple good embeddings.

Feel free to contact me at simon. lizotte.1@ulaval.ca.
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H? model vs S model: connection probability

HQ
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New move considered: cluster swapping

1. Cluster. 2. Select two 3. Swap and 4. Put back vertices
identification clusters adjust clusters in clusters

Sy <4F R

Supplementary — 2



Sigmoid approximation of the absolute value
The angular separation Af;; is not differentiable at every point
Ab;j =m —|m—|0; — 0]|.
The absolute value can be expressed with the Heaviside step function i
|z| = 2(2H (x) — 1).

The step function is approximated with the sigmoid function o
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