INHERENT UNCERTAINTY OF HYPERBOLIC EMBEDDINGS OF COMPLEX NETWORKS

NetSci 2023 — Network Geometry (13B)

Simon Lizotte, Jean-Gabriel Young and Antoine Allard

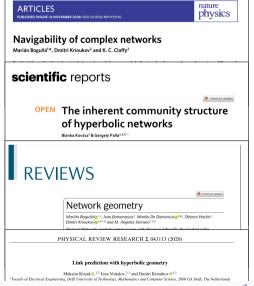
July 12, 2023

simon.lizotte.1@ulaval.ca

Hyperbolic space: a natural network geometry

Networks obtained from hyperbolic geometry have properties that *match empirical observations*:

- degree sequence;
- small-worldness;
- shortest paths;
- community structure.



Hyperbolic space: a natural network geometry

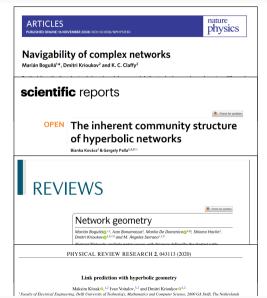
Networks obtained from hyperbolic geometry have properties that *match empirical observations*:

- degree sequence;
- small-worldness;
- shortest paths;
- community structure.

Chiefly, the triangle inequality

$$d_{jk} \le d_{ij} + d_{jk}$$

naturally induces clustering.



Current embedding algorithms' main limitation

Current methods rely on *heuristics* and use *likelihood optimization*.

These approaches yield fast and good results, but they provide little insight on the *likelihood's landscape*.

Chack for undates Optimisation of the coalescent hyperbolic embedding of complex networks Bianka Kovács¹ & Gergely Palla^{1,2,300} Several observations indicate the existence of a latent hyperbolic space behind real networks that **New Journal of Physics** with: Deutsche Physikalische OP Institute of Physics The open access journal at the forefront of physics. Gesellschaft and the Institute DADED Mercator: uncovering faithful hyperbolic embeddings of complex networks Guillermo García-Pérez 1.2.8. Antoine Allard 1.4.8. M Ángeles Serrano 5.6.7 and Marián Boguñá 5.6 OTF Centre of Excellence, Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turun Yliopisto, Finland Complex Systems Research Group, Department of Mathematics and Statistics, University of Turku, FL 20014 Turun Yliopisto, Finland ant dealering dealering beginning at Penting Université Land Onder (Onder) CW0A6 Canada BEECACH TRANSACTIONS ON NETWORKING VOL. 21 NO. 1 DEBPLIARY 2015

Network Mapping by Replaying Hyperbolic Growth

thirtaer—Recent years have shown a premising progress in cumerastualing gometric underprinnings behind the structure, boy much results of the properties of

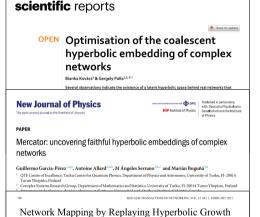
scientific reports

complex networks [2]-[4]. A particular goal is to understand bow these characteristics affect the various processes that run on top of these networks, such as routing, information shares data distribution, exacting, and epidemics [2], [3], [5]. Understanding the mechanisms that shape the structure and drive the evolution of real networks can also have important applications in designing more efficient recommender and collaborative filterine assurem fol and for recording missions and future

Current embedding algorithms' main limitation

Current methods rely on *heuristics* and use *likelihood optimization*.

These approaches yield fast and good results, but they provide little insight on the *likelihood's landscape*.

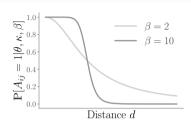


Goal: characterize the *embedding* sure plants and expect the sure of the street of th

\mathbb{S}^1 model

The likelihood of the S¹ model¹ is

$$\mathbb{P}[G = g \mid \theta, \kappa, \beta] = \prod_{i < j} \mathbb{P}[A_{ij} = a_{ij} | \theta, \kappa, \beta],$$



^{1.} Closely related to the \mathbb{H}^2 model which directly uses hyperbolic geometry (Krioukov, 2010).

\mathbb{S}^1 model

The likelihood of the S¹ model¹ is

$$\mathbb{P}[G = g \mid \theta, \kappa, \beta] = \prod_{i < j} \mathbb{P}[A_{ij} = a_{ij} | \theta, \kappa, \beta],$$

where

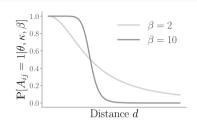
$$\mathbb{P}[A_{ij} = 1 \mid \theta, \kappa, \beta] = \frac{1}{1 + \left(\frac{R\Delta(\theta_i, \theta_j)}{\mu \kappa_i \kappa_j}\right)^{\beta}},$$

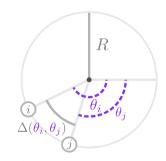
and

 κ_i : expected degree of vertex i;

 β : controls the sharpness of the sigmoid;

 $\Delta(\cdot,\cdot)$: angular separation.





^{1.} Closely related to the \mathbb{H}^2 model which directly uses hyperbolic geometry (Krioukov, 2010).

\mathbb{S}^1 model

The likelihood of the S¹ model¹ is

$$\mathbb{P}[G = g \mid \theta, \kappa, \beta] = \prod_{i < j} \mathbb{P}[A_{ij} = a_{ij} | \theta, \kappa, \beta],$$

where

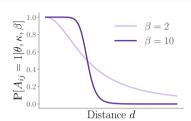
$$\mathbb{P}[A_{ij} = 1 \mid \theta, \kappa, \beta] = \frac{1}{1 + \left(\frac{R\Delta(\theta_i, \theta_j)}{\mu \kappa_i \kappa_j}\right)^{\beta}},$$

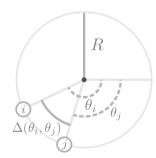
and

 κ_i : expected degree of vertex i;

 β : controls the sharpness of the sigmoid;

 $\Delta(\cdot,\cdot)$: angular separation.



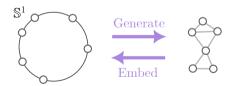


^{1.} Closely related to the \mathbb{H}^2 model which directly uses hyperbolic geometry (Krioukov, 2010).

Embedding inference scheme

We infer the coordinates that generated a synthetic graph.

- 1. Choose the \mathbb{S}^1 model's parameters θ , κ and β .
- **2**. Generate a synthetic graph with the likelihood $g \sim \mathbb{P}[G = g | \theta, \kappa, \beta]$.



Stan Development Team. 2022. https://mc-stan.org.

Embedding inference scheme

We infer the coordinates that generated a synthetic graph.

- 1. Choose the \mathbb{S}^1 model's parameters θ , κ and β .
- **2.** Generate a synthetic graph with the likelihood $g \sim \mathbb{P}[G = g | \theta, \kappa, \beta]$.
- 3. Sample¹ the posterior obtained using Bayes' rule

$$f(\theta|G=g) = \frac{\pi(\theta)}{\mathbb{P}[G=g]} \prod_{i < j} \left(1 + \left(\frac{R\Delta(\theta_i, \theta_j)}{\mu \kappa_i \kappa_j} \right)^{\beta(2a_{ij}-1)} \right)^{-1},$$

$$\pi(\theta) = \left(\frac{1}{2\pi} \right)^n.$$
Generate
Embed

Stan Development Team. 2022. https://mc-stan.org.

Issues with out-of-the-box HMC

Hamiltonian Monte Carlo (HMC) has poor mixing because of the *multimodality of the posterior*.

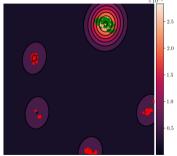


Figure: Multidimensional scaling (MDS) of the posterior sample obtained from 4 chains initialized randomly (red) and initialized at the ground truth (green).

Issues with out-of-the-box HMC

Hamiltonian Monte Carlo (HMC) has poor mixing because of the *multimodality of the posterior*.

Solved issues:

- 1. incorrect boundary periodicity;
- 2. symmetry-equivalent embeddings;
- 3. incoherent cluster alignments.

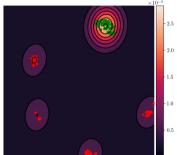


Figure: Multidimensional scaling (MDS) of the posterior sample obtained from 4 chains initialized randomly (red) and initialized at the ground truth (green).

Issues with out-of-the-box HMC

Hamiltonian Monte Carlo (HMC) has poor mixing because of the *multimodality of the posterior*.

Solved issues:

- 1. incorrect boundary periodicity;
- 2. symmetry-equivalent embeddings;
- 3. incoherent cluster alignments.

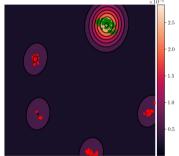
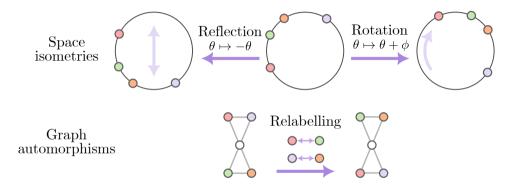
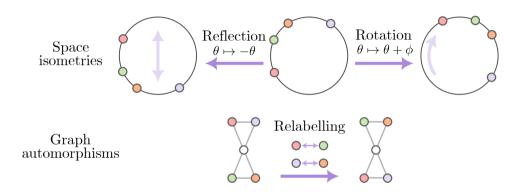


Figure: Multidimensional scaling (MDS) of the posterior sample obtained from 4 chains initialized randomly (red) and initialized at the ground truth (green).

Issue #2: Symmetries cause equivalent embeddings



Issue #2: Symmetries cause equivalent embeddings



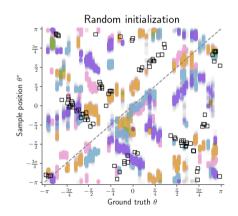
We fix the vertex of the largest degree at $\theta = 0$ to limit rotations. Samples are aligned² after running HMC.

^{2.} Rotation ϕ which minimizes $\sum_i \Delta(\theta_i^* + \phi, \theta_i)^2$ across all combinations of automorphisms and reflections.

Issue #3: Clusters have different alignments

Superposition of the samples obtained from 4 chains. Each chain has a different color. Maximum *a posterori* (MAP) shown with \Box .

A *straight line* signals a perfect inference.

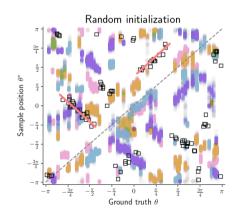


Issue #3: Clusters have different alignments

Superposition of the samples obtained from 4 chains. Each chain has a different color. Maximum *a posterori* (MAP) shown with \Box .

A straight line signals a perfect inference.

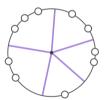
Issue: Clusters have different alignments.



Fixing cluster alignments with a new MCMC move

A *cluster angle swap* move helps the HMC sampler exit some local maxima.

1. Cluster identification



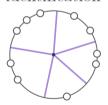
This move is its own inverse. Its acceptance probability depends only on the posterior ratio.

Fixing cluster alignments with a new MCMC move

A *cluster angle swap* move helps the HMC sampler exit some local maxima.

1. Cluster identification





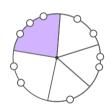


This move is its own inverse. Its acceptance probability depends only on the posterior ratio.

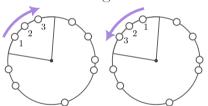
Fixing cluster alignments with a new MCMC move

A *cluster angle swap* move helps the HMC sampler exit some local maxima.

2. Select cluster

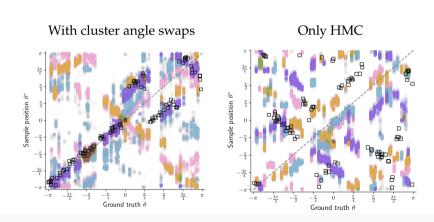


3. Reverse angles in cluster



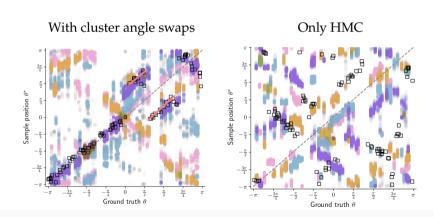
This move is its own inverse. Its acceptance probability depends only on the posterior ratio.

Sampling with HMC and cluster angle swap



Sampling with HMC and cluster angle swap

Issue #4: clusters have incorrect relative positions.

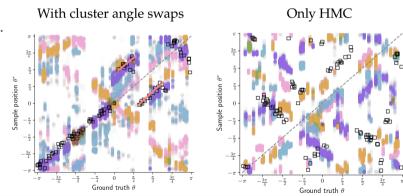


Sampling with HMC and cluster angle swap

Issue #4: clusters have incorrect relative positions.

However, we believe these *clusters translations* could be, for certain graphs, nearly *equally probable*.

To be continued...



Summary

Next we want to

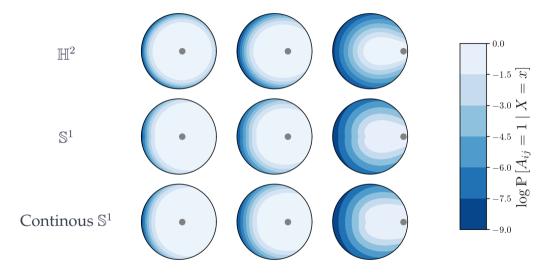
- improve the MCMC mixing such that the ground truth is accessible from any initialization;
- evaluate confidence intervals;
- infer the expected degrees κ ;
- compare our method to other algorithms on a large variety of graphs.

Takeaways:

- Our Bayesian approach can characterize the embeddings' landscape.
- The posterior is *multimodal* and thus difficult to explore with MCMC.
- There could be *multiple good embeddings*.

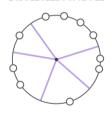
Feel free to contact me at simon.lizotte.1@ulaval.ca.

 \mathbb{H}^2 model vs \mathbb{S}^1 model: connection probability

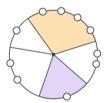


New move considered: cluster swapping

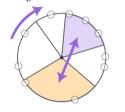
1. Cluster. identification

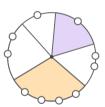


2. Select two clusters



3. Swap and 4. Put back vertices adjust clusters in clusters





Sigmoid approximation of the absolute value

The angular separation $\Delta \theta_{ij}$ is not differentiable at every point

$$\Delta \theta_{ij} = \pi - |\pi - |\theta_i - \theta_j||.$$

The absolute value can be expressed with the Heaviside step function H

$$|x| = x(2H(x) - 1).$$

The step function is approximated with the sigmoid function σ_b

$$H(x) = \lim_{b \to \infty} \sigma_b(x)$$

$$\sigma_b(x) = \frac{1}{1 + e^{-bx}}.$$

$$\sigma_b(x) = \frac{1}{1 + e^{-bx}}.$$