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Hyperbolic space: a natural network geometry
Networks obtained from hyperbolic
geometry have properties that match
empirical observations:

• degree sequence;
• small-worldness;
• shortest paths;
• community structure.

Chiefly, the triangle inequality

djk ≤ dij + djk

naturally induces clustering.
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Current embedding algorithms’ main limitation

Current methods rely on heuristics
and use likelihood optimization.

These approaches yield fast and
good results, but they provide little
insight on the likelihood’s landscape.
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Current embedding algorithms’ main limitation

Current methods rely on heuristics
and use likelihood optimization.

These approaches yield fast and
good results, but they provide little
insight on the likelihood’s landscape.

Goal: characterize the embeddings’ landscape.
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S1 model

The likelihood of the S1 model1 is

P[G = g | θ, κ, β] =
∏
i<j

P[Aij = aij|θ, κ, β],

where

P[Aij = 1 | θ, κ, β] = 1

1 +
(

R∆(θi,θj)

µκiκj

)β ,
and

κi : expected degree of vertex i;
β : controls the sharpness of the sigmoid;

∆(·, ·) : angular separation.
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1. Closely related to the H2 model which directly uses hyperbolic geometry (Krioukov, 2010).
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Embedding inference scheme

We infer the coordinates that generated a synthetic graph.

1. Choose the S1 model’s parameters θ, κ and β.
2. Generate a synthetic graph with the likelihood g ∼ P[G = g|θ, κ, β].

3. Sample1 the posterior obtained using Bayes’ rule

f(θ|G=g) =
π(θ)

P[G = g]

∏
i<j

(
1 +

(
R∆(θi, θj)

µκiκj

)β(2aij−1)
)−1

,

π(θ) =

(
1

2π

)n

.

Generate

Embed

Stan Development Team. 2022. https://mc-stan.org.
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Issues with out-of-the-box HMC

Hamiltonian Monte Carlo (HMC) has poor mixing because of the
multimodality of the posterior.

Solved issues:
1. incorrect boundary periodicity;
2. symmetry-equivalent embeddings;
3. incoherent cluster alignments.

Figure: Multidimensional scaling (MDS)
of the posterior sample obtained from
4 chains initialized randomly (red) and
initialized at the ground truth (green).
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Issue #2: Symmetries cause equivalent embeddings

Space
isometries

Graph
automorphisms

Relabelling

Reflection Rotation

We fix the vertex of the largest degree at θ = 0 to limit rotations. Samples are
aligned after running HMC.
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Issue #2: Symmetries cause equivalent embeddings

Space
isometries

Graph
automorphisms

Relabelling

Reflection Rotation

We fix the vertex of the largest degree at θ = 0 to limit rotations. Samples are
aligned2 after running HMC.

2. Rotation ϕ which minimizes
∑

i ∆(θ∗i + ϕ, θi)
2 across all combinations of automorphisms and reflections.
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Issue #3: Clusters have different alignments

Superposition of the samples obtained from 4 chains. Each chain has a
different color. Maximum a posterori (MAP) shown with □.

A straight line signals a perfect inference.

Issue: Clusters have different alignments.
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Fixing cluster alignments with a new MCMC move

A cluster angle swap move helps the HMC sampler exit some local maxima.

1. Cluster
identification

This move is its own inverse. Its acceptance probability depends only on the posterior ratio.
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Fixing cluster alignments with a new MCMC move

A cluster angle swap move helps the HMC sampler exit some local maxima.

1. Cluster
identification 3. Reverse angles in cluster

1
2

3

2. Select cluster

1
2

3

This move is its own inverse. Its acceptance probability depends only on the posterior ratio.
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Sampling with HMC and cluster angle swap

Issue #4: clusters have incorrect relative positions.

However, we believe these clusters translations could be, for certain graphs,
nearly equally probable.

To be continued. . .

With cluster angle swaps Only HMC
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Summary

Next we want to
• improve the MCMC mixing such that the ground truth is accessible

from any initialization;
• evaluate confidence intervals;
• infer the expected degrees κ;
• compare our method to other algorithms on a large variety of graphs.

Takeaways:
• Our Bayesian approach can characterize the embeddings’ landscape.
• The posterior is multimodal and thus difficult to explore with MCMC.
• There could be multiple good embeddings.

Feel free to contact me at simon.lizotte.1@ulaval.ca.
10



H2 model vs S1 model: connection probability

H2

S1

Continous S1

Supplementary — 1



New move considered: cluster swapping

1. Cluster.
identification

3. Swap and 
adjust clusters

2. Select two
clusters

4. Put back vertices
in clusters

Supplementary — 2



Sigmoid approximation of the absolute value
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Approx. b = 3

The angular separation ∆θij is not differentiable at every point

∆θij = π − |π − |θi − θj||.

The absolute value can be expressed with the Heaviside step function H

|x| = x(2H(x)− 1).

The step function is approximated with the sigmoid function σb

H(x) = lim
b→∞

σb(x)

σb(x) =
1

1 + e−bx
.
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