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Empirical data are noisy...



Empirical data are noisy...
O and this applies to network data.
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It applies to the vast majority of datasets
—

Whether measurements are
e vertex times series correlations,
* counts of proximity detectors,
e counts of animal interactions,

they are noisy and uncertain.




Bayesian approach
®

Hypothesis Educated guess

(Prior) (Posterior)
0.25 0.20
0.25 0.60
(@)
C§o 0.25 0.19
0.25 0.01
(@)

J.-G. Young, G. T. Cantwell, and M. E. ]. Newman, "Bayesian inference of network structure from unreliable data",
J. Complex Netw. 8, cnaao46 (2021).



Works in network reconstruction

Bayesian approaches:

 C.T. Butts, "Network inference, error, and informant (in)accuracy: a Bayesian approach”, Soc
Networks 25, 103-140 (2003).

e T. P. Peixoto, "Network Reconstruction and Community Detection from Dynamics", Phys.
Rev. Lett. 123, 128301 (2019).

Other approaches:

* V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, and P. Geurts, "Inferring Regulatory
Networks from Expression Data Using Tree-Based Methods", PLoS One 5, e12776 (2010).

* A.T Spechtand J. Li, "LEAP: constructing gene co-expression networks for single-cell
RNA-sequencing data using pseudotime ordering", Bioinformatics 33, 764—766, (2017).

e H. Matsumoto et al., "SCODE: an efficient regulatory network inference algorithm from
single-cell RNA-Seq during differentiation”, Bioinformatics 33, 2314—2321 (2017).



Importance of higher order interactions
®

* Explosive phase transitions;
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The physics of higher-order interactions in
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Guilherme Ferraz de Arruda©?, Benedetta Franceschiello ®°', lacopo lacopini ®', Sonia Kéfi"2,
Vito Latora® 515, Yamir Moreno @517, Micah M. Murray ©°'°, Tiago P. Peixoto'®,
Francesco Vaccarino ©2° and Giovanni Petri ®52=

Complex the main paradi dynamics of interacting systems. However, networks are
intrinsically limited to describing pairwise lnteradlons ‘whereas real-world systems are often characterized by higher-order
interactions involving groups of three or more uni structures, such as ial complexes,
are therefore a better tool to map the real organization  of many ‘social, biological and man-made systems. Here, we highlight

g the phys-

ics of higher-order systems.
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Experimental evidence for tipping
points in social convention

Damon Centola"**, Joshua Becker', Devon Brackbill', Andrea Baronchelli®

‘Theoretical models of critical mass have shown how minority groups can initiate
social change dynamics in the emergence of new social conventions. Here, we study
an artificial system of social conventions in which human subjects interact to establish
a new coordination equilibrium. The findings provide direct empirical demonstration

broad practical (78, 19) and scientific (1, 12)
importance of understanding the dynamics of
eritical mass in collective behavior, it has not
ossible to identify whether there are in
fact tipping points in empirical systems because
such a test requires the ability to independently
vary the size of minority groups within an evoly-
ocial coordination.
We addressed this problem by adopting an
experimental approach to studying tipping-
point dynamics within an artificially created
system of evolving social conventions. Following
the literature on social conventions (9, 20, 21),
we study a system of coordination in which a

of the existence of a tipping point in the dynamics of changing social
When minority groups reached the critical mass—that is, the critical group size for
initiating social change—they were consistently able to overturn the established
behavior. The size of the required critical mass is expected to vary based on
theoretically identifiable features of a social setting. Our results show that the
theoretically predicted dynamics of critical mass do in fact emerge as expected
within an empirical system of social

group of actors attempt to disrupt an
established equilibrium behavior. In both our
theoretical framework and the empirical setting,
we adopt the canonical approach of using co-
ordination on a naming convention as a general
model for conventional behavior (21-24). Our
experimental approach is designed to test a
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Higher-order interactions capture unexplained
complexity in diverse communities

Margaret M. Mayfield™ and Daniel B. Stouffer2*

well intai y i ts of study-

ing them ofte iire some simplification, such as ig ion that direct, additi ition captures the
important details about how interactions between species impact community diversity. More complex non-additive ‘higher-
order’ interactions are assumed to be negligible or absent. Notably, these assumptions are poorly supported and have major
for th with which patterns of iversity are modelled and explained. We present a mathemati-

cally simpl i ing biologically meaningful complexity i dels of diversity by including non-additive




Importance of higher order interactions
®

* Explosive phase transitions;
e Social coordination;

* Multiple species interactions;
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Brain cortical dynamics;

* and many more...

PERSPECTIVE

nature
physics

hitps://doi.org/10.1038/541567-021-01371-4.

M) Chock for updiates

The physics of higher-order interactions in
complex systems

Federico Battiston'™, Enrico Amico®?, Alain Barrat®**, Ginestra Bianconi®*7,

Guilherme Ferraz de Arruda©¢, F i , lacopo pini®", Sonia Kéfin2,
Vito Latora®5314%5, Yamir Moreno %7, Micah M. Murray ©°'°%, Tiago P. Peixoto'®,
Francesco Vaccarino © and Giovanni Petri ®%2'=

17524 - The Jourslof Nearss e, Nevember 30, 011 - 318817514 17526

Behavioral/Systems/Cognitive
Higher-Order Interactions Characterized in Cortical Activity

Shan Yu (#L), Hongdian Yang (#32),'* Hiroyuki Nakahara (#%#2),4 Gustavo S. Santos,' Danko Nikoli&;**

and Dietmar Plenz!

ISection on Crtical Brain Dynarsics, Laboratory of Systems Neuroscience, Natianal Institute of Mental Health, Bethescda, Maryland 20892-9663, Biophysics
Program, Institute for PhysicalScience and Technology, University of Maryland, Collee Park, Maryland, 20742, *Laboratory for Integrated Theoretical
Nearoscience, RIKEN Brain Science Institute, Wako City, Saitama 351-0198 Japan, ‘Department of Computational Intelligence and Systems Science, Tokyo

RESEARCH

broad practical (78, 19) and scientific (1, 12)
importance of understanding the dynamics of
eritical mass in collective behavior, it has not
been possible to identify whether there are in
fact tipping points in empirical systems because

SOCIAL SCIENCE

Experimental evidence for tipping
points in social convention

such a test requires the ability to independently
vary the size of minority groups within an evoly-
ing system of social coordination.

We addressed this problem by adopting an

Damon Centola*", Joshua Becker', Devon Brackbill', Andrea Baronchelli®

naure . ARTICLE
eCOlOgy & CVOIthlorl PUBLISHED: 17 FEBRUARY 2017 | VOLUME: 1| ARTICLE NUMBER: 0062

Higher-order interactions capture unexplained
complexity in diverse communities

Margaret M. Mayfield™ and Daniel B. Stouffer2*

wellk intai y i ts of study-

ing them ofte iire some. ification, such as. ig that direct, additi ition captures the
important details about how interactions between species impact community diversity. More complex non-additive ‘higher-
order’ interactions are assumed to be negligible or absent. Notably, these assumptions are poorly supported and have major
for th with which patterns of ity are modelled and explained. We present a mathemati-

cally simpl i ing biologically meaningful complexity i dels of diversity by including non-additive




Our goal

Explore the importance of correlations induced by higher-order interactions
in the context of reconstruction.




Reconstruction using Bayes formula
®

Hypergraph H Observations X

Parameters 0 Noise

Ps Qs --- —

o P(H|0) P(X|H,0)
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Hypergraph H Observations X
Parameters 0 Noise
p,q, ... —_—
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Bayes formula:
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Reconstruction using Bayes formula
®

Reconstruction

P(H,0|X)
Hypergraph H Observations X
Parameters 0 Noise
p,q, ... —_—
P(0)
P(H|0) P(X|H,0)

Bayes formula:
P(H,0|X) x P(X|H,0)P(H|0)P(6)
———

Posterior



Pairwise projection of hypergraphs
®

We define interaction type ¢;; of a pair (7, j) as

(®)

¢;; = (largest hyperedge size with i and j) — 1.

(B)
(C}

Q Examples:
o EED =0
G * (=1

i éBCZQ



Data model P(X|H,0)

The size (¢;; + 1) of the largest hyperedge connecting 7 and j determines
the measurement rate (p14,;) of the pair (7, j).
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The data model is then
P(X|H,6) = | [ Poi(wij; pe,,),
i<j
where z;; is the count of measurements between i and j.



Data model P(X|H,0)

The size (¢;; + 1) of the largest hyperedge connecting 7 and j determines

the measurement rate (p14,;) of the pair (7, j).

The data model is then
P(X|H7 0) = H POi(ajij; M&'j)?

i<j

where z;; is the count of measurements between i and j.

Probability mass

[T Observations X
— P(xij|li; = 0, o)
— = Playlly =1,m)
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Hypergraph prior P(H|6)

We use a direct generalization of the G(n,p) model:
* 2-edges independent with probability ¢;
¢ 3-edges independent with probability p;

which leads to

P(H9) = (1 — q)&)"p(1 = p) ()2,
where
* m is the number of 2-edges and

* A is the number of 3-edges.

10



Real-world network reconstruction

®
Hypergraph H Observations X
o©° "
0% 0o Parameters ¢ Z
g
o= 0.01 :?
p1= 20 2
12 = 30 E
ol

m H,HH\HH\,\HH\H |
0 10 20 30 40
Pairwise observations (zi;)

w,: measurement rate for hyperedges of size &,
x;;: count of pairwise measurements for (i, j).

J.-G. Young, G. Petri, and T. P. Peixoto, "Hypergraph reconstruction from network data”, Commun. Phys. 4, 135 (2021).
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Real-world network reconstruction

Using MCMC, we check the posterior maximum and the confusion matrix.
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Real-world network reconstruction
O

Using MCMC, we check the posterior maximum and the confusion matrix.

c/)oo"o

l;; + 1: largest hyperedge connecting ¢ and j.
(;; + 1: predicted largest hyperedge connecting i and ;.
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Real-world network reconstruction

Using MCMC, we check the posterior maximum and the confusion matrix.

0 1 2 OO 2

Q o
o
0 0
0—0 0
Ofo
0 11 0 ® 4
o e
0 5 62 X © 2 0 3 64

l;; + 1: largest hyperedge connecting ¢ and j.
(;; + 1: predicted largest hyperedge connecting i and ;.
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More real-world hypergraphs

Classification errors

[ Baseline
B Hypergraph

Plant-
pollinator
n =57
p=0.11

Country
languages
n = 150
p=0.02

Escorts Crimes
n = 159 n = 202
p=0.01 p=0.01
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An easy hypergraph

We remove 2-cdges that create triangles. As a result, 3-edges can be de-
duced directly from projected triangles.

O
- &0
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An easy hypergraph

We remove 2-cdges that create triangles. As a result, 3-edges can be de-
duced directly from projected triangles.

O
- &0

0.4 - Baseline
# misclassified interactions | —e— Hypergraph
€= - -
# interactions w
0.2r
(1 : measurement rate of 2-edges.
00k
0 20 40
231
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A difficult hypergraph

We create complete subgraphs and randomly promote triangles to 3-
edges. As a result, triangles don’t distinguish 2-edges from 3-edges.

353 - B

15



A difficult hypergraph

We create complete subgraphs and randomly promote triangles to 3-
edges. As a result, triangles don’t distinguish 2-edges from 3-edges.

353 - B

Baseline
—e— Hypergraph

. e . . 0.4~
# misclassified interactions

€= - :
# interactions w
0.2~

(1 : measurement rate of 2-edges.

0 20 40
H1
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Interactions are sparse

Classification errors

[ Baseline
B Hypergraph

Plant-
pollinator
n =57
p=0.11

Country
languages
n = 150
p=0.02

Escorts Crimes
n = 159 n = 202
p=0.01 p=0.01
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Take-aways:

* We introduced a model to reconstruct hypergraphs from noisy pairwise
observations;

* We applied it on real-world hypergraphs;

* We showed that it works well because interactions are sparse.

Available soon:
* Preprint on arXiv

e Python/C++ implementation on GitHub
Thanks to my advisors Jean-Gabriel-Young and Antoine Allard.

Contact me at simon.lizotte.1@ulaval.ca
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Categorical model

We suppose the following process
1. Edges of type ¢;; = 2 are placed uniformly with probability g,

2. Edges of type ¢;; = 1 are placed uniformly with probability ¢; among
the remaining unconnected pairs,

which results in
P(GI0) = g (1 — q) ()7 m2 5 ga (1 — g)(2) =2, (1)

where my, is the number of edges of type ¢;; = k.

Appendix — 18



Symmetries of the hypergraph model

“ f e 4 e
O

O O
(b) O
— O

O

Appendix — 19



Prior distributions

Hypergraph model:

Categorical model:

p,q ~ Beta(¢, ()
po ~ Gamma(ay, 5o)

| po ~ TruncGammay,, ) (a1, £1)

| o ~ TruncGamma(#O,oo)(Oéz, Ba).

q1,4q2 ~ Beta(f? C)
1o ~ Gamma(ay, 5o)

pi o ~ TruncGammay,, ) (a1, £1)

oy ~ TruncGamma(m,oo)(OQ, B2).

9)

Appendix — 20



Entropy for different structures and parameters

0.18 -
A8+
0.18 0.17 -
e 0.16 - < 0.16 -
0.14 . . 015 . .
0 20 40 0 20 40
M1 H1
(a) Hypergraph for which every projected (b) Hypergraph for which every 2-edge is part
triangle is a 3-edge. of a projected triangle.
2
S==>_ pelogypi, (10)

k=0

where pj, is the proportion of interactions predicted as fij = k.
Appendix — 21



Residuals (posterior predictive check)

Residuals

Residuals

(d) Hypergraph for which every 2-edge is part of a projected triangle.

Appendix — 22



Confusion matrices

1 F(l;; = 0) 1 F(l;=1) 1 F(li;=2) 1 F(l;; = 0) 1 F(l;=1) 1 F(l; =2)
1 {sao— sdassseisese
o (=]
Il Il
5 &
0 0 : : 0 : : 0 04 ¢ ¢ 04 :
1 1 14 1 14 14
- -
Il I
5 &
0 {se—a——pensensepese () 0 o o 0 o o 04 04
1 1 1 {se—a—sasapgeepase 1 14 1{se—s——sssaqptensse
2l o]
Il Il
5 F
04 . . 0 — 0 : . 0 . ' 04 poeosiilnese 04
0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40
Hi Hi Hi Hi Hi M1

(e) Hypergraph for which every projected
triangle is a 3-edge.

(f) Hypergraph for which every 2-edge is part
of a projected triangle.
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Detectability when varying

04- T Categorical 04 Categorical
| —e— Hypergraph | —e— Hypergraph
w w
02 n 02 -
00k 00k
0 20 40 0 20 40
2 2

(g) Hypergraph for which every projected (h) Hypergraph for which every 2-edge is part
triangle is a 3-edge. of a projected triangle.
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Entropy when varying i

0.16 -

0.14 -

0 20
2

(i) Hypergraph for which every projected

triangle is a 3-edge.

40

0.18
0.17
0.16

0.15

of a projected triangle.

20 40
2

(j) Hypergraph for which every 2-edge is part

Appendix - 25



Residuals when varying /.o

&J:O gijzl &jZQ
0 500
f 0 \w
~2
& 100 ,
0
. . . 500 . .
0 20 40 0 20 40 0 20 40
2 2 2
(k) Hypergraph for which every projected triangle is a 3-edge.
éij:O el‘]’:]. ZMZQ
0
x
—100 0 500
0 2 10 0 2 10 0 20 40
2 H2 H2

(I) Hypergraph for which every 2-edge is part of a projected triangle.
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Confusion matrices when varying 1

0 0 40 0 0 40 0 20 40 0 0 40 0 0 40 0 0 40
H2 H2 H2 H2 H2 H2

(m) Hypergraph for which every projected (n) Hypergraph for which every 2-edge is part
triangle is a 3-edge. of a projected triangle.
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