
Reconstruction of hypergraphs from
their noisy pairwise observations
NetSci 2022 — Network inference

Simon Lizotte, Jean-Gabriel Young and Antoine Allard

July 28, 2022

simon.lizotte.1@ulaval.ca

Dynamica



Empirical data are noisy...

and this applies to network data.
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It applies to the vast majority of datasets

Whether measurements are

• vertex times series correlations,
• counts of proximity detectors,
• counts of animal interactions,

they are noisy and uncertain.
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Bayesian approach
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J.-G. Young, G. T. Cantwell, and M. E. J. Newman, "Bayesian inference of network structure from unreliable data",
J. Complex Netw. 8, cnaa046 (2021).
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Works in network reconstruction

Bayesian approaches:

• C. T. Butts, "Network inference, error, and informant (in)accuracy: a Bayesian approach", Soc
Networks 25, 103–140 (2003).

• T. P. Peixoto, "Network Reconstruction and Community Detection from Dynamics", Phys.
Rev. Lett. 123, 128301 (2019).

Other approaches:

• V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, and P. Geurts, "Inferring Regulatory
Networks from Expression Data Using Tree-Based Methods", PLoS One 5, e12776 (2010).

• A. T. Specht and J. Li, "LEAP: constructing gene co-expression networks for single-cell
RNA-sequencing data using pseudotime ordering", Bioinformatics 33, 764–766, (2017).

• H. Matsumoto et al., "SCODE: an efficient regulatory network inference algorithm from
single-cell RNA-Seq during differentiation", Bioinformatics 33, 2314–2321 (2017).
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Importance of higher order interactions

• Explosive phase transitions;

• Social coordination;
• Multiple species interactions;
• Brain cortical dynamics;
• and many more...
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Our goal

Explore the importance of correlations induced by higher-order interactions
in the context of reconstruction.
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Reconstruction using Bayes formula

Noise

Hypergraph H

+
Observations X

Parameters
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Reconstruction using Bayes formula

Noise

Hypergraph H

+
Observations X

Parameters

Bayes formula:
P (H, θ|X)︸ ︷︷ ︸

Posterior

∝ P (X|H, θ)P (H|θ)P (θ)
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Pairwise projection of hypergraphs

A B

C D

E

We define interaction type ℓij of a pair (i, j) as

ℓij = (largest hyperedge size with i and j)− 1.

Examples:
• ℓED = 0

• ℓAB = 1

• ℓBC = 2
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Data model P (X|H, θ)

The size (ℓij + 1) of the largest hyperedge connecting i and j determines
the measurement rate (µℓij ) of the pair (i, j).

The data model is then
P (X|H, θ) =

∏
i<j

Poi(xij;µℓij),

where xij is the count of measurements between i and j.

9



Data model P (X|H, θ)

The size (ℓij + 1) of the largest hyperedge connecting i and j determines
the measurement rate (µℓij ) of the pair (i, j).

The data model is then
P (X|H, θ) =

∏
i<j

Poi(xij;µℓij),

where xij is the count of measurements between i and j.

9



Data model P (X|H, θ)

The size (ℓij + 1) of the largest hyperedge connecting i and j determines
the measurement rate (µℓij ) of the pair (i, j).

The data model is then
P (X|H, θ) =

∏
i<j

Poi(xij;µℓij),

where xij is the count of measurements between i and j.

0 5 10 15 20 25 30 35 40
xij

P
ro

b
ab

ili
ty

m
as

s Observations X

P (xij|`ij = 0, µ0)

P (xij|`ij = 1, µ1)

P (xij|`ij = 2, µ2)

9



Hypergraph prior P (H|θ)

We use a direct generalization of the G(n, p) model:
• 2-edges independent with probability q;
• 3-edges independent with probability p;

which leads to

P (H|θ) = qm(1− q)(
n
2)−mp∆(1− p)(

n
3)−∆,

where
• m is the number of 2-edges and
• ∆ is the number of 3-edges.
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Real-world network reconstruction
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Hypergraph H
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Pairwise observations (   )

µk: measurement rate for hyperedges of size k,
xij : count of pairwise measurements for (i, j).

J.-G. Young, G. Petri, and T. P. Peixoto, "Hypergraph reconstruction from network data", Commun. Phys. 4, 135 (2021).
11



Real-world network reconstruction

Using MCMC, we check the posterior maximum and the confusion matrix.
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Real-world network reconstruction

Using MCMC, we check the posterior maximum and the confusion matrix.
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ℓij + 1: largest hyperedge connecting i and j.
ℓ̂ij + 1: predicted largest hyperedge connecting i and j.
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Real-world network reconstruction
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More real-world hypergraphs
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An easy hypergraph

We remove 2-edges that create triangles. As a result, 3-edges can be de-
duced directly from projected triangles.

14



An easy hypergraph

We remove 2-edges that create triangles. As a result, 3-edges can be de-
duced directly from projected triangles.

ϵ =
# misclassified interactions

# interactions

µ1 : measurement rate of 2-edges.
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A difficult hypergraph

We create complete subgraphs and randomly promote triangles to 3-
edges. As a result, triangles don’t distinguish 2-edges from 3-edges.
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Interactions are sparse

Plant-
pollinator
n = 57
ρ = 0.11

Country
languages
n = 150
ρ = 0.02

Escorts

n = 159
ρ = 0.01

Crimes

n = 202
ρ = 0.01

C
la

ss
ifi

ca
ti

on
er

ro
rs Baseline

Hypergraph

16



Take-aways:
• We introduced a model to reconstruct hypergraphs from noisy pairwise

observations;
• We applied it on real-world hypergraphs;
• We showed that it works well because interactions are sparse.

Available soon:
• Preprint on arXiv
• Python/C++ implementation on GitHub

Thanks to my advisors Jean-Gabriel-Young and Antoine Allard.

Contact me at simon.lizotte.1@ulaval.ca
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Categorical model

We suppose the following process
1. Edges of type ℓij = 2 are placed uniformly with probability q2,
2. Edges of type ℓij = 1 are placed uniformly with probability q1 among

the remaining unconnected pairs,
which results in

P (G|θ) = qm1
1 (1− q1)

(n2)−m1−m2 × qm2
2 (1− q2)

(n2)−m2 , (1)

where mk is the number of edges of type ℓij = k.
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Symmetries of the hypergraph model

(a)

(b)
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Prior distributions

Hypergraph model:

p, q ∼ Beta(ξ, ζ) (2)
µ0 ∼ Gamma(α0, β0) (3)

µ1|µ0 ∼ TruncGamma(µ0,∞)(α1, β1) (4)
µ2|µ0 ∼ TruncGamma(µ0,∞)(α2, β2). (5)

Categorical model:

q1, q2 ∼ Beta(ξ, ζ) (6)
µ0 ∼ Gamma(α0, β0) (7)

µ1|µ0 ∼ TruncGamma(µ0,∞)(α1, β1) (8)
µ2|µ1 ∼ TruncGamma(µ1,∞)(α2, β2). (9)
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Entropy for different structures and parameters
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(a) Hypergraph for which every projected
triangle is a 3-edge.
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(b) Hypergraph for which every 2-edge is part
of a projected triangle.

S = −
2∑

k=0

ρk log3 ρk, (10)

where ρk is the proportion of interactions predicted as ℓ̂ij = k.
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Residuals (posterior predictive check)
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Confusion matrices
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Detectability when varying µ2
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Entropy when varying µ2
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Residuals when varying µ2
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Confusion matrices when varying µ2
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