RECONSTRUCTION OF HYPERGRAPHS FROM THEIR NOISY PAIRWISE OBSERVATIONS

NETSCI 2022 — NETWORK INFERENCE

Simon Lizotte, Jean-Gabriel Young and Antoine Allard

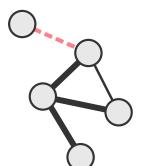
July 28, 2022

simon.lizotte.1@ulaval.ca

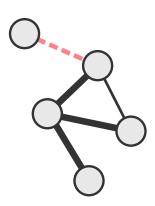
Empirical data are *noisy*...

Empirical data are *noisy*...

and this applies to *network data*.

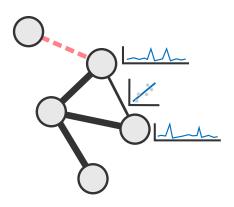


Whether measurements are



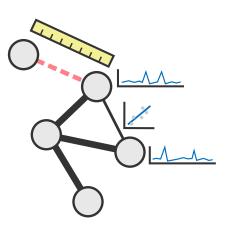
Whether measurements are

• vertex times series correlations,



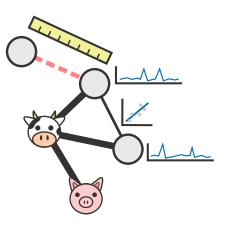
Whether measurements are

- vertex times series correlations,
- counts of proximity detectors,

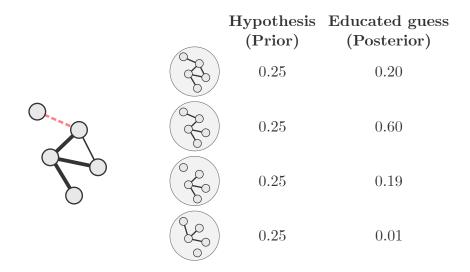


Whether measurements are

- vertex times series correlations,
- counts of proximity detectors,
- counts of animal interactions,



Bayesian approach



J.-G. Young, G. T. Cantwell, and M. E. J. Newman, "Bayesian inference of network structure from unreliable data", J. Complex Netw. 8, cnaao46 (2021).

Works in network reconstruction

Bayesian approaches:

- C. T. Butts, "Network inference, error, and informant (in)accuracy: a Bayesian approach", Soc Networks **25**, 103–140 (2003).
- T. P. Peixoto, "Network Reconstruction and Community Detection from Dynamics", Phys. Rev. Lett. **123**, 128301 (2019).

Other approaches:

- V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, and P. Geurts, "Inferring Regulatory Networks from Expression Data Using Tree-Based Methods", PLoS One 5, e12776 (2010).
- A. T. Specht and J. Li, "LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering", Bioinformatics 33, 764–766, (2017).
- H. Matsumoto et al., "SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation", Bioinformatics 33, 2314–2321 (2017).

Explosive phase transitions;

The physics of higher-order interactions in complex systems

Federico Battiston¹⁶³, Enrico Amico²³, Alain Barrat^{© 43}, Ginestra Bianconi^{© 47},
Guilherme Ferraz de Arruda[®], Benedetta Franceschiello^{® 49}, Iacopo Iacopini[©]), Sonia Kéfi¹¹²³,
Vito Latora^{© 613463}, Yamir Moreno^{© 813567}, Micah M. Murray^{© 91038}, Tiago P. Peixoto¹³⁹,
Francesco Vaccarino^{© 82} and Giovanni Petri^{© 81458}

Compiex networks have become the main paradigm for modelling the dynamics of interacting systems. However, networks are intrinsically limited to describing pairwise interactions, whereas real-world systems are often characterized by higher-ordered interactions involving groups of three or more units. Higher-order structures, such as hypergraphs and simplicial complexes are therefore a better tool to map the real organization of many social, blookgoid and man-made systems. Here, we highlighted recent evidence of collective behaviours induced by higher-order interactions, and we outline three key challenges for the physics of higher-order systems.

- Explosive phase transitions;
- Social coordination;

The physics of higher-order interactions in complex systems

Federico Battiston¹⁸, Enrico Amico²³, Alain Barrat^{® 4}, Ginestra Bianconi^{® 4}, Gillerem Ferraz de Arruda[®], Benedetta Franceschiello^{® 10}, Icopo Jacopini[®], Sonia Kéfi^{11,12}, Vilto Latora ^{© 11,12}, Yamir Moreno ^{© 11,12}, Micah M. Murray ^{© 11,12}, ^{11,12}, ^{11,}

RESEARCH

SOCIAL SCIENCE

Experimental evidence for tipping points in social convention

Francesco Vaccarino 20 and Giovanni Petri 28,21 20

Damon Centola^{1,2+}, Joshua Becker¹, Devon Brackbill¹, Andrea Baronchelli³

Theoretical models of critical mass have shown how minority groups can initiate social change dynamics in the emergence of new social conventions. Here, so consider that the control of t

broad practical (18, 19) and scientific (1, 12) importance of understanding the dynamics of critical mass in collective behavior, it has not been possible to identify whether there are in fact tipping points in empirical systems because such a test requires the ability to independently vary the size of minority groups within an evolvings system of social coordination.

We addressed this problem by adopting an experimental approach to studying tipping-point dynamics within an artificially created system of evolving social conventions. Following the librature on social conventions. Following the librature on social conventions (9, 20, 20), and unincity group of actors attempt to datespt an unincity compared to a single control of a single control of a single control framework of the control and produced to the single control of a sin

- Explosive phase transitions;
- Social coordination;
- Multiple species interactions;

The physics of higher-order interactions in complex systems

Federico Battiston¹²⁵, Enrico Amico²³, Alain Barrat^{0,45}, Ginestra Bianconi^{0,67},
Guilherme Ferraz de Arruda⁰†, Benedetta Franceschiello^{0,40}, Iacopo Iacopini⁰†, Sonia Kéfi^{11,10},
Vito Latora^{0,613,455}, Yamir Moreno^{0,613,617}, Micah M. Murray^{0,610,18}, Tiago P. Peixoto¹³⁹,
Francesco Vaccarino^{0,20} and Giovanni Petri^{0,612,18}

RESEARCH

SOCIAL SCIENCE

Experimental evidence for tipping points in social convention

Damon Centola^{1,2+}, Joshua Becker¹, Devon Brackbill¹, Andrea Baronchelli³

broad practical (18, 19) and scientific (1, 12) importance of understanding the dynamics of critical mass in collective behavior, it has not been possible to identify whether there are in fact tipping points in empirical systems because such a test requires the ability to independently vary the size of minority groups within an evolving system of social coordination.

We addressed this problem by adopting an

nature ecology & evolution ARTICLES FURLSHIED-17 FEBRUARY 2017 | VOLUME-1 LARTICLE NUMBER 0042

Higher-order interactions capture unexplained complexity in diverse communities

Margaret M. Mayfield1* and Daniel B. Stouffer2*

Natural communities are well known to be maintained by many complex processes. Despite this, the practical aspects of studying them often requires ones implification, such as the widespread assumption that direct, additive competition captured the important details about how interactions between species impact community diversity. More complex non-additive higher order interactions are assumed to be negligible or absent. Notably, these assumptions are poorly supposed and have major consequences for the accuracy with which patterns of natural diversity are modelled and explained. We present a mathematicult winnel framework for incorporation biolocical immensimelate compositive time models of diversity by including non-additive

- Explosive phase transitions;
- Social coordination;
- Multiple species interactions;
- Brain cortical dynamics;
- and many more...

The physics of higher-order interactions in complex systems

Federico Battiston¹™, Enrico Amico23, Alain Barrat 045, Ginestra Bianconi 067, Guilherme Ferraz de Arruda 08, Benedetta Franceschiello 09,10, Iacopo Iacopini 01, Sonia Kéfi11,12, Vito Latora 6,13,14,15, Yamir Moreno 8,15,16,17, Micah M. Murray 9,10,18, Tiago P. Peixoto 1,19, Francesco Vaccarino 20 and Giovanni Petri 8.21 20

RESEARCH

SOCIAL SCIENCE

Experimental evidence for tipping points in social convention

Damon Centola^{1,2+}, Joshua Becker¹, Devon Brackbill¹, Andrea Baronchelli³

broad practical (18, 19) and scientific (1, 12) importance of understanding the dynamics of critical mass in collective behavior, it has not been possible to identify whether there are in fact tipping points in empirical systems because such a test requires the ability to independently vary the size of minority groups within an evolving system of social coordination.

We addressed this problem by adopting an

ecology & evolution

PUBLISHED: 17 FEBRUARY 2017 | VOLUME: 1 | ARTICLE NUMBER: 0062

Higher-order interactions capture unexplained complexity in diverse communities

Margaret M. Mayfield1* and Daniel B. Stouffer2*

Natural communities are well known to be maintained by many complex processes. Despite this, the practical aspects of studying them often require some simplification, such as the widespread assumption that direct, additive competition captures the important details about how interactions between species impact community diversity. More complex non-additive 'higherorder' interactions are assumed to be negligible or absent. Notably, these assumptions are poorly suppoited and have major consequences for the accuracy with which patterns of natural diversity are modelled and explained. We present a mathematically simple framework for incorporating biologically meaningful complexity into models of diversity by including non-additive

17514 - The Journal of Neuroscience, November 30, 2011 - 31(48):17514-17526

Behavioral/Systems/Cognitive

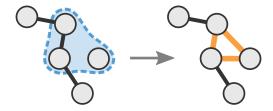
Higher-Order Interactions Characterized in Cortical Activity

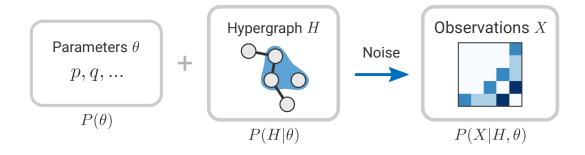
Shan Yu (余山), 1 Hongdian Yang (杨養典), 1.2 Hirovuki Nakahara (中原格之), 3.4 Gustavo S, Santos, 3 Danko Nikolić, 5.6 and Dietmar Plenz Section on Critical Brain Dynamics, Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892-9663, 2Biophysics

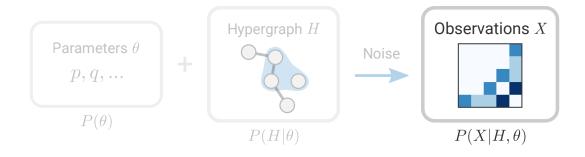
Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, 20742, 3Laboratory for Integrated Theoretical Neuroscience, RIKEN Brain Science Institute, Wako City, Saitama 351-0198 Japan, Department of Computational Intelligence and Systems Science, Tokyo

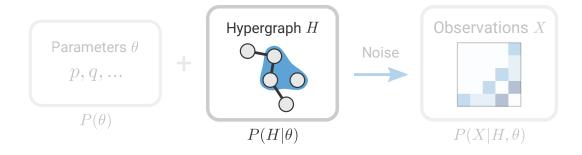
Our goal

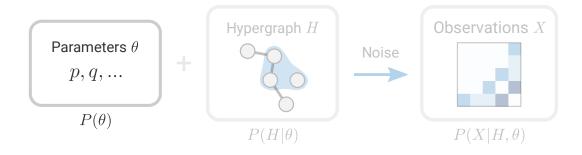
Explore the importance of *correlations induced* by higher-order interactions in the context of reconstruction.

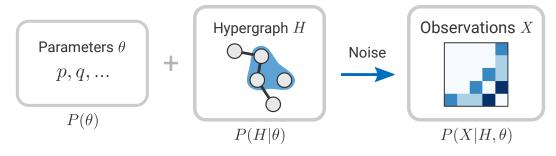






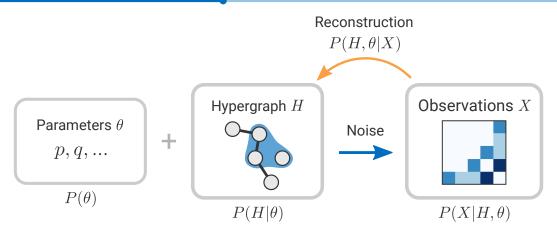






Bayes formula:

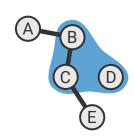
$$\underbrace{P(H,\theta|X)}_{\text{Posterior}} \propto P(X|H,\theta)P(H|\theta)P(\theta)$$



Bayes formula:

$$\underbrace{P(H,\theta|X)}_{\text{Posterior}} \propto P(X|H,\theta)P(H|\theta)P(\theta)$$

Pairwise projection of hypergraphs



We define interaction type ℓ_{ij} of a pair (i, j) as

 $\ell_{ij} = (\text{largest hyperedge size with } i \text{ and } j) - 1.$

Examples:

- $\ell_{ED} = 0$
- $\ell_{AB} = 1$
- $\ell_{BC} = 2$

Data model $P(X|H,\theta)$

The *size* ($\ell_{ij} + 1$) of the largest hyperedge connecting i and j determines the *measurement rate* ($\mu_{\ell_{ij}}$) of the pair (i, j).

Data model $P(X|H,\theta)$

The size $(\ell_{ij} + 1)$ of the largest hyperedge connecting i and j determines the measurement rate $(\mu_{\ell_{ij}})$ of the pair (i, j).

The data model is then

$$P(X|H,\theta) = \prod_{i < j} \operatorname{Poi}(x_{ij}; \mu_{\ell_{ij}}),$$

where x_{ij} is the count of measurements between i and j.

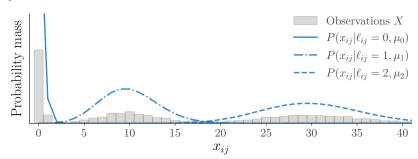
Data model $P(X|H,\theta)$

The *size* ($\ell_{ij} + 1$) of the largest hyperedge connecting i and j determines the *measurement rate* ($\mu_{\ell_{ij}}$) of the pair (i, j).

The data model is then

$$P(X|H,\theta) = \prod_{i < j} \operatorname{Poi}(x_{ij}; \mu_{\ell_{ij}}),$$

where x_{ij} is the count of measurements between i and j.



Hypergraph prior $P(H|\theta)$

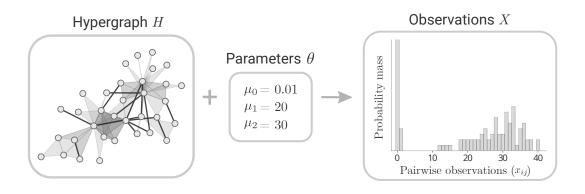
We use a direct generalization of the G(n, p) model:

- 2-edges independent with probability q;
- 3-edges independent with probability *p*;

which leads to

$$P(H|\theta) = q^m (1-q)^{\binom{n}{2}-m} p^{\Delta} (1-p)^{\binom{n}{3}-\Delta},$$

- m is the number of 2-edges and
- Δ is the number of 3-edges.

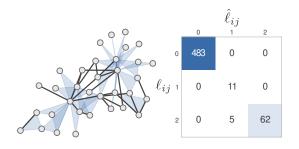


 μ_k : measurement rate for hyperedges of size k, x_{ij} : count of pairwise measurements for (i, j).

J.-G. Young, G. Petri, and T. P. Peixoto, "Hypergraph reconstruction from network data", Commun. Phys. 4, 135 (2021).

Using MCMC, we check the posterior maximum and the confusion matrix.

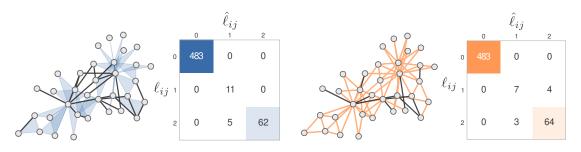
Using MCMC, we check the posterior maximum and the confusion matrix.



 $\ell_{ij} + 1$: largest hyperedge connecting i and j.

 $\hat{\ell}_{ij} + 1$: predicted largest hyperedge connecting i and j.

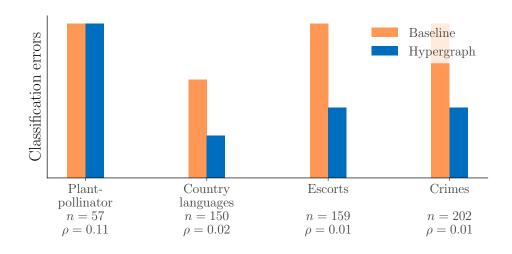
Using MCMC, we check the posterior maximum and the confusion matrix.



 $\ell_{ij} + 1$: largest hyperedge connecting i and j.

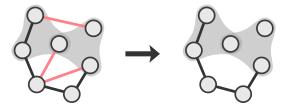
 $\hat{\ell}_{ij} + 1$: predicted largest hyperedge connecting i and j.

More real-world hypergraphs



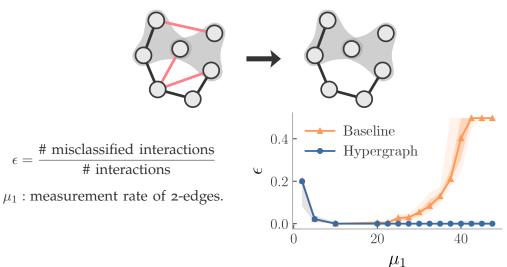
An easy hypergraph

We remove 2-edges that create triangles. As a result, 3-edges can be deduced directly from projected triangles.



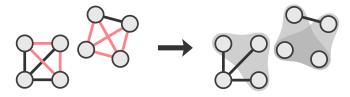
An easy hypergraph

We remove 2-edges that create triangles. As a result, 3-edges can be deduced directly from projected triangles.



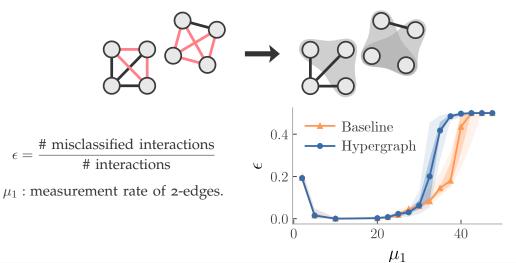
A difficult hypergraph

We create complete subgraphs and randomly promote triangles to 3-edges. As a result, triangles don't distinguish 2-edges from 3-edges.

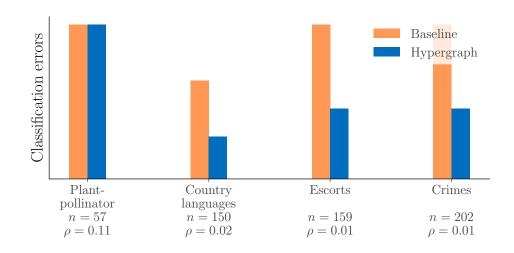


A difficult hypergraph

We create complete subgraphs and randomly promote triangles to 3-edges. As a result, triangles don't distinguish 2-edges from 3-edges.



Interactions are sparse



Take-aways:

- We introduced a model to reconstruct hypergraphs from noisy pairwise observations;
- We applied it on real-world hypergraphs;
- We showed that it works well because interactions are *sparse*.

Available soon:

- Preprint on arXiv
- Python/C++ implementation on GitHub

Thanks to my advisors Jean-Gabriel-Young and Antoine Allard.

Contact me at simon.lizotte.1@ulaval.ca

Categorical model

We suppose the following process

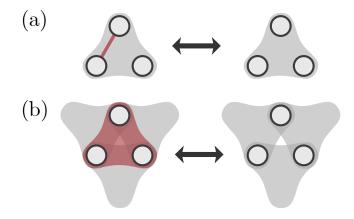
- 1. Edges of type $\ell_{ij} = 2$ are placed uniformly with probability q_2 ,
- 2. Edges of type $\ell_{ij} = 1$ are placed uniformly with probability q_1 among the remaining unconnected pairs,

which results in

$$P(G|\theta) = q_1^{m_1} (1 - q_1)^{\binom{n}{2} - m_1 - m_2} \times q_2^{m_2} (1 - q_2)^{\binom{n}{2} - m_2}, \tag{1}$$

where m_k is the number of edges of type $\ell_{ij} = k$.

Symmetries of the hypergraph model



Prior distributions

Hypergraph model:

$$p, q \sim \operatorname{Beta}(\xi, \zeta)$$

$$\mu_0 \sim \text{Gamma}(\alpha_0, \beta_0)$$

$$\mu_1|\mu_0 \sim \mathrm{TruncGamma}_{(\mu_0,\infty)}(\alpha_1,\beta_1)$$

$$\mu_2$$

$$\mu_2|\mu_0 \sim \text{TruncGamma}_{(\mu_0,\infty)}(\alpha_2,\beta_2).$$

$$q_1, q$$

$$q_1, q_2 \sim \text{Beta}(\xi, \zeta)$$

$$\mu_0 \sim \text{Gamma}(\alpha_0, \zeta)$$

$$\mu_0 \sim \text{Gamma}(\alpha_0, \beta_0)$$

$$\mu_0 \sim \text{Gamma}(\alpha_0,$$

$$\mu_0 \sim \text{Gamma}(\alpha_0, \beta_0)$$

$$\mu_1 | \mu_0 \sim \text{TruncGamma}_{(\mu_0, \infty)}(\alpha_1, \beta_1)$$

$$(lpha_0,eta_0)$$

 $\mu_2|\mu_1 \sim \text{TruncGamma}_{(\mu_1,\infty)}(\alpha_2,\beta_2).$

(2)

(3)

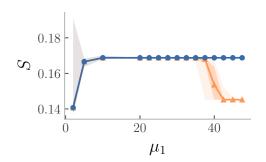
(4)

(5)

(8)

(9)

Entropy for different structures and parameters



 $\begin{array}{c}
0.18 \\
0.17 \\
0.16 \\
0.15 \\
0
\end{array}$ $\begin{array}{c}
0.18 \\
0.17 \\
0
\end{array}$ $\begin{array}{c}
0.17 \\
0.16 \\
0.15
\end{array}$ $\begin{array}{c}
\mu_1
\end{array}$

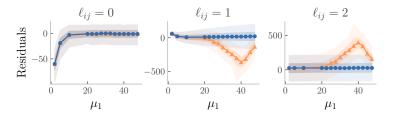
(a) Hypergraph for which every projected triangle is a 3-edge.

(b) Hypergraph for which every 2-edge is part of a projected triangle.

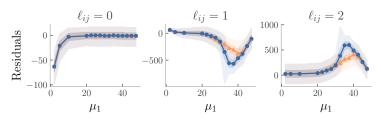
$$S = -\sum_{k=0}^{2} \rho_k \log_3 \rho_k,\tag{10}$$

where ρ_k is the proportion of interactions predicted as $\hat{\ell}_{ij} = k$.

Residuals (posterior predictive check)

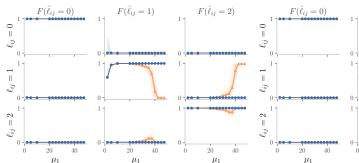


(c) Hypergraph for which every projected triangle is a 3-edge.

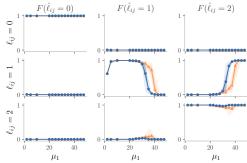


(d) Hypergraph for which every 2-edge is part of a projected triangle.

Confusion matrices

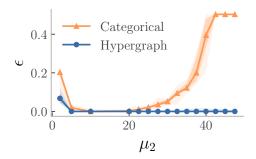


(e) Hypergraph for which every projected triangle is a 3-edge.

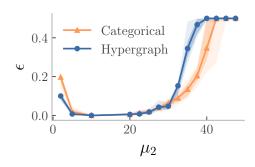


(f) Hypergraph for which every 2-edge is part of a projected triangle.

Detectability when varying μ_2

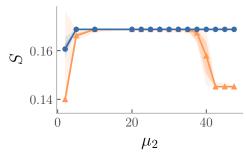


(g) Hypergraph for which every projected triangle is a 3-edge.

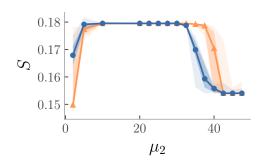


(h) Hypergraph for which every 2-edge is part of a projected triangle.

Entropy when varying μ_2

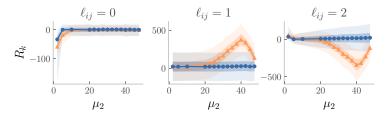


(i) Hypergraph for which every projected triangle is a 3-edge.

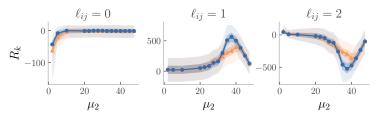


(j) Hypergraph for which every 2-edge is part of a projected triangle.

Residuals when varying μ_2

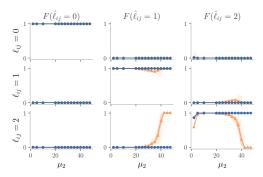


(k) Hypergraph for which every projected triangle is a 3-edge.

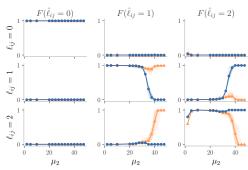


(l) Hypergraph for which every 2-edge is part of a projected triangle.

Confusion matrices when varying μ_2



(m) Hypergraph for which every projected triangle is a 3-edge.



(n) Hypergraph for which every 2-edge is part of a projected triangle.