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Model building in Network Science

How we build models

• Hard to gain insight;

• Few data points.
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Model building in Network Science (revisited)

A numerical Petri dish

• Even non-interpretable ML models can inspire us to build better models;

• We can use them directly for prediction;

• They allow us to build controlled environments.
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Machine learning in dynamical systems

A couple of interesting papers to look at
• B. Lusch, N. J. Kutz, S. L. Brunton, "Deep learning for universal linear embeddings of nonlinear dynamics", Nat.

Commun. 9, 4950 (2018).

• J. Pathak, B. Hunt, M. Girvan, Z. Lu, E. Ott, "Model-free prediction of large spatiotemporally chaotic systems from

data: A reservoir computing approach", Phys. Rev. Lett. 120, 024102 (2018).

• F. A. Rodrigues, T. Peron, C. Connaughton, J. Kurths, Y. Moreno, "A machine learning approach to predicting

dynamical observables from network structure", arxiv:1910.00544 (2019).

• C. Shah, N. Dehmamy, N. Perra, M. Chinazzi, A.-L. Barabási, A. Vespignani, R. Yu, "Finding Patient Zero:

Learning Contagion Source with Graph Neural Networks", arxiv:2006.11913 (2020).

• And many more.
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https://www.nature.com/articles/s41467-018-07210-0
https://www.nature.com/articles/s41467-018-07210-0
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.024102
https://arxiv.org/abs/1910.00544
https://arxiv.org/abs/2006.11913


Overview of our strategy

Assumptions

Time series X ∼ M(G) Network G = (V, E) Time invariance

...

...

Objectives

• Train a model M̂(G′;Θ) such that M̂(G′;Θ) ≈ M(G′)—ideally for any G′;

• M̂(G;Θ) is a graph neural network (GNN) with trainable parametersΘ;
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Graph Neural Network

• A graph neural network receives as its input the node features and the network;
• NN and AGG are both trainable neural networks;
• AGG aggregates the features of a node’s neighborhood locally;
• Usually used for network embedding task and structure learning.
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Architecture for learning dynamical systems on networks

...

...

...

...

• Inputs:
I StatesX(t) =

(
xi(t)

)
i∈V

;
I Network G = (V, E).

• Outputs:
I GNN(X(t), G) = Ŷ (t) =

(
ŷi(t)

)
i∈V

;
I If xi(t) is discrete, then ŷi(t) is a transition prob. vector of node i at time t+ 1;
I If xi(t) continuous, then ŷi(t) predicts the state of node i at time t+ 1.
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Applications and Results: Learning Epidemics on Networks



Simple contagion dynamics

Susceptible-infected-susceptible dynamics (SIS)

Training specifics:

SIS with β = 0.04, γ = 0.08; Barabási-Albert network with |V| = 1000 nodes and 〈k〉 = 4; GNN model with

|Θ| ∼ 5000 parameters; Training dataset size of 10000 time steps.
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Complex contagion dynamics

SIS dynamics with non-monotonic infection function (NM-SIS)

Training specifics:

NM-SIS with η = 10, γ = 0.08; Barabási-Albert network with |V| = 1000 nodes and 〈k〉 = 4; GNN model with

|Θ| ∼ 5000 parameters (same as SIS); Training dataset size of 10000 time steps.
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Test case: Reconstructing the bifurcation diagrams

Bifurcation diagrams on Erdős-Rényi networks

Simple: SIS, Complex: Non-monotonic SIS, Interacting: SIS-SIS dynamics

We sample 100 Erdős-Rényi networks of sizeN = 2000with different 〈k〉 and use the GNN to predict the

prevalence.
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Metapopulation dynamics: Preliminary results

Metapopulation SIR dynamics on weighted networks

Training specifics:

Metapopulation SIR with β = 1.08, γ = 0.13; 10 Barabási-Albert networks with |V| = 100 nodes, 〈k〉 = 2,

Nj ∼ N(104, 1), ωjk ∼ U(0, 100); GNN model with |Θ| ∼ 400 000 parameters; Training dataset size of 1000

time steps.
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Conclusion

Take-home message
1. Graph neural networks can mimic epidemic spreading;

2. Highly versatile (contagion dynamics, metapopulation, weighted networks, etc.);

3. If you have network data with time series, consider using our approach1.

Perspectives
1. Other systems and datasets;

2. Generalized structures (multiplex, simplicial complexes, etc.);

3. Various applications (network defects detection2, resilience analysis, etc.).

1Codes available soon via GitHub.
2Detecting structural perturbations from time series with deep learning, arXiv:2006.05232
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https://arxiv.org/abs/2006.05232


Thank you

Special thanks to my collaborators:

E. Laurence (edwardlaurence.me)

A. Allard (antoineallard.info)

To contact me:

Email: charles.murphy.1@ulaval.ca

Pre-prints:

Main paper: Deep learning of stochastic contagion dynamics on complex networks, arXiv:2006.05410.

See also: Detecting structural perturbations from time series with deep learning, arXiv:2006.05232.

GitHub:

Available soon.

https://arxiv.org/abs/2006.05410
https://arxiv.org/abs/2006.05232
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