INHERENT UNCERTAINTY OF HYPERBOLIC EMBEDDINGS OF COMPLEX NETWORKS

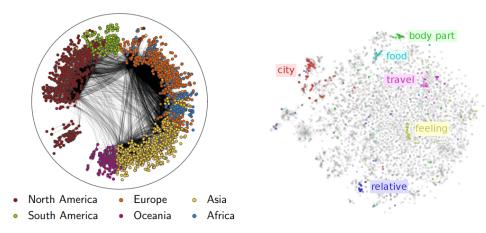
NESS 2023 — EXPLOITING LATENT STRUCTURE IN RELATIONAL DATA

Simon Lizotte, Jean-Gabriel Young and Antoine Allard

June 6, 2023

simon.lizotte.1@ulaval.ca

The power of embeddings



World airport network embedding.

Wikipedia word embedding.

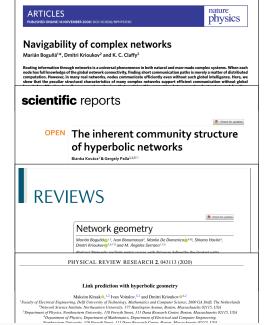
Images obtained from Désy, B. (2022). *Effets de la dimension des réseaux hyperboliques sur la modélisation de la structure communautaire* [MSc thesis, Université Laval] and

https://medium.com/@marwane.baghou/named-entity-recognition-crf-neural-network-6e0a32cc5cd5.

Hyperbolic space: a natural network geometry

Networks obtained from hyperbolic geometry have properties that *match empirical observations*:

- degree sequence;
- small-worldness;
- shortest paths;
- community structure.



Hyperbolic space: a natural network geometry

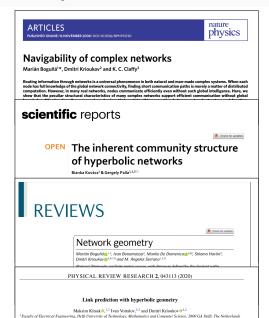
Networks obtained from hyperbolic geometry have properties that *match empirical observations*:

- degree sequence;
- small-worldness;
- shortest paths;
- community structure.

Chiefly, the triangle inequality

$$d_{jk} \le d_{ij} + d_{jk}$$

naturally induces clustering.



"Network Science Institute, Northeastern University, 177 Huntingson Avenue, Boston, Massachusetts 0215, USA

Department of Physics, Northeastern University, 110 Fersyls Street, 111 Dana Research Center, Boston, Massachusetts 02115, USA

"Department of Physics, Department of Mathematics, Department of Electrical and Computer Engineering,
Authoritories University, 110 Electric Street, ULI Dana Research Center, Batter, Marconhoustro, 02115, USA

Authoritories University, 110 Electric Street, ULI Dana Research Center, Batter, Marconhoustro, 02115, USA

Current embedding algorithms' issue

Current methods rely on *heuristics* and use *likelihood optimization*.

While these approaches allow for fast and good results, they cannot quantify the *embedding uncertainty*.

scientific reports

New Journal of Physics

Check for updates

OPEN Optimisation of the coalescent hyperbolic embedding of complex networks

Bianka Kovács¹ & Gergely Palla^{1,2,3}

Several observations indicate the existence of a latent hyperbolic space behind real networks that

The open access journal at the forefront of physics

IOP Institute of Physics Gesellschaft and the Institute of Physics Gesellschaft and the Institute of Physics

PAPER

Mercator: uncovering faithful hyperbolic embeddings of complex networks

Guillermo García-Pérez 1.28, Antoine Allard 1.48, M Ángeles Serrano 1.67 and Marián Boguñá 1.69

- OTF Centre of Excellence, Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turun Yliopisto, Finland
- ² Complex Systems Research Group, Department of Mathematics and Statistics, University of Turku, FI-20014 Turun Yliopisto, Finland

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23. NO. 1, FEBRUARY 201

Network Mapping by Replaying Hyperbolic Growth

Fragkiskos Papadopoulos, Constantinos Psomas, and Dmitri Krioukov

Abstract-Recent years have shown a promising progress in understanding geometric underpinnings behind the structure. function, and dynamics of many complex networks in nature and society. However, these promises cannot be readily fulfilled and lead to important practical applications, without a simple, reliable, and fast network mapping method to infer the latent prometric coordinates of nodes in a real network. Here, we present HyperMan, a simple method to man a given real network to its hyperbolic space. The method utilizes a recent geometric theory of complex networks modeled as random geometric graphs in hyperbolic spaces. The method replays the network's geometric growth, estimating at each time-step the hyperbolic coordinates of new nodes in a growing network by maximizing the likelihood of the network snapshot in the model. We apply HyperMap to the Autonomous Systems (AS) Internet and find that: 1) the method produces meaningful results, identifying soft communities of ASs belonging to the same geographic region; 2) the method has a remarkable predictive power: Using the resulting map, we can predict missing links in the Internet with high precision, outperforming popular existing methods; and 3) the resulting map is

complex networks [2]-[4]. A particular goal is to understand how these characteristics affect the various processes that run on top of these networks, such as rooting, information sharing, data distribution, searching, and epidemic [2], [3], [3] to destanding the mechanisms that shape the structure and drive the evolution of real networks can also have important applications of the control of the property of the control of the time of the property of the control of the control of the links—mit problem in many facilities [1].

Some fundamental connections between complex network peoples in hyperbolic geometry have been recently discovered in [9]. This work shows that random geometric graphs [10] in hyperbolic geometry have been recomplex networks. The high-level explanation of this connection is that complex networks which the interchical, tree-like cognization, while hyperbolic geometry is the geometry of trees [11]. Graphs while hyperbolic geometry is the geometry of trees [11]. Graphs are complex networks among the next solice teasurables.

Current embedding algorithms' issue

Current methods rely on *heuristics* and use likelihood optimization.

While these approaches allow for fast and good results, they cannot quantify the *embedding* uncertainty.

scientific reports

OPEN Optimisation of the coalescent hyperbolic embedding of complex networks

Bianka Kovács1 & Gergely Palla1,2,3

Several observations indicate the existence of a latent hyperbolic space behind real networks tha

New Journal of Physics The open access journal at the forefront of physics

with: Deutsche Physikalische Gesellschaft and the Institute

Check for updates

PAPER

Mercator: uncovering faithful hyperbolic embeddings of complex networks

Guillermo García-Pérez 128, Antoine Allard 1448, M Ángeles Serrano 1667 and Marián Boguñá 166

OTF Centre of Excellence, Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turun Yliopisto, Finland

Complex Systems Research Group, Department of Mathematics and Statistics, University of Turku, FI-20014 Turun Yliopisto, Finland

Network Mapping by Replaying Hyperbolic Growth

Fragkiskos Panadonoulos Constantinos Psomas and Dmitri Krioukov

Abstract-Recent years have shown a promising progress in understanding geometric undergingings behind the structure.

complex networks [21-[4].1 A particular goal is to understand

Goal: robust embeddings with err

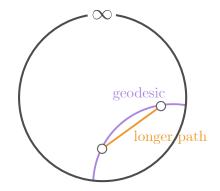
Autonomous Systems (AS) Internet and find that: 1) the method produces meaningful results, identifying soft communities of ASs pelonging to the same geographic region; 2) the method has a remarkable predictive power: Using the resulting map, we can predict missing links in the Internet with high precision, outperforming popular existing methods; and 3) the resulting map is

in hyperbolic spaces are an adequate model for complex net-

works. The high-level explanation of this connection is that complex networks exhibit hierarchical, tree-like organization. while hyperbolic geometry is the geometry of trees [11]. Graphs representing complex networks appear then as discrete samples

Hyperbolic geometry and geodesics

The n-dimensional hyperbolic space \mathbb{H}^n is a smooth manifold of *constant negative curvature*.



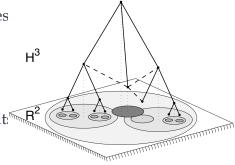
Geodesic in the Poincaré disk model (representation of \mathbb{H}^2).

Why hyperbolic geometry?

Hyperbolic geometry has two important features

- its inherent tree-like structure models hierarchical communities;
- its negative curvature gives more space for vertices; a disk area scales differently with it radius r

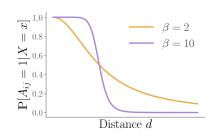
$$r^2 < e^r (\mathbb{R}^2) \qquad (\mathbb{H}^2)$$

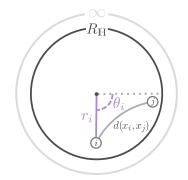


The likelihood of the \mathbb{H}^2 model is

$$\mathbb{P}[G = g \mid X = x] = \prod_{i < j} \mathbb{P}[A_{ij} = a_{ij} | X = x],$$

where X are the vertices coordinate,





The likelihood of the \mathbb{H}^2 model is

$$\mathbb{P}[G = g \mid X = x] = \prod_{i < j} \mathbb{P}[A_{ij} = a_{ij} | X = x],$$

where *X* are the vertices coordinate, and

$$\mathbb{P}[A_{ij} = 1 \mid X = x] = \frac{1}{1 + e^{\beta [R_{\mathbb{H}} - d(x_i, x_j)]/2}},$$

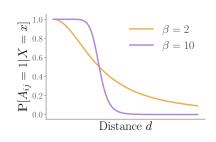
where

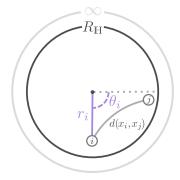
 $d(\cdot, \cdot)$: hyperbolic distance function;

 x_i : coordinates (r_i, θ_i) of vertex i;

 β : controls the sharpness of the sigmoid;

 $R_{\mathbb{H}}$: hyperbolic disk radius.





The likelihood of the \mathbb{H}^2 model is

$$\mathbb{P}[G = g \mid X = x] = \prod_{i < j} \mathbb{P}[A_{ij} = a_{ij} | X = x],$$

where *X* are the vertices coordinate, and

$$\mathbb{P}[A_{ij} = 1 \mid X = x] = \frac{1}{1 + e^{\beta [R_{\mathbb{H}} - d(x_i, x_j)]/2}},$$

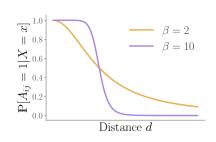
where

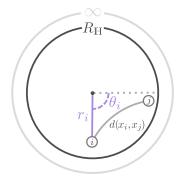
 $d(\cdot, \cdot)$: hyperbolic distance function;

 x_i : coordinates (r_i, θ_i) of vertex i;

 β : controls the sharpness of the sigmoid;

 $R_{\mathbb{H}}$: hyperbolic disk radius.





The likelihood of the \mathbb{H}^2 model is

$$\mathbb{P}[G = g \mid X = x] = \prod_{i < j} \mathbb{P}[A_{ij} = a_{ij} | X = x],$$

where *X* are the vertices coordinate, and

$$\mathbb{P}[A_{ij} = 1 \mid X = x] = \frac{1}{1 + e^{\beta [R_{\mathbb{H}} - d(x_i, x_j)]/2}},$$

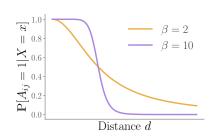
where

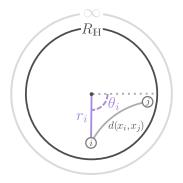
 $d(\cdot, \cdot)$: hyperbolic distance function;

 x_i : coordinates (r_i, θ_i) of vertex i;

 β : controls the sharpness of the sigmoid;

 $R_{\mathbb{H}}$: hyperbolic disk radius.





$$\mathbb{H}^2 \to \mathbb{S}^1$$
: decoupling r and θ

Using the transformation

$$\kappa_i = \frac{\mu \pi \kappa_0}{n} e^{-r_i/2},$$

where κ_i is the *expected degree* of vertex i

7

$$\mathbb{H}^2 \to \mathbb{S}^1$$
: decoupling r and θ

Using the transformation

$$\kappa_i = \frac{\mu \pi \kappa_0}{n} e^{-r_i/2},$$

where κ_i is the *expected degree* of vertex *i*, and using the approximation

$$d(x_i, x_j) \approx r_i + r_j + 2 \ln \frac{\Delta \theta_{ij}}{2},$$

$\mathbb{H}^2 \to \mathbb{S}^1$: decoupling r and θ

Using the transformation

$$\kappa_i = \frac{\mu \pi \kappa_0}{n} e^{-r_i/2},$$

where κ_i is the *expected degree* of vertex i, and using the approximation

$$d(x_i, x_j) \approx r_i + r_j + 2 \ln \frac{\Delta \theta_{ij}}{2},$$

we obtain the \mathbb{S}^1 model

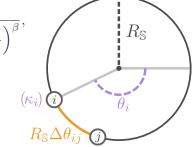
$$\mathbb{P}[A_{ij} = 1 \mid X = x] = \frac{1}{1 + \left(\frac{R_{\mathbb{S}} \Delta \theta_{ij}}{\mu \kappa_i \kappa_j}\right)^{\beta}},$$

where

 $\Delta \theta_{ij}$: angular separation between θ_i and θ_j ;

 μ : controls the average degree;

 $R_{\mathbb{S}}$: circle radius.



Embedding as Bayesian inference

$$f_{\Theta|G=g,\kappa,\beta}(\theta) = \frac{\mathbb{P}[G=g|\theta,\kappa,\beta]\pi(\theta)}{\mathbb{P}[G=g]}$$

$$= \frac{1}{\mathbb{P}[G=g]} \left(\frac{1}{2\pi}\right)^n \prod_{i < j} \left(1 + \left(\frac{R_{\mathbb{S}}\Delta\theta_{ij}}{\mu\kappa_i\kappa_j}\right)^{\beta(2a_{ij}-1)}\right)^{-1}$$

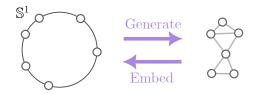
$$\theta \sim \text{Uniform}(-\pi,\pi)$$

We *sample* the posterior density f using Hamiltonian Monte Carlo (HMC).

Validating the model with a synthetic graph

Validation: infer the coordinates that generated a synthetic graph.

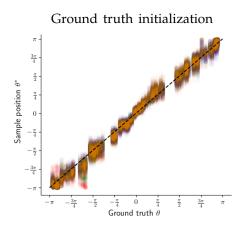
- 1. Choose the \mathbb{S}^1 model's parameters θ , κ and β .
- **2.** Generate a synthetic graph with the likelihood $g \sim \mathbb{P}[G = g | \theta, \kappa, \beta]$.
- 3. Use HMC¹ to sample θ^* from the posterior f.
- 4. Compare the sample θ^* to the ground truth θ .



Stan Development Team. 2022. Stan Modeling Language Users Guide and Reference Manual, 2.32. https://mc-stan.org.

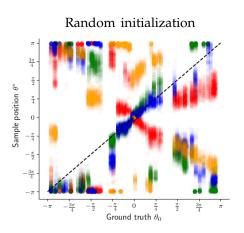
Sample of the posterior

Superposition of the samples obtained from 4 chains. Each chain has a different color.



Sample of the posterior

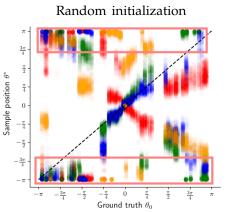
Superposition of the samples obtained from 4 chains. Each chain has a different color.



Sample of the posterior

Superposition of the samples obtained from 4 chains. Each chain has a different color.

Issue #1: boundaries are *not periodic*.

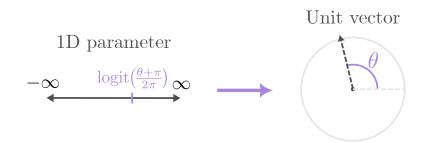


Reparametrization to retrieve periodicity

HMC works with random variables defined on the real numbers \mathbb{R} . Using $\theta \in [-\pi, \pi]$ requires a bijective and differentiable function $g : [-\pi, \pi] \to \mathbb{R}$

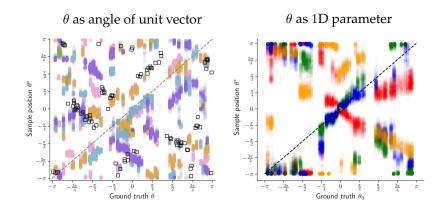
$$\theta \mapsto \operatorname{logit}\left(\frac{\theta + \pi}{2\pi}\right) = -\operatorname{log}\left(\exp\left\{-\frac{\theta + \pi}{2\pi}\right\} - 1\right).$$
 (1)

The angle of a unit vector is inherently periodic.



Sampling attempt 2

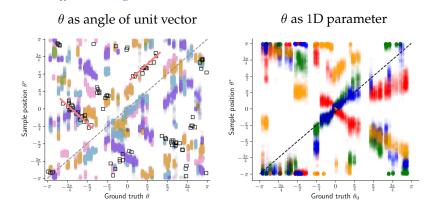
Maximum *a posterori* (MAP) shown with \square .



Sampling attempt 2

Maximum *a posterori* (MAP) shown with \square .

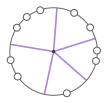
Issue #2: Clusters with different alignments.



Fixing cluster alignments with new MCMC move

Cluster angle swap move to help the HMC sampler exit local maxima.

1. Cluster identification

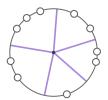


The move is "self-reversible" and unbiased, meaning that the acceptance probability is determined only by the posterior distribution.

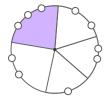
Fixing cluster alignments with new MCMC move

Cluster angle swap move to help the HMC sampler exit local maxima.

1. Cluster identification



2. Select cluster



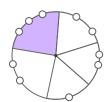
The move is "self-reversible" and unbiased, meaning that the acceptance probability is determined only by the posterior distribution.

Fixing cluster alignments with new MCMC move

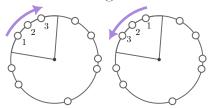
Cluster angle swap move to help the HMC sampler exit local maxima.

1. Cluster

2. Select cluster

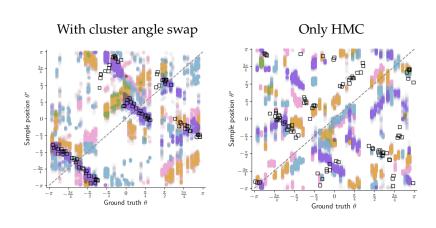


3. Reverse angles in cluster



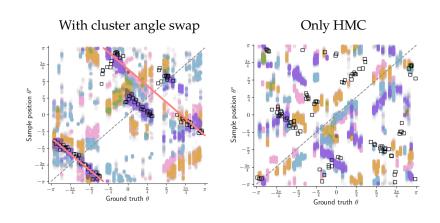
The move is "self-reversible" and unbiased, meaning that the acceptance probability is determined only by the posterior distribution.

Sampling attempt 3

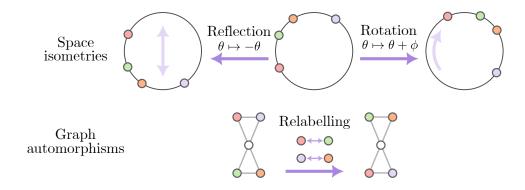


Sampling attempt 3

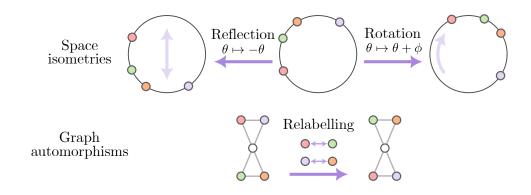
Issue #3: Straight line is *misaligned*.



Natural symmetries: isometries and graph automorphisms

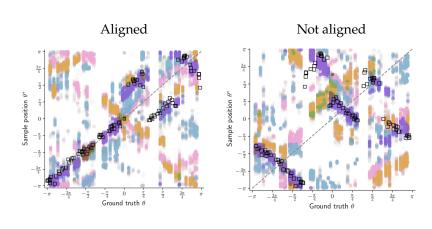


Natural symmetries: isometries and graph automorphisms



For each automorphism and reflection, we minimize the least squares $\sum_i (\hat{\theta}_i + \phi - \theta_i)^2$ for ϕ .

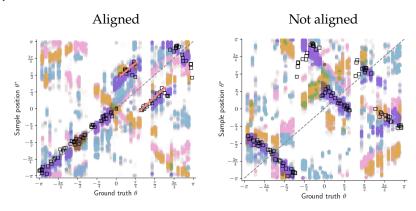
Aligned results



Aligned results

Issue #4: clusters have incorrect relative positions.

To be continued...



This project going forward

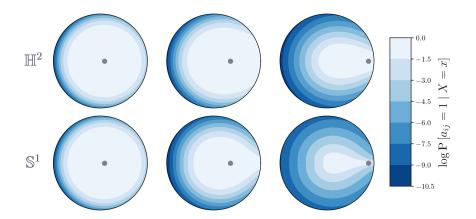
Next we want to

- improve the MCMC mixing such that the ground truth is accessible from any initialization;
- evaluate confidence intervals;
- infer the expected degrees κ ;
- embed and compare our method to existing embeddings on a large number of graphs.

Key takeaways:

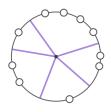
- The hyperbolic model is *simple*, yet it *reproduces simultaneously* many observed network properties.
- Our Bayesian approach will *yield error bars*, an information unavailable with current embedding algorithms.

 \mathbb{H}^2 model vs \mathbb{S}^1 model: connection probability

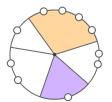


New move considered: cluster swapping

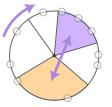
1. Comm. detection



2. Select two comm.



3. Swap and 4. Put back adjust comm. vertices in comm.





Sigmoid approximation of the absolute value

The angular separation $\Delta \theta_{ij}$ is not differentiable

$$\Delta \theta_{ij} = \pi - |\pi - |\theta_i - \theta_j||.$$

The absolute value can be expressed with the Heaviside step function H

$$|x| = x(2H(x) - 1).$$

The step function is approximated with the sigmoid function σ_b

$$H(x) = \lim_{b \to \infty} \sigma_b(x)$$

$$\sigma_b(x) = \frac{1}{1 + e^{-bx}}.$$

$$\sigma_b(x) = \frac{1}{1 + e^{-bx}}.$$