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The power of embeddings
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Wikipedia word embedding.

Images obtained from Désy, B. (2022). Effets de la dimension des réseaux hyperboliques sur la modélisation de la

structure communautaire [MSc thesis, Université Laval] and

https://medium.com/@marwane.baghou/named-entity-recognition-crf-neural-network-6e@a32cc5cd5.
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Hyperbolic space: a natural network geometry

Networks obtained from hyperbolic

geometry have properties that match
empirical observations:

* degree sequence;
e small-worldness;
* shortest paths;

* community structure.
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Hyperbolic space: a natural network geometry

Networks obtained from hyperbolic
geometry have properties that match
empirical observations:

* degree sequence;

e small-worldness;

* shortest paths;

* community structure.

Chiefly, the triangle inequality
dj, < dij + djg

naturally induces clustering.
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Current embedding algorithms” issue

Current methods rely on heuristics
and use likelihood optimization.

While these approaches allow for
fast and good results, they cannot
quantify the embedding uncertainty.
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Network Mapping by Replaying Hyperbolic Growth

Fragkiskos Papadopoulos, Constantinos Psomas, and Dmitri Krioukov

complex networks [2]-[4] ' A particular goal s to understand
how these characteistis affect the various processes that run
on top of these networks, such as routing, information sharing.
data distribution, searching, and epidemics 2], [3], [S]. Un-
derstanding the mechanisms that shape the structure and drive.
the evolution of real nefworks can also have important applica-
tions in designing more effcient recommender and collabora-
tive filtering systems (6] and for predicting missing and future
links—an important problem in many disciplines [7), 5]

Some fundamental connections between complex network
topologies and hyperbolic seomeiry have been recently discov-
eredin[9)] xaphs [10]
in hyperbolic spaces are an adequate model for complex net-
works. The high-level explanation of this connection is that
complex networks exhibit hierarchical, tree-like organization,
while hyperbolic geomery is the geomelry of trees 1], Graphs
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Hyperbolic geometry and geodesics

The n-dimensional hyperbolic space H" is a
smooth manifold of constant negative curvature.

geodesic

Geodesic in the Poincaré disk

model (representation of H?).



Why hyperbolic geometry?

Hyperbolic geometry has two important features

* its inherent tree-like structure models
hierarchical communities;

* its negative curvature gives more space for
vertices; a disk area scales differently with it:
radius r

r? < e

(R (H)

Image from Krioukov, D. et al. (2010). Hyperbolic geometry of complex networks. Physical Review E, 82.



H? model

The likelihood of the H? model is

PlG=g| X =2x]= HIP[Aij = ay| X = 7],

1<j

where X are the vertices coordinate,
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where
d(-,-): hyperbolic distance function;
x;: coordinates (r;,0;) of vertex i;
f: controls the sharpness of the sigmoid;
Ry : hyperbolic disk radius.
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H? model

The likelihood of the H? model is
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H? — S': decoupling r and 6

Using the transformation
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where k; is the expected degree of vertex i
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H? — S': decoupling r and 6

Using the transformation

— lu’ﬂ-K’O 6—7‘1'/2
n

R )

where k; is the expected degree of vertex i, and using the approximation

6,

A
d(z;,xj) = r;+r;+2n 5

we obtain the S' model

where

Af;;: angular separation between ¢; and 0;;
(2 controls the average degree;
Rs: circle radius.




Embedding as Bayesian inference

foro-nnal®) = LI 0

n o B(Qal-j—l) -1
— ; i H 1 + M
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¢ ~ Uniform(—m, )

We sample the posterior density f using Hamiltonian Monte Carlo (HMC).



Validating the model with a synthetic graph

Validation: infer the coordinates that generated a synthetic graph.
1. Choose the S' model’s parameters 6, x and £3.
2. Generate a synthetic graph with the likelihood g ~ P|G = ¢|0, &, 5].
3. Use HMC! to sample 0* from the posterior f.
4. Compare the sample ¢* to the ground truth 0.
Sl

Generate

—

Embed o

Stan Development Team. 2022. Stan Modeling Language Users Guide and Reference Manual, 2.32.
https://mc-stan.org.


https://mc-stan.org

Sample of the posterior

Superposition of the samples obtained from 4 chains. Each chain has a

different color.

Sample position #*

Ground truth initialization
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Sample of the posterior

Superposition of the samples obtained from 4 chains. Each chain has a
different color.

Random initialization
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Sample of the posterior

Superposition of the samples obtained from 4 chains. Each chain has a

different color.

Issue #1: boundaries are rnot periodic.

Sample position #*

Random initialization

Ground truth #y
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Reparametrization to retrieve periodicity

HMC works with random variables defined on the real numbers R. Using
¢ € [—m, r] requires a bijective and differentiable function ¢ : [—7, 7] — R

0 — logit (m) = —log <exp{—9+ﬂ}—1). (1)
2m 2m

The angle of a unit vector is inherently periodic.

Unit vector

1D parameter A
g
o 047
—00 logit(57) oo > “;\
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Sampling attempt 2

Maximum a posterori (MAP) shown with .

Sample position 6*
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Sampling attempt 2

Maximum a posterori (MAP) shown with .

Issue #2: Clusters with different alignments.

6 as angle of unit vector 6 as 1D parameter
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Fixing cluster alignments with new MCMC move

Cluster angle swap move to help the HMC sampler exit local maxima.

1. Cluster
identification

The move is “self-reversible” and unbiased, meaning that the acceptance probability is determined only by the
posterior distribution.

13
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Fixing cluster alignments with new MCMC move

Cluster angle swap move to help the HMC sampler exit local maxima.

1. Cluster
identification

@@/ 7

The move is “self-reversible” and unbiased, meaning that the acceptance probability is determined only by the
posterior distribution.

2. Select cluster 3. Reverse angles in cluster
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Sampling attempt 3

With cluster angle swap Only HMC
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Sampling attempt 3

Issue #3: Straight line is misaligned.

With cluster angle swap Only HMC
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Natural symmetries: isometries and graph automorphisms

Reflection Rotation
. Space 60— —0 00+
1sometries R ——
Relabelling
Graph 050
automorphisms
OO0
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Natural symmetries: isometries and graph automorphisms

Reflection Rotation
_ Space 6 —0 00+
isometries —_—
Q 1% Relabelling *~ 1%
Graph \ // O‘_"O \ //
automorphisms ) o]

/\ 00 /\

/

00 =—> 00

For each automorphism and reflection, we minimize the least squares

S, (0; + ¢ — 0;)? for ¢.
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Aligned results

Sample position #*

Aligned

Sample position 6*

T

Not aligned

T
Ground truth 6

16



Aligned results

Issue #4: clusters have incorrect relative positions.

To be continued. ..

Sample position #*

Aligned
-

Not aligned

Sample position 6*

s

Ground truth
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This project going forward

Next we want to
e improve the MCMC mixing such that the ground truth is accessible
from any initialization;
e evaluate confidence intervals;
* infer the expected degrees x;

* embed and compare our method to existing embeddings on a large
number of graphs.

Key takeaways:

* The hyperbolic model is simple, yet it reproduces simultaneously many
observed network properties.

* Our Bayesian approach will yield error bars, an information unavailable
with current embedding algorithms.
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H? model vs S model: connection probability
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New move considered: cluster swapping

1. Comm. 2. Select two 3. Swap and 4. Put back
detection comm. adjust comm. vertices in comm.

PP

Supplementary — 2



Sigmoid approximation of the absolute value

The angular separation Ad;; is not differentiable
Aeij =TT — |7T — |92 — 9]||
The absolute value can be expressed with the Heaviside step function 7

|z| = x(2H(z) — 1).

The step function is approximated with the sigmoid function o,

30 — Exact
H(LU) = hIIl O'b(x) 25 —— Approx. b=3
b—ro0 20
1 2;15
) =T \/
0.0
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