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The power of embeddings

Wikipedia word embedding.World airport network embedding.

Images obtained from Désy, B. (2022). Effets de la dimension des réseaux hyperboliques sur la modélisation de la
structure communautaire [MSc thesis, Université Laval] and
https://medium.com/@marwane.baghou/named-entity-recognition-crf-neural-network-6e0a32cc5cd5.
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Hyperbolic space: a natural network geometry

Networks obtained from hyperbolic
geometry have properties that match
empirical observations:

• degree sequence;
• small-worldness;
• shortest paths;
• community structure.

Chiefly, the triangle inequality

djk ≤ dij + djk

naturally induces clustering.
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Current embedding algorithms’ issue

Current methods rely on heuristics
and use likelihood optimization.

While these approaches allow for
fast and good results, they cannot
quantify the embedding uncertainty.
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Current embedding algorithms’ issue

Current methods rely on heuristics
and use likelihood optimization.

While these approaches allow for
fast and good results, they cannot
quantify the embedding uncertainty.

Goal: robust embeddings with error bars.
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Hyperbolic geometry and geodesics

The n-dimensional hyperbolic space Hn is a
smooth manifold of constant negative curvature.

geodesic

longer path

Geodesic in the Poincaré disk
model (representation of H2).
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Why hyperbolic geometry?

Hyperbolic geometry has two important features:

• its inherent tree-like structure models
hierarchical communities;

• its negative curvature gives more space for
vertices; a disk area scales differently with its
radius r

r2 < er

(R2) (H2)

Image from Krioukov, D. et al. (2010). Hyperbolic geometry of complex networks. Physical Review E, 82.
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H2 model

The likelihood of the H2 model is

P[G = g | X = x] =
∏
i<j

P[Aij = aij|X = x],

where X are the vertices coordinate,

and

P[Aij = 1 | X = x] =
1

1 + eβ[RH−d(xi,xj)]/2
,

where
d(·, ·) : hyperbolic distance function;

xi : coordinates (ri, θi) of vertex i;
β : controls the sharpness of the sigmoid;

RH : hyperbolic disk radius.
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H2 → S1: decoupling r and θ

Using the transformation

κi =
µπκ0

n
e−ri/2,

where κi is the expected degree of vertex i

, and using the approximation

d(xi, xj) ≈ ri + rj + 2 ln
∆θij
2

,

we obtain the S1 model

P[Aij = 1 | X = x] =
1

1 +
(

RS∆θij
µκiκj

)β ,
where

∆θij : angular separation between θi and θj ;
µ : controls the average degree;

RS : circle radius.
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Embedding as Bayesian inference

fΘ|G=g,κ,β(θ) =
P[G = g|θ, κ, β]π(θ)

P[G = g]

=
1

P[G = g]

(
1

2π

)n∏
i<j

(
1 +

(
RS∆θij
µκiκj

)β(2aij−1)
)−1

θ ∼ Uniform(−π, π)

We sample the posterior density f using Hamiltonian Monte Carlo (HMC).
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Validating the model with a synthetic graph

Validation: infer the coordinates that generated a synthetic graph.

1. Choose the S1 model’s parameters θ, κ and β.
2. Generate a synthetic graph with the likelihood g ∼ P[G = g|θ, κ, β].
3. Use HMC1 to sample θ∗ from the posterior f .
4. Compare the sample θ∗ to the ground truth θ.

Generate

Embed

Stan Development Team. 2022. Stan Modeling Language Users Guide and Reference Manual, 2.32.
https://mc-stan.org.
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Sample of the posterior

Superposition of the samples obtained from 4 chains. Each chain has a
different color.

Issue #1: boundaries are not periodic.

Ground truth initialization
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Superposition of the samples obtained from 4 chains. Each chain has a
different color.

Issue #1: boundaries are not periodic.
Random initialization
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Reparametrization to retrieve periodicity

HMC works with random variables defined on the real numbers R. Using
θ ∈ [−π, π] requires a bĳective and differentiable function g : [−π, π] → R

θ 7→ logit

(
θ + π

2π

)
= − log

(
exp

{
−θ + π

2π

}
− 1

)
. (1)

The angle of a unit vector is inherently periodic.

1D parameter
Unit vector
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Sampling attempt 2

Maximum a posterori (MAP) shown with □.

Issue #2: Clusters with different alignments.

θ as angle of unit vector θ as 1D parameter
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Sampling attempt 2

Maximum a posterori (MAP) shown with □.

Issue #2: Clusters with different alignments.
θ as angle of unit vector θ as 1D parameter
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Fixing cluster alignments with new MCMC move

Cluster angle swap move to help the HMC sampler exit local maxima.

1. Cluster
identification

The move is “self-reversible” and unbiased, meaning that the acceptance probability is determined only by the
posterior distribution.
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Fixing cluster alignments with new MCMC move

Cluster angle swap move to help the HMC sampler exit local maxima.

1. Cluster
identification 3. Reverse angles in cluster

1
2

3

2. Select cluster

1
2

3

The move is “self-reversible” and unbiased, meaning that the acceptance probability is determined only by the
posterior distribution.
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Sampling attempt 3

Issue #3: Straight line is misaligned.

With cluster angle swap Only HMC
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Natural symmetries: isometries and graph automorphisms

Space
isometries

Graph
automorphisms

Relabelling

Reflection Rotation

For each automorphism and reflection, we minimize the least squares∑
i(θ̂i + ϕ− θi)

2 for ϕ.
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Aligned results

Issue #4: clusters have incorrect relative positions.

To be continued. . .

Aligned Not aligned
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This project going forward

Next we want to
• improve the MCMC mixing such that the ground truth is accessible

from any initialization;
• evaluate confidence intervals;
• infer the expected degrees κ;
• embed and compare our method to existing embeddings on a large

number of graphs.

Key takeaways:
• The hyperbolic model is simple, yet it reproduces simultaneously many

observed network properties.
• Our Bayesian approach will yield error bars, an information unavailable

with current embedding algorithms.
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H2 model vs S1 model: connection probability

H2

S1

Supplementary — 1



New move considered: cluster swapping

1. Comm.
detection

3. Swap and 
adjust comm.

2. Select two
comm.

4. Put back
vertices in comm.

Supplementary — 2



Sigmoid approximation of the absolute value
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Exact

Approx. b = 3

The angular separation ∆θij is not differentiable

∆θij = π − |π − |θi − θj||.

The absolute value can be expressed with the Heaviside step function H

|x| = x(2H(x)− 1).

The step function is approximated with the sigmoid function σb

H(x) = lim
b→∞

σb(x)

σb(x) =
1

1 + e−bx
.
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