Dimension reduction on heterogeneous networks

Marina Vegué
Vincent Thibeault
Patrick Desrosiers
Antoine Allard

Dynamica Research Group
Université Laval, Québec, Canada

Why dimension reduction?

Goal

Find a network of reduced size whose dynamics can be used to infer some basic properties of the original, high dimensional, dynamics.

Use it to study systems whose units exhibit non-symmetric and heterogeneous interactions.

Previous work

Gao et al., Nature, 2016
Jiang et al., PNAS, 2018

Laurence et al., Phys. Rev. X, 2019
Thibeault et al., iScience, 2020

Original

Network
N nodes

Dynamics $\quad \dot{x}_{i}=f\left(x_{i}\right)+\sum_{j=1}^{N} w_{i j} g\left(x_{i}, x_{j}\right)$

Original

N nodes

Network

Dynamics $\quad \dot{x}_{i}=f\left(x_{i}\right)+\sum_{j=1}^{N} \boldsymbol{w}_{i j} g\left(x_{i}, x_{j}\right)$

Original

N nodes

Network

$$
\begin{aligned}
& \dot{x}_{i}=f\left(x_{i}\right)+\sum_{j=1}^{N} \boldsymbol{w}_{i j} g\left(x_{i}, x_{j}\right) \\
& f(x)=-x \\
& g(x, y)=\frac{1}{1+\exp (-\tau(y-\mu))}
\end{aligned}
$$

Additive model
(Hopfield, PNAS, 1984)

Original

N nodes

Network

Dynamics $\quad \dot{x}_{i}=f\left(x_{i}\right)+\sum_{j=1}^{N} w_{i j} g\left(x_{i}, x_{j}\right)$

Steps

1. Community / group detection

Original

N nodes $\quad n$ nodes

Network

$$
\dot{x}_{i}=f\left(x_{i}\right)+\sum_{j=1}^{N} w_{i j} g\left(x_{i}, x_{j}\right)
$$

Steps

1. Community / group detection

Original

N nodes

Network

$$
\dot{x}_{i}=f\left(x_{i}\right)+\sum_{j=1}^{N} w_{i j} g\left(x_{i}, x_{j}\right) \quad \quad \dot{\mathcal{X}}_{\nu}=f\left(\mathcal{X}_{\nu}\right)+\sum_{\rho=1}^{n} \mathcal{W}_{\nu \rho} g\left(\mathcal{X}_{\nu}, \mathcal{X}_{\rho}\right)
$$

Dynamics

Steps

1. Community / group detection
2. Define $\left\{\mathcal{X}_{\nu}, \mathcal{W}_{\nu \rho}\right\}_{\nu, \rho}$ from $\left\{x_{i}, w_{i j}\right\}_{i, j}$
3. Observables are linear combinations of the node activities within each group

$$
\mathcal{X}_{\nu}=\sum_{i=1}^{N}\left[\boldsymbol{a}_{\boldsymbol{\nu}}\right]_{i} x_{i}, \quad\left[\boldsymbol{a}_{\boldsymbol{\nu}}\right]_{i}=0 \text { if } i \notin G_{\nu}, \quad \sum_{i=1}^{N}\left[\boldsymbol{a}_{\boldsymbol{\nu}}\right]_{i}=1
$$

1. Observables are linear combinations of the node activities within each group

Exact observable dynamics

$$
\mathcal{X}_{\nu}=\sum_{i=1}^{N}\left[\boldsymbol{a}_{\nu}\right]_{i} x_{i}, \quad\left[\boldsymbol{a}_{\boldsymbol{\nu}}\right]_{i}=0 \text { if } i \notin G_{\nu}, \quad \sum_{i=1}^{N}\left[\boldsymbol{a}_{\boldsymbol{\nu}}\right]_{i}=1
$$

$$
\dot{\mathcal{X}}_{\nu}=\sum_{i=1}^{N}\left[\boldsymbol{a}_{\nu}\right]_{i} f\left(x_{i}\right)+\sum_{i, j=1}^{N}\left[\boldsymbol{a}_{\nu}\right]_{i} w_{i j} g\left(x_{i}, x_{j}\right)
$$

1. Observables are linear combinations of the node activities within each group

Exact observable dynamics

Assume that the activity of each node
2. is close enough to the corresponding observable

$$
\mathcal{X}_{\nu}=\sum_{i=1}^{N}\left[\boldsymbol{a}_{\nu}\right]_{i} x_{i}, \quad\left[\boldsymbol{a}_{\boldsymbol{\nu}}\right]_{i}=0 \text { if } i \notin G_{\nu}, \quad \sum_{i=1}^{N}\left[\boldsymbol{a}_{\boldsymbol{\nu}}\right]_{i}=1
$$

$$
\dot{\mathcal{X}}_{\nu}=\sum_{i=1}^{N}\left[\boldsymbol{a}_{\nu}\right]_{i} f\left(x_{i}\right)+\sum_{i, j=1}^{N}\left[\boldsymbol{a}_{\nu}\right]_{i} w_{i j} g\left(x_{i}, x_{j}\right)
$$

$$
x_{i} \approx \mathcal{X}_{\nu} \text { for } i \in G_{\nu}
$$

1. Observables are linear combinations of the node activities within each group

Exact observable dynamics

Assume that the activity of each node
2. is close enough to the corresponding observable
3. For $i \in G_{\nu}, j \in G_{\rho}$, approximate
a) $f\left(x_{i}\right) \approx f\left(\mathcal{X}_{\nu}\right), g\left(x_{i}, x_{j}\right) \approx g\left(\mathcal{X}_{\nu}, \mathcal{X}_{\rho}\right)$
$\mathcal{X}_{\nu}=\sum_{i=1}^{N}\left[\boldsymbol{a}_{\boldsymbol{\nu}}\right]_{i} x_{i}, \quad\left[\boldsymbol{a}_{\boldsymbol{\nu}}\right]_{i}=0$ if $i \notin G_{\nu}, \quad \sum_{i=1}^{N}\left[\boldsymbol{a}_{\boldsymbol{\nu}}\right]_{i}=1$
$\dot{\mathcal{X}}_{\nu}=\sum_{i=1}^{N}\left[\boldsymbol{a}_{\nu}\right]_{i} f\left(x_{i}\right)+\sum_{i, j=1}^{N}\left[\boldsymbol{a}_{\nu}\right]_{i} w_{i j} g\left(x_{i}, x_{j}\right)$
$x_{i} \approx \mathcal{X}_{\nu}$ for $i \in G_{\nu}$

The observable dynamics becomes closed without imposing any additional condition on $\left\{\boldsymbol{a}_{\nu}\right\}_{\nu}$

1. Observables are linear combinations of the node activities within each group

Exact observable dynamics

Assume that the activity of each node
2. is close enough to the corresponding observable
3. For $i \in G_{\nu}, j \in G_{\rho}$, approximate
a) $f\left(x_{i}\right) \approx f\left(\mathcal{X}_{\nu}\right), g\left(x_{i}, x_{j}\right) \approx g\left(\mathcal{X}_{\nu}, \mathcal{X}_{\rho}\right)$
b) $f\left(x_{i}\right), g\left(x_{i}, x_{j}\right)$ by 1st-order Taylor polynomials around $\mathcal{X}_{\nu},\left(\mathcal{X}_{\nu}, \mathcal{X}_{\rho}\right)$
$\mathcal{X}_{\nu}=\sum_{i=1}^{N}\left[\boldsymbol{a}_{\nu}\right]_{i} x_{i}, \quad\left[\boldsymbol{a}_{\boldsymbol{\nu}}\right]_{i}=0$ if $i \notin G_{\nu}, \quad \sum_{i=1}^{N}\left[\boldsymbol{a}_{\nu}\right]_{i}=1$
$\dot{\mathcal{X}}_{\nu}=\sum_{i=1}^{N}\left[\boldsymbol{a}_{\nu}\right]_{i} f\left(x_{i}\right)+\sum_{i, j=1}^{N}\left[\boldsymbol{a}_{\nu}\right]_{i} w_{i j} g\left(x_{i}, x_{j}\right)$
$x_{i} \approx \mathcal{X}_{\nu}$ for $i \in G_{\nu}$

The observable dynamics becomes closed without imposing any additional condition on $\left\{\boldsymbol{a}_{\nu}\right\}_{\nu}$

Some conditions have to be imposed on $\left\{\boldsymbol{a}_{\nu}\right\}_{\nu}$ to close the observable dynamics
a) The observable dynamics becomes closed without imposing any additional condition on $\left\{\boldsymbol{a}_{\nu}\right\}_{\nu}$
a) The observable dynamics becomes closed without imposing any additional condition on $\left\{\boldsymbol{a}_{\nu}\right\}_{\nu}$

$$
\left[\boldsymbol{a}_{\nu}\right]_{i}=\left\{\begin{array}{ll}
1 /\left|G_{\nu}\right| & i \in G_{\nu} \\
0 & i \notin G_{\nu}
\end{array} \quad \mathcal{W}_{\nu \rho}=\frac{1}{\left|G_{\nu}\right|} \sum_{i \in G_{\nu}} \sum_{j \in G_{\rho}} w_{i j}\right.
$$

a) The observable dynamics becomes closed without imposing any additional condition on $\left\{\boldsymbol{a}_{\nu}\right\}_{\nu}$

$$
\left[\boldsymbol{a}_{\nu}\right]_{i}=\left\{\begin{array}{ll}
1 /\left|G_{\nu}\right| & i \in G_{\nu} \\
0 & i \notin G_{\nu}
\end{array} \quad \mathcal{W}_{\nu \rho}=\frac{1}{\left|G_{\nu}\right|} \sum_{i \in G_{\nu}} \sum_{j \in G_{\rho}} w_{i j}\right.
$$

Homogeneous reduction
a) The observable dynamics becomes closed without imposing any additional condition on $\left\{\boldsymbol{a}_{\nu}\right\}_{\nu}$

$$
\left[\boldsymbol{a}_{\nu}\right]_{i}=\left\{\begin{array}{ll}
1 /\left|G_{\nu}\right| & i \in G_{\nu} \\
0 & i \notin G_{\nu}
\end{array} \quad \mathcal{W}_{\nu \rho}=\frac{1}{\left|G_{\nu}\right|} \sum_{i \in G_{\nu}} \sum_{j \in G_{\rho}} w_{i j}\right.
$$

Homogeneous reduction

b) Some conditions have to be imposed on $\left\{\boldsymbol{a}_{\nu}\right\}_{\nu}$ to close the observable dynamics
a) The observable dynamics becomes closed without imposing any additional condition on $\left\{\boldsymbol{a}_{\nu}\right\}_{\nu}$

$$
\left[\boldsymbol{a}_{\nu}\right]_{i}=\left\{\begin{array}{ll}
1 /\left|G_{\nu}\right| & i \in G_{\nu} \\
0 & i \notin G_{\nu}
\end{array} \quad \mathcal{W}_{\nu \rho}=\frac{1}{\left|G_{\nu}\right|} \sum_{i \in G_{\nu}} \sum_{j \in G_{\rho}} w_{i j}\right.
$$

Homogeneous reduction

b) Some conditions have to be imposed on $\left\{\boldsymbol{a}_{\nu}\right\}_{\nu}$ to close the observable dynamics

$$
\boldsymbol{a}_{\boldsymbol{\nu}}=(0, \cdots, 0, \overbrace{*, \cdots, *}^{\widehat{\boldsymbol{a}}_{\nu}}, 0, \cdots, 0)^{T}
$$

$\boldsymbol{W}_{\nu \rho}$
Interaction matrix from nodes in G_{ρ} to nodes in G_{ν}
$\boldsymbol{K}_{\nu \rho}$
Diagonal in-degree matrix of nodes in G_{ν} for interactions coming from G_{ρ}
a) The observable dynamics becomes closed without imposing any additional condition on $\left\{\boldsymbol{a}_{\nu}\right\}_{\nu}$

$$
\left[\boldsymbol{a}_{\nu}\right]_{i}=\left\{\begin{array}{ll}
1 /\left|G_{\nu}\right| & i \in G_{\nu} \\
0 & i \notin G_{\nu}
\end{array} \quad \mathcal{W}_{\nu \rho}=\frac{1}{\left|G_{\nu}\right|} \sum_{i \in G_{\nu}} \sum_{j \in G_{\rho}} w_{i j}\right.
$$

Homogeneous reduction

b) Some conditions have to be imposed on $\left\{\boldsymbol{a}_{\nu}\right\}_{\nu}$ to close the observable dynamics

$$
\begin{aligned}
& \boldsymbol{W}_{\nu \rho}^{\boldsymbol{T}} \widehat{\boldsymbol{a}}_{\nu}=\mathcal{W}_{\nu \rho} \widehat{\boldsymbol{a}}_{\boldsymbol{\rho}} \quad \boldsymbol{K}_{\nu \rho} \widehat{\boldsymbol{a}}_{\nu}=\mathcal{W}_{\nu \rho} \widehat{\boldsymbol{a}}_{\nu} \\
& \boldsymbol{a}_{\nu}=(0, \cdots, 0, \overbrace{*, \cdots, *, 0, \cdots, 0)^{T}}^{\widehat{a}_{\nu}} \\
& \\
& \boldsymbol{W}_{\nu \rho} \\
& \text { Interaction matrix from } \\
& \text { nodes in } G_{\rho} \text { to nodes in } G_{\nu}
\end{aligned} \begin{aligned}
& \boldsymbol{K}_{\nu \rho} \\
& \text { Diagonal in-degree matrix of nodes in } \\
& G_{\nu} \text { for interactions coming from } G_{\rho}
\end{aligned}
$$

a) The observable dynamics becomes closed without imposing any additional condition on $\left\{\boldsymbol{a}_{\nu}\right\}_{\nu}$

$$
\left[\boldsymbol{a}_{\nu}\right]_{i}=\left\{\begin{array}{ll}
1 /\left|G_{\nu}\right| & i \in G_{\nu} \\
0 & i \notin G_{\nu}
\end{array} \quad \mathcal{W}_{\nu \rho}=\frac{1}{\left|G_{\nu}\right|} \sum_{i \in G_{\nu}} \sum_{j \in G_{\rho}} w_{i j}\right.
$$

Homogeneous reduction

b) Some conditions have to be imposed on $\left\{\boldsymbol{a}_{\nu}\right\}_{\nu}$ to close the observable dynamics

$$
W_{\nu \rho}^{\boldsymbol{T}} \widehat{a}_{\nu}=\mathcal{W}_{\nu \rho} \widehat{\boldsymbol{a}}_{\rho} \quad \boldsymbol{K}_{\nu \rho} \widehat{\boldsymbol{a}}_{\nu}=\mathcal{W}_{\nu \rho} \widehat{\boldsymbol{a}}_{\nu}
$$

a) The observable dynamics becomes closed without imposing any additional condition on $\left\{\boldsymbol{a}_{\nu}\right\}_{\nu}$

$$
\left[\boldsymbol{a}_{\nu}\right]_{i}=\left\{\begin{array}{ll}
1 /\left|G_{\nu}\right| & i \in G_{\nu} \\
0 & i \notin G_{\nu}
\end{array} \quad \mathcal{W}_{\nu \rho}=\frac{1}{\left|G_{\nu}\right|} \sum_{i \in G_{\nu}} \sum_{j \in G_{\rho}} w_{i j}\right.
$$

Homogeneous reduction

b) Some conditions have to be imposed on $\left\{\boldsymbol{a}_{\nu}\right\}_{\nu}$ to close the observable dynamics

$$
\boldsymbol{W}_{\nu \rho}^{\boldsymbol{T}} \widehat{\boldsymbol{a}}_{\nu}=\mathcal{W}_{\nu \rho} \widehat{\boldsymbol{a}}_{\rho} \quad \boldsymbol{K}_{\nu \rho} \widehat{\boldsymbol{a}}_{\nu}=\mathcal{W}_{\nu \rho} \widehat{\boldsymbol{a}}_{\nu}
$$

Spectral reduction

a) The observable dynamics becomes closed without imposing any additional condition on $\left\{\boldsymbol{a}_{\nu}\right\}_{\nu}$

$$
\left[\boldsymbol{a}_{\nu}\right]_{i}=\left\{\begin{array}{ll}
1 /\left|G_{\nu}\right| & i \in G_{\nu} \\
0 & i \notin G_{\nu}
\end{array} \quad \mathcal{W}_{\nu \rho}=\frac{1}{\left|G_{\nu}\right|} \sum_{i \in G_{\nu}} \sum_{j \in G_{\rho}} w_{i j}\right.
$$

Homogeneous reduction

b) Some conditions have to be imposed on $\left\{\boldsymbol{a}_{\nu}\right\}_{\nu}$ to close the observable dynamics

$$
W_{\nu \rho}^{T} \widehat{a}_{\nu}=\mathcal{W}_{\nu \rho} \widehat{a}_{\rho} \quad K_{\nu \rho} \widehat{a}_{\nu}=\mathcal{W}_{\nu \rho} \widehat{a}_{\nu} \quad \text { Compatibility equations }
$$

Spectral reduction

$$
\dot{\mathcal{X}}_{\nu}=f\left(\mathcal{X}_{\nu}\right)+\sum_{\rho=1}^{n} \mathcal{W}_{\nu \rho} g\left(\mathcal{X}_{\nu}, \mathcal{X}_{\rho}\right)
$$

Approximate reduced dynamics

$$
N=200
$$

$$
N=200
$$

$$
N=200
$$

$$
N=200
$$

$$
N=200
$$

Homogeneous

Homogeneous

Heterogeneous

group 1
group 2

Homogeneous

Heterogeneous

group 1
group 2

Homogeneous

Heterogeneous

We can define more groups by partitioning the nodes within each group according to their connectivity properties

Sensitivity to partition choice

Sensitivity to partition choice

$$
N=200, n=5
$$

Sensitivity to partition choice

$$
N=200, n=5
$$

Sensitivity to partition choice

$$
N=200, n=5
$$

To summarize...

- Dimension reduction can be used to extract dynamical properties of complex networks such as bifurcation points
- The Spectral reduction
* can be applied to directed interaction matrices
* performs well on heterogeneous networks
* is robust to perturbations of node grouping

