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Why dimension reduction?

Goal 

Find a network of reduced size whose dynamics can be used to infer some 
basic properties of the original, high dimensional, dynamics. 

Use it to study systems whose units exhibit non-symmetric and heterogeneous 
interactions.
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1.
Observables are linear combinations of

the node activities within each group
X⌫ =

NX

i=1

[a⌫ ]i xi, [a⌫ ]i = 0 if i /2 G⌫ ,
NP
i=1

[a⌫ ]i = 1

Exact observable dynamics Ẋ⌫ =

NX

i=1

[a⌫ ]if(xi) +

NX

i,j=1

[a⌫ ]i wij g(xi, xj)

2.

Assume that the activity of each node

is close enough to the corresponding

observable

xi ⇡ X⌫ for i 2 G⌫

3. For i 2 G⌫, j 2 G⇢, approximate

a) f(xi) ⇡ f(X⌫), g(xi, xj) ⇡ g(X⌫ ,X⇢)
The observable dynamics becomes closed without

imposing any additional condition on {a⌫}⌫

b) f(xi), g(xi, xj) by 1st-order Taylor poly-

nomials around X⌫ , (X⌫ ,X⇢)

Some conditions have to be imposed on {a⌫}⌫ to

close the observable dynamics
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a) The observable dynamics becomes closed without imposing any additional condition on {a⌫}⌫

[a⌫ ]i =

(
1/|G⌫ | i 2 G⌫

0 i /2 G⌫
W⌫⇢ =

1

|G⌫ |
X

i2G⌫

X

j2G⇢

wij

Homogeneous reduction

b) Some conditions have to be imposed on {a⌫}⌫ to close the observable dynamics

W T
⌫⇢ba⌫ = W⌫⇢ba⇢ K⌫⇢ba⌫ = W⌫⇢ba⌫ Compatibility equations

a⌫ = (0, · · · , 0,
ba⌫z }| {

⇤, · · · , ⇤, 0, · · · , 0)T

W =

0

BB@

W11 · · · W1n
...

. . .
...

Wn1 · · · Wnn

1

CCA K =

0

BB@

K11 + · · ·+K1n · · · 0

...
. . .

...

0 · · · Kn1 + · · ·+Knn

1

CCA

Interaction matrix Degree matrix
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Ẋ⌫ = f(X⌫) +

nX

⇢=1

W⌫⇢ g(X⌫ ,X⇢)

Approximate reduced dynamics



a) The observable dynamics becomes closed without imposing any additional condition on {a⌫}⌫

[a⌫ ]i =

(
1/|G⌫ | i 2 G⌫

0 i /2 G⌫
W⌫⇢ =

1

|G⌫ |
X

i2G⌫

X

j2G⇢

wij

Homogeneous reduction

b) Some conditions have to be imposed on {a⌫}⌫ to close the observable dynamics

W T
⌫⇢ba⌫ = W⌫⇢ba⇢ K⌫⇢ba⌫ = W⌫⇢ba⌫ Compatibility equations

Spectral reduction
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We can define more groups by partitioning the nodes within each 
group according to their connectivity properties

group 1 
group 2





Partition refinement
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Sensitivity to partition choice



To summarize… 

• Dimension reduction can be used to extract dynamical properties 
of complex networks such as bifurcation points 

• The Spectral reduction 

✴ can be applied to directed interaction matrices 

✴ performs well on heterogeneous networks 

✴ is robust to perturbations of node grouping 


