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Biological contagion modeling

Standard epidemiolocial models predict exponential growth

dI

dt
≈ λ I I � 1

=⇒ I ∝ eλt

This is because we assume that the risk of infection is linear

θ ∝ I
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Superexponential spread of Influenza-Like-Illness 1

1. Scarpino, S. V., Allard, A., & Hébert-Dufresne, L. (2016). The effect of a prudent adaptive

behaviour on disease transmission. Nature Physics, 12(11), 1042-1046.
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θ ∝ I

(i) Why assume linearity?

(ii) When is linearity valid?

(iii) What other forms could it take?

Take-home message

(iii) : Assuming bursty exposure to infection, we should consider

θ ∝ Iν with ν ∈ R+ .
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Framework

Model features

1. Explicit group interactions

2. Heterogeneous temporal patterns

I Duration of events τ

P (τ) ∝ τ−α−1

3. Minimal infective dose
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Feature # 1 : Explicit group interactions – bipartite structure

Icons made by Freepik from www.flaticon.com
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Feature # 2 : heterogeneous temporal patterns
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Feature #3 : minimal infective dose

# Our immune system is able to fight mild challenges

# A certain minimal dose of virus or bacteria is required to trigger an infection
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Infective dose model

# The fraction of infected individuals is ρ

# Individuals receive a dose κ ∼ π(κ; ρ , τ )

# The mean dose received is

〈κ〉 ∝ ρτ

# An infection is triggered if κ ≥ K, with probability

Π̄(K; ρ, τ) =

∫ ∞
K

π(κ; ρ, τ)dκ
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Bursty exposure

Because of the heavy-tailed distribution P (τ) ∝ τ−α−1



9

Bursty exposure

Because of the heavy-tailed distribution P (τ) ∝ τ−α−1



10

Emergent nonlinear infection kernel

The probability of getting infected in an environment

θ(ρ) =

∫
P (τ)Π̄(K; ρ, τ)dτ .

Assuming :

1. P (τ) ∝ τ− α −1
;

2. Some technical conditions for the asymptotic analysis ;

for a large class of dose distribution π, we recover the universal infection kernel

θ(ρ) ∝ ρ α
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Weibull dose distribution
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Frechet dose distribution
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Asymptotically power-law duration of events distribution

P (τ) ∝ τ−α−1 only for large τ
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Conditions for the asymptotic analysis partially satisfied
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When is linearity valid?

# α = 1 (P (τ) ∝ τ−α−1)

# π is a Poisson distribution andK = 1

# Some other limit cases

Linear infection kernels are the exception rather than the norm
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Consequences of nonlinear infection kernel
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Superexponential spread and discontinuous phase transition
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Superexponential spread and discontinuous phase transition
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Superexponential spread of Influenza-Like-Illness 2

2. Scarpino, S. V., Allard, A., & Hébert-Dufresne, L. (2016). The effect of a prudent adaptive

behaviour on disease transmission. Nature Physics, 12(11), 1042-1046.
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Why assume linearity for the risk of infection?

Maybe we shouldn’t, maybe we should adopt more general forms, e.g.,

θ(ρ) ∝ ρν with ν ∈ R+

For a standard SIR model, this could look like

dS

dt
≈ −βS Iν .
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Mathematical description forN → ∞

We track ρk(t) the fraction of infected nodes of membership k using

ρk(t+ 1) = (1− µ)ρk(t) + (1− ρk(t))Θk ,

where

Θk(ρ̄) = 1− [1− θ̄(ρ̄)]k , ρ̄(t) =
∑
k

ρk(t)
kP̃ (k)

〈k〉
, θ̄(ρ̄) =

∑
m

θ̄m(ρ̄)
mP̂ (m)

〈m〉
,

and

θ̄m(ρ̄) =

m−1∑
i=0

(
m− 1

i

)
ρ̄i(1− ρ̄)m−1−i θm

(
i

m− 1

)
.
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