# Probabilistic hyperbolic embedding of networks

Combining network geometry with Bayesian inference

Simon Lizotte

2025-05-06







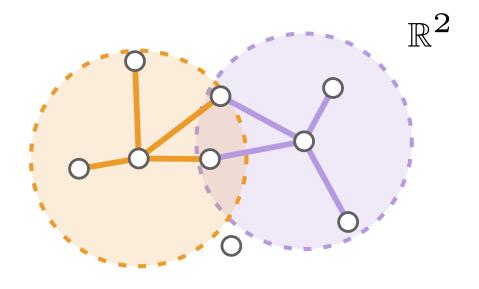


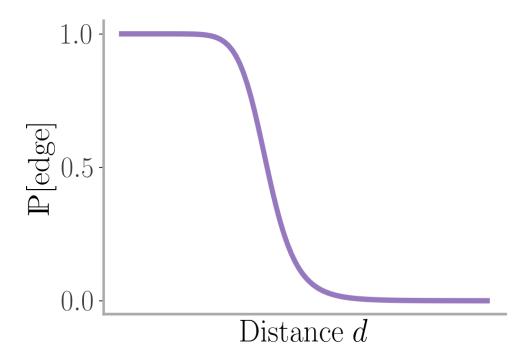


## Creating edges requires a cost

Vertices are placed in metric space. The edge cost increases with its length.

The metric space can be physical (e.g. transportation network, brain network) or not.

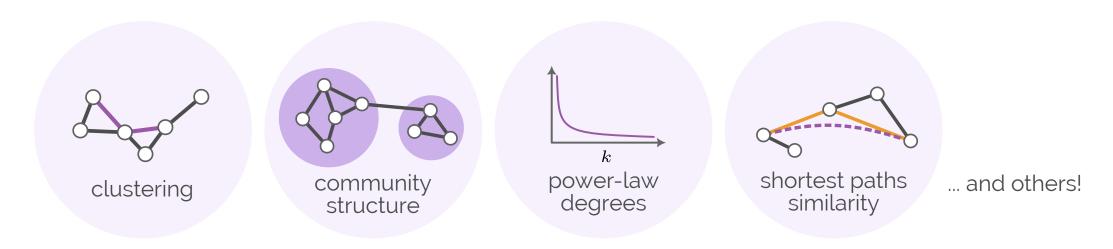




#### Latent hyperbolic space

Graphs obtained from hyperbolic space reproduce many empirically observed properties.

- Krioukov, D., et al. *Hyperbolic geometry of complex networks*. Phys. Rev. E **82**, 036106 (2010).
- Zuev, K., et al. *Emergence of Soft Communities from Geometric Preferential Attachment*. Sci. Rep. **5**, 9421 (2015).
- Krioukov, D., et al. *Clustering Implies Geometry in Networks*. Phys. Rev. Lett. **116**, 208302 (2016).
- Faqeeh, A., et al. *Characterizing the Analogy Between Hyperbolic Embedding and Community Structure of Complex Networks*. Phys. Rev. Lett. **121**, 098301 (2018).



## $\mathbb{H}^2$ and $\mathbb{S}^1$ random graph models

Each edge (u, v) exists with probability

$$\mathbb{H}^2$$
 model

$$\mathbb{P}[(u,v)|x_u,x_v,eta] = rac{1}{1+\exp\{eta(d_\mathbb{H}(x_u,x_v)-R)\}},$$

where  $d_{\mathbb{H}}$  is the hyperbolic distance,  $\beta$  is the sigmoid sharpness, R is the maximal radial coordinate,  $x_u, x_v \in \mathbb{H}^2$  are the positions of vertices u and v respectively.

Using an approximation for  $d_{\mathbb{H}}$  , this is equivalent to

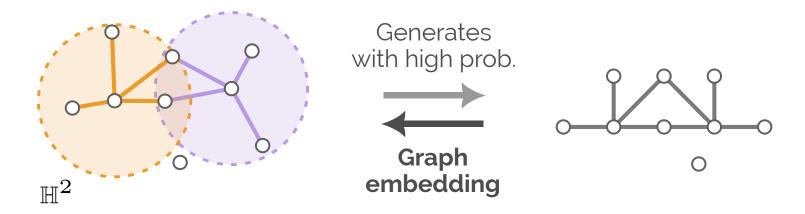
$$\mathbb{S}^1$$
 model

$$p_{uv} = rac{1}{1 + \left(rac{d_{\mathbb{S}}( heta_u, heta_v)}{\mu \kappa_u, \kappa_v}
ight)^{eta}} pprox \mathbb{P}[(u, v) | x_u, x_v, eta],$$

where  $d_{\mathbb{S}}$  is the arc length,  $\mu$  is a scaling factor,  $x_u=(r_u,\theta_u)$  is written by its coordinates,  $\kappa_u=\kappa_0 e^{(\hat{R}-r_u)/2}$  is a rescaling of  $r_u$  and  $\kappa_0$  is the minimum degree.

## Graph vertex embedding in a nutshell

We want to represent a given graph using a hyperbolic embedding.



This amounts to:

$$\text{Pairs of vertices are} \begin{cases} \text{close} & \text{if connected in graph,} \\ \text{far} & \text{if not connected in graph.} \end{cases}$$

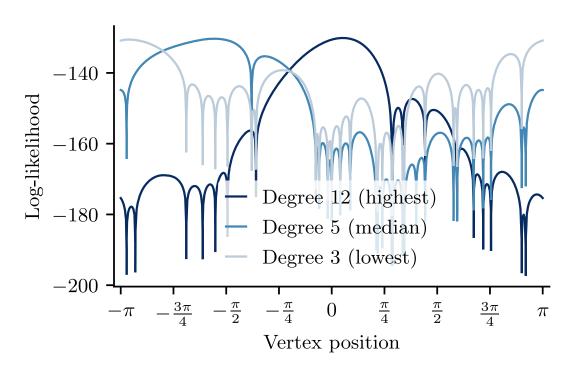
#### **Embedding with maximum likelihood**

The likelihood of obtaining a graph G=(V,E) is simply

$$\mathbb{P}[G| heta,\kappa,eta] = \prod_{(u,v)\in V^2} p_{uv}{}^{a_{uv}}(1-p_{uv})^{1-a_{uv}},$$

where  $a_{uv}=1$  if u and v are connected and is 0 otherwise.

Many algorithms give a maximum likelihood estimator (MLE). This is challenging because of the abundance of local maxima.



#### Current algorithms don't give the entire picture

#### Every algorithm

- Papadopoulos, F. et al. Phys. Rev. E **92**, 022807 (2015).
- Alanis-Lobato, G. et al. Appl. Netw. Sci. 1, 1–14 (2016).
- Muscoloni, A. et al. Nat. Commun. **8**, 1615 (2017).
- García-Pérez, G. et al. New J. Phys. **21**, 123033 (2019).
- Wang, Z. et al. J. Stat. Mech.: Theory Exp. 123401 (2019).
- . . .

#### yields a single embedding.

#### We currently ignore

- if there exists many plausible embeddings;
- how precise the vertex coordinates are.

We address both issues using a Bayesian approach.

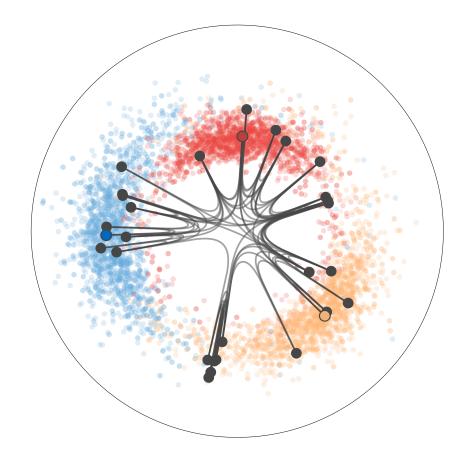
# $\mathbb{S}^1$ Bayesian model

The posterior of the Bayesian  $\mathbb{S}^1$  model is

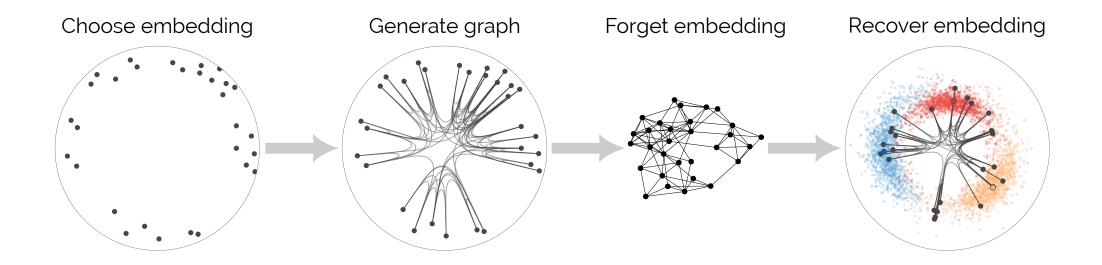
$$p( heta,\kappa,eta|G) \propto \mathbb{P}[G| heta,\kappa,eta] \; p(eta) \prod_{v \in V} p( heta_v) p(\kappa_v),$$

where the priors are

$$egin{aligned} heta_u &\sim ext{Uniform}[-\pi,\pi), \ \kappa_u &\sim ext{Cauchy}, \quad \kappa_u &> \epsilon, \ eta &\sim ext{Normal}, \quad eta &> 1. \end{aligned}$$

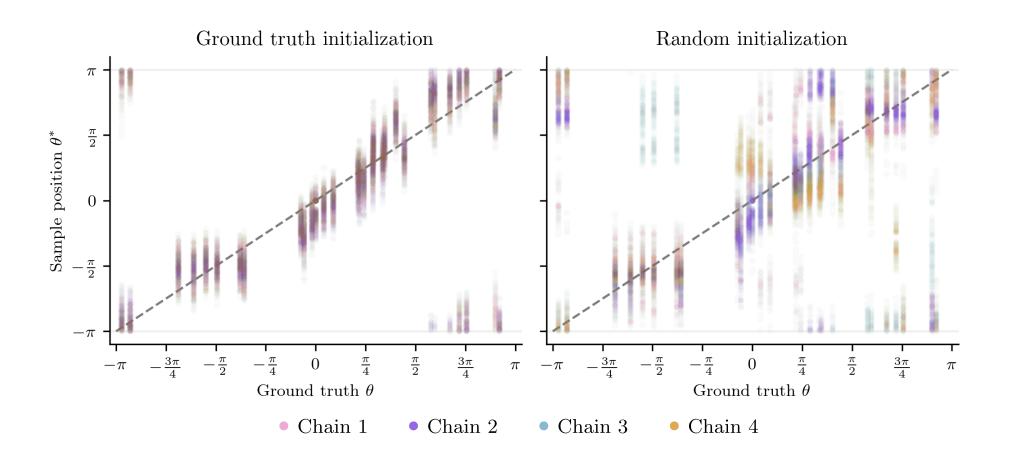


## Sanity check with synthetic data



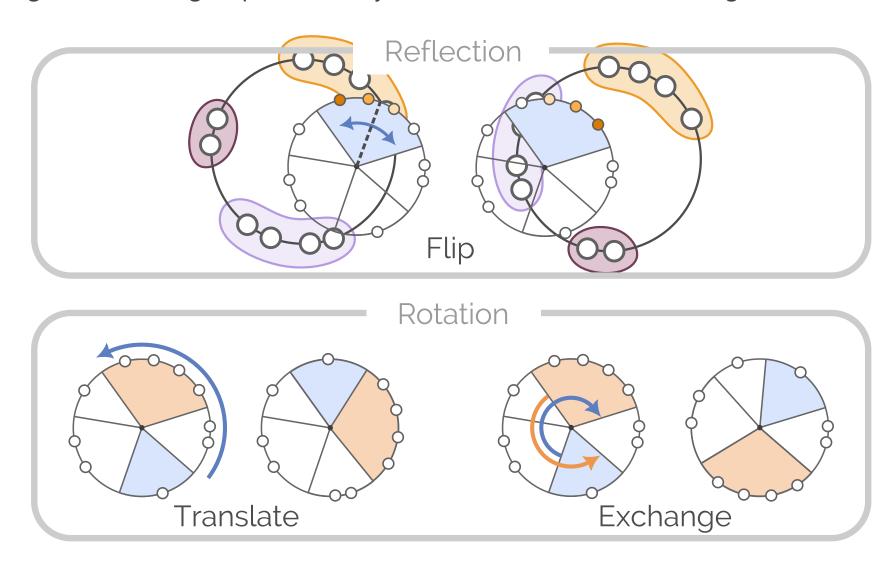
#### Usual sampling methods don't work

Hamiltonian Monte Carlo<sup>1</sup> (HMC) and random walk don't sample properly.



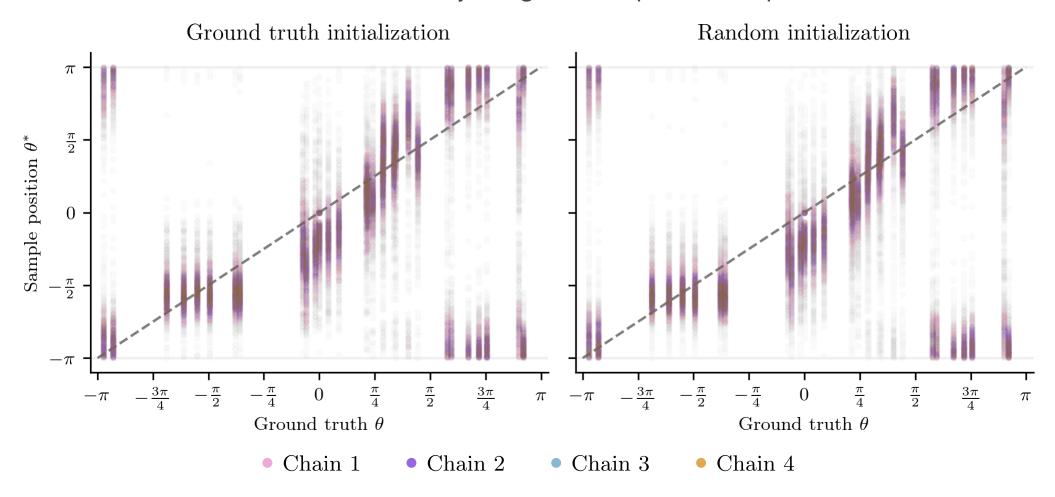
## **Locality implies clusters**

Since edges are local, groups of nearby vertices should be moved together.

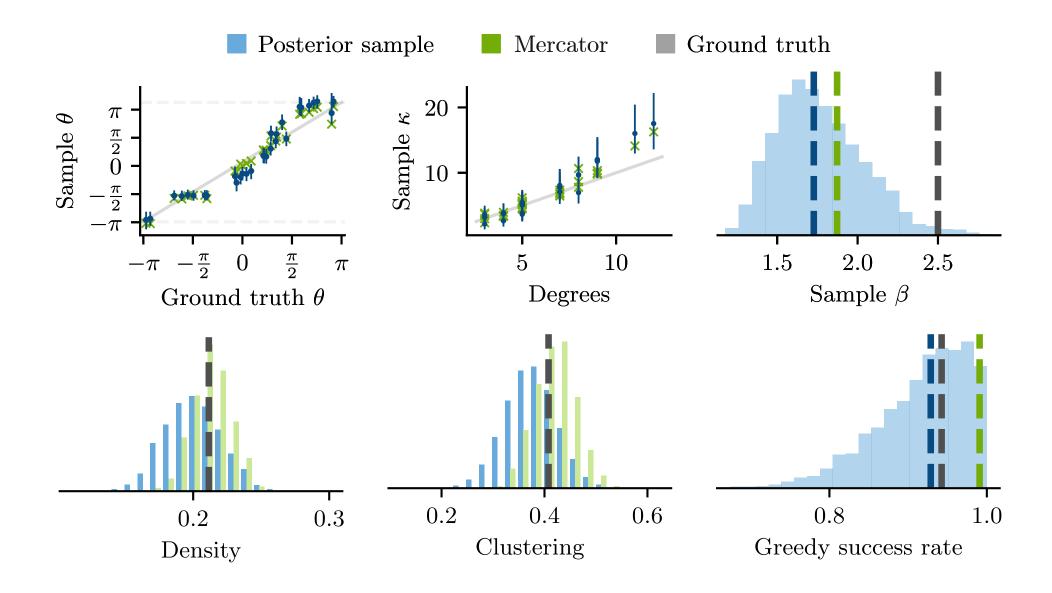


#### Cluster transformations fix the sampling issue

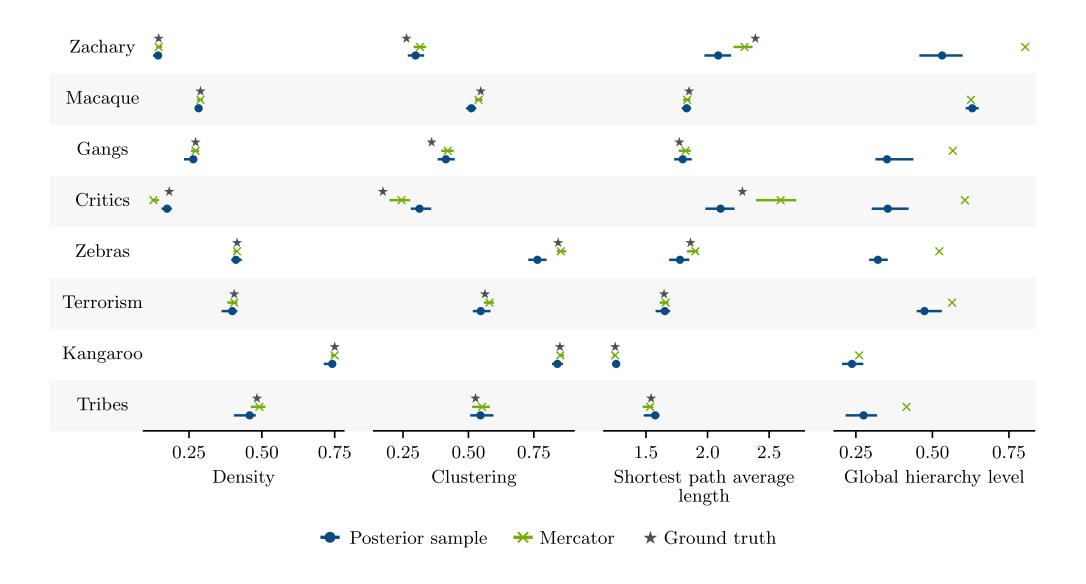
Cluster transformations + random walk yield good samples of the posterior.



### **Embedding error bars**



## **Empirical networks properties**

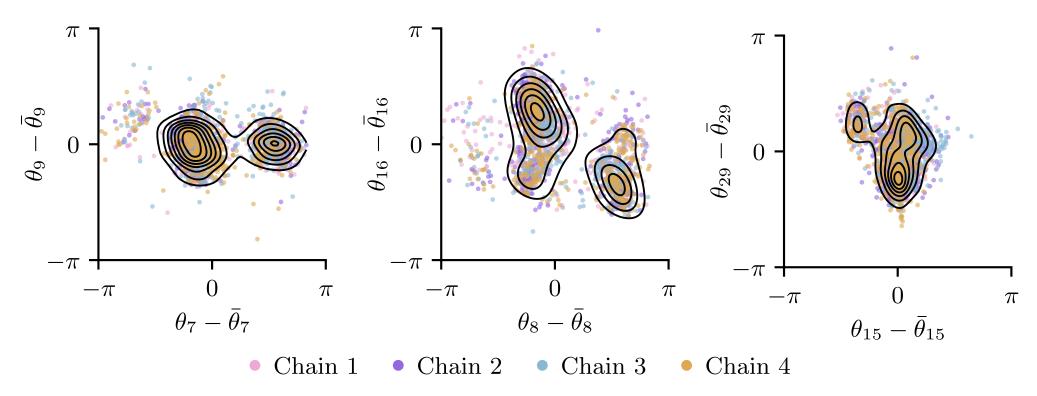


#### Induced multimodal distribution

#### **Conflicting ground truth model:**

- A vertex v is given two positions  $\theta_v^{(1)}$  and  $\theta_v^{(2)}$  .
- When generating G with the  $\mathbb{S}^1$  model, each edge probability including v uses randomly  $\theta_v^{(1)}$  or  $\theta_v^{(2)}$ .

#### Marginal posterior distributions



## **Takeaways**

- Hyperbolic random geometric graphs reproduce many empirically observed properties.
- Locality 
   ⇒ clusters as coarse-graining;
- Bayesian approach finds error bars and can identify multiple good embeddings.

#### Paper:

Lizotte, S., Young, J.-G. and Allard A. *Symmetry-driven embedding of networks in hyperbolic space*. arXiv:2406.10711 (2024).

[Accepted at Communication Physics]



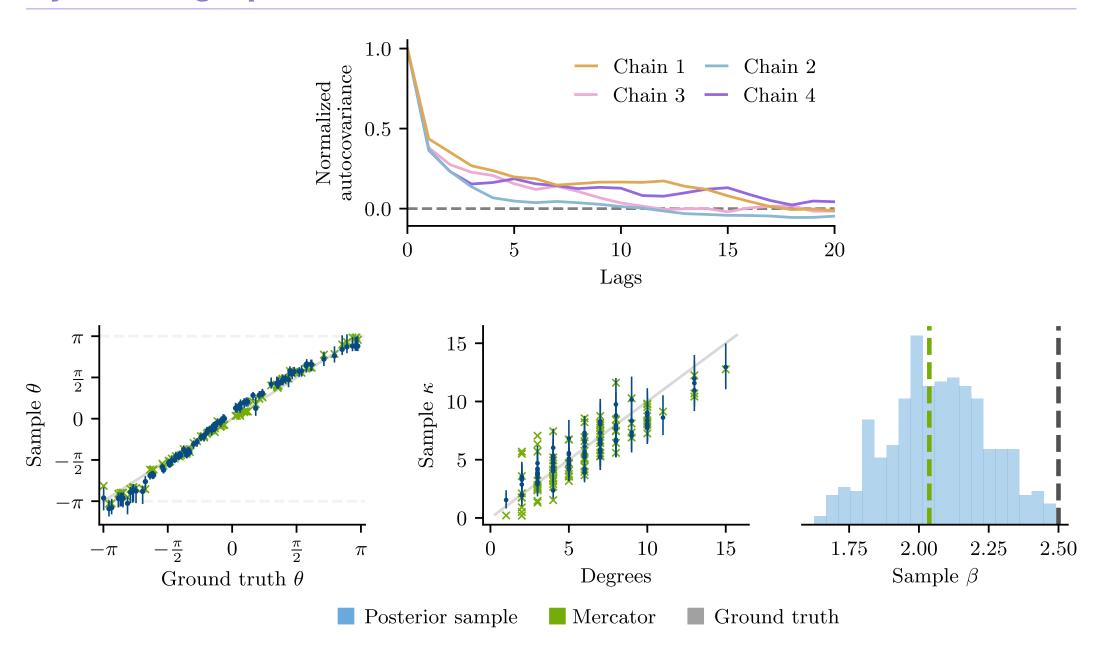
**Antoine Allard** 



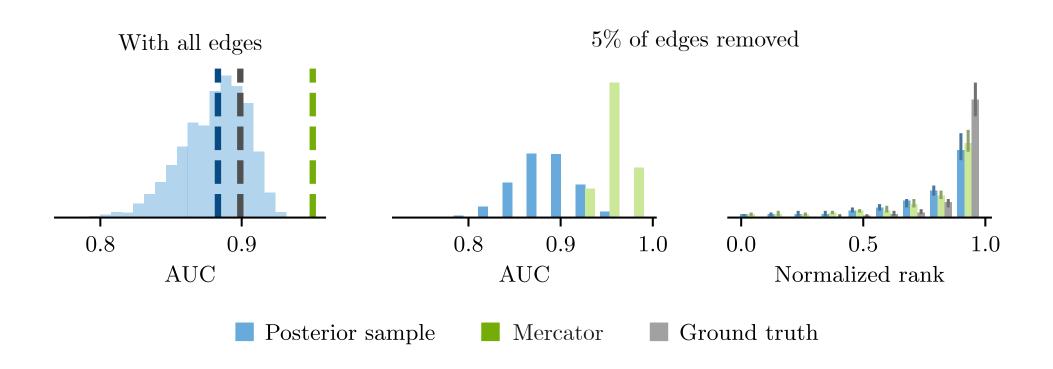
Jean-Gabriel Young



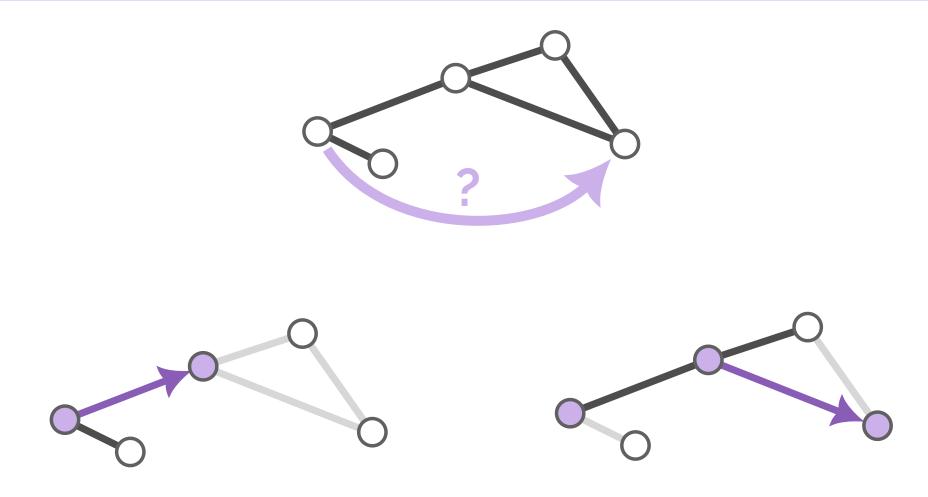
## Synthetic graph of 100 vertices



## Link prediction is equivalent when sampling



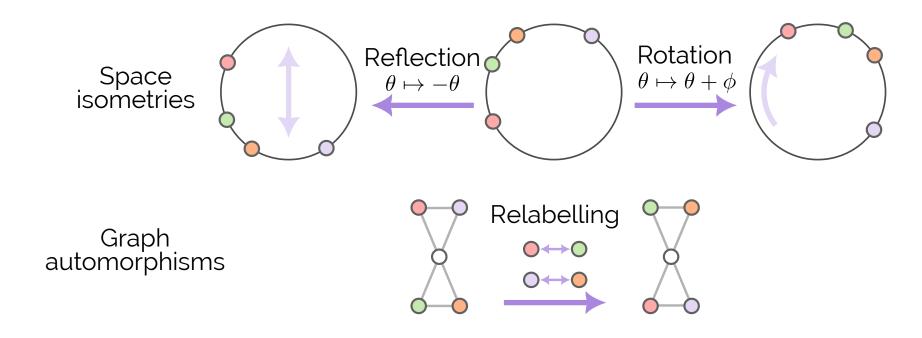
## **Greedy routing**



Go to the neighbour closest to the destination.

#### **Model symmetries**

The  $\mathbb{S}^1$  model is not identifiable because of graph and space symmetries.



Comparing embeddings requires alignment.