Probabilistic hyperbolic
embedding of networks

Combining network geometry with Bayesian inference
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Creating edges requires a cost

Vertices are placed in metric space. The edge cost increases with its length.

The metric space can be physical (e.g. transportation network, brain network) or not.
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Latent hyperbolic space

Graphs obtained from hyperbolic space reproduce many empirically observed properties.

e Krioukov, D., et al. Hyperbolic geometry of complex networks. Phys. Rev. E 82, 036106
(2010).

e Zuev, K, et al. Emergence of Soft Communities from Geometric Preferential Attachment.
Sci. Rep. 5, 9421 (2015).

e Krioukov, D., et al. Clustering Implies Geometry in Networks. Phys. Rev. Lett. 116, 208302
(2016).

e Fageeh, A, et al. Characterizing the Analogy Between Hyperbolic Embedding and
Community Structure of Complex Networks. Phys. Rev. Lett. 121, 098301 (2018).
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H? and S' random graph models

Each edge (u, v) exists with probability

H* model 1
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where dp is the hyperbolic distance, 3 is the sigmoid sharpness, R is the maximal radial
coordinate, x,,, x, € H? are the positions of vertices u and v respectively.

Using an approximation for dy, this is equivalent to

S model 1
Puv = ~ P[(’U,, ’U)‘xunwv75]7

where ds is the arc length, i is a scaling factor, x,, = (ru, Hu) is written by its coordinates,

R—7,)/2

K, = K e( is a rescaling of r,, and Kk is the minimum deqgree.
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Graph vertex embedding in a nutshell

We want to represent a given graph using a hyperbolic embedding.

Generates
with high prob.
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embedding

This amounts to:

close if connected in graph,

Pairs of vertices are
{ far if not connected in graph.



Embedding with maximum likelihood

The likelihood of obtaining a graph G = (V, E) is simply

PIGIO, 5,8l = || pu™ (1= pu) ™,

(u,v)eV?
where a,, = 1 if u and v are connected and is 0 otherwise.

Many algorithms give a maximum likelihood estimator (MLE). This is challenging because
of the abundance of local maxima.
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Current algorithms don’t give the entire picture

Every algorithm
e Papadopoulos, F. et al. Phys. Rev. E 92, 022807 (2015).
Alanis-Lobato, G. et al. Appl. Netw. Sci. 1, 1-14 (2016).

Muscoloni, A. et al. Nat. Commun. 8, 1615 (2017).
Garcia-Pérez, G. et al. New J. Phys. 21, 123033 (2019).
Wang, Z. et al. J. Stat. Mech.: Theory Exp. 123401 (2019).

yields a single embedding.

We currently ignore
e if there exists many plausible embeddings;

e how precise the vertex coordinates are.

We address both issues using a Bayesian approach.



S! Bayesian model

The posterior of the Bayesian S! modelis

p(8, 5, B|G) o PIG|6, k, B] p(B) | | p(6.)p(ky),

where the priors are

6, ~ Uniform|—m, ),
Kk, ~ Cauchy, £k, > ¢,
B ~ Normal, £> 1.




Sanity check with synthetic data

Choose embedding Generate graph Forget embedding Recover embedding




Usual sampling methods don’t work

Hamiltonian Monte Carlo* (HMC) and random walk don't sample properly.
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Ground truth initialization
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Locality implies clusters

Since edges are local, groups of nearby vertices should be moved together.
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Cluster transformations fix the sampling issue

Cluster transformations + random walk yield good samples of the posterior.
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Embedding error bars
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Empirical networks properties
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Induced multimodal distribution

Conflicting ground truth model.

e Avertex v is given two positions 05)1) and (9,5,2).
e When generating G with the S' model, each edge probability including v uses randomly
05,1) or (9,,()2) .

Marginal posterior distributions
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Takeaways

e Hyperbolic random geometric graphs reproduce many empirically observed properties.
e Locality — clusters as coarse-graining;

e Bayesian approach finds error bars and can identify multiple good embeddings.

Paper:

Lizotte, S., Young, J.-G. and Allard A. Symmetry-driven embedding of networks in
hyperbolic space. arXiv.2406.10711 (2024).

[Accepted at Communication Physics]
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Synthetic graph of 100 vertices
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Link prediction is equivalent when sampling

With all edges 5% of edges removed
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Greedy routing

O O

Go to the neighbour closest to the destination.
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Model symmetries

The S! modelis not identifiable because of graph and space symmetries.
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Comparing embeddings requires alignment.
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