

Interested in developing an experimental model to monitor the early development of neural circuits in the brain, both structurally and functionally in order to understand

The larval zebrafish

Monitoring neuronal activity

Transgenic fish line from the Ahrens Lab

elavl3:H2B-GCaMP6s

elavl3:GCaMP5G

Ahrens *et al.* (2013) *Nat Methods* **10** Vladimirov *et al.* (2014) *Nat Methods* **11**

Rich behavior

Example behavior: Prey detection

Software & experimental toolkits

Experimental setup

Thanks to Ed Ruthazer and Cynthia Solek for helping us getting started Neurophotonics Summer School at CERVO

Resonant two-photon imaging

Anatomical stack (~250 planes)

Functional imaging (single plane 30 Hz)⁸

Resonant two-photon imaging

Speed x10

Whole-brain multi-plane imaging

Piezo scanning

Whole-brain multi-plane imaging

Mean projection 22 planes @ 1.4 Hz

Preprocessing pipeline

- 1. Raw data
- 2. Motion correction
- 3. Removing artifacts
- 4. Segmentation

Preprocessing pipeline

Signal extraction for every individual imaging plane

Dual registration framework

In vivo 2-photon z-stack

Dual registration framework

In vivo 2-photon z-stack

[1] Randlett *et al.* (2015) *Nat Methods* 12
[2] Kunst *et al.* (2019) *Neuron* 103

Brain regions

17

Dual registration framework

Dual registration framework

Brain regions

N neurons

T frames

20

*Neurochemical identity

T frames

Visual stimulation to probe neural circuits

Dark-flash stimulation paradigm

Screen illumination

- Triggers locomotion
- Navigational strategy

By turning on and off the light, the fish is constrained to a *virtual circle*

Visual stimulation to probe neural circuits

Green: Stable response Red: Habituation²⁴

Visual stimulation to probe neural circuits

How to identify stimulus-responsive neurons?

Different response clusters to darkflash

Different response clusters to darkflash

Functional brain networks

Structural vs functional networks

Structural vs functional networks

Mean functional network

Structural connectome

Structural vs functional networks

Mean functional network

Structural connectome

Indirect pathways explain functional connectivity

Spatial proximity: Distance separating regions Inverse path length: Synapses separating regions Communicability: Random diffusion over all possible pathways

Vazquez-Rodr iguez et al. (2019) PNAS 116

Modular structure of brain networks

Communities/Modules: groups of brain regions with dense internal connections, and sparser connections between groups.

Finding recurring brain states

Thanks to Alex McGirr for pointing us towards this approach.

Subjects

2015: decomposing mouse behavior into a sequence of discrete behavioral states Dimensions Spine Height (Random Projectic 45 1800 ms mm σ cm abels Time me aging Frame

2019: decomposing mouse fMRI data into discrete brain states

Finding recurring brain states

2020: decomposing human fMRI data into discrete brain states and inferring transitions probabilities between states.

Brain states in zebrafish

Spontaneous calcium dynamics of 104 brain regions

Brain states in zebrafish

. . .

. . .

State 1

State N

Brain states emerge from structural modules

Black boxes represent N = 5 structural modules

Brain states have distinct temporal properties

Arrow size: Number of observed transitions

Brain states are organized into a core-periphery structure

Brain state transitions to describe the healthy brain

Summary (work in progress)

- Neuronal correlates of trial to trial sensory response variability
- Strong structure/function relationship in zebrafish brain networks
- Discrete non-overlapping brain states for characterizing spontaneous brain activity

Future outlooks

How brain states are shaped by

- Neuromodulation
- Different conditions (stress, gut microbiota, sleep deprivation, etc)
- Learning
- Optogenetics
 - Inhibit or trigger transitions between global states

Acknowledgements

- Paul De Koninck
- Patrick Desrosiers
- Flavie Lavoie-Cardinal
- PDK Lab
- FLC Lab

Sentinelle Sentinel

Nord

- Dynamica Lab
- Sentinelle Nord

North

