SIAM DS 2023 (arxiv ID: 2208.04848)

The low-rank hypothesis of complex systems:
From empirical and theoretical evidence to the emergence of higher-order interactions

Vincent Thibeault, Antoine Allard, Patrick Desrosiers

May 16, 2023

Département de physique, de génie physique, et d'optique
Université Laval, Québec, Canada

Complex systems : high dimension and emergent collective phenomena

Biological

Technological

Complex systems : high dimension and emergent collective phenomena

Biological

Technological

Complex systems : high dimension and emergent collective phenomena

Technological

Complex systems : high dimension and emergent collective phenomena

Technological

Complex systems : high dimension and emergent collective phenomena

Biological

Technological

High-dimensional dynamics

$$
\dot{x}=f(x ; W)
$$

A low-dimensional description of a high-dimensional complex system? Paradox?

"The Scream of Dimensionality"

review article

Simple mathematical models with very complicated dynamics
 RobertM. May* E.g. : Logistic equations

First-order difference equations arise in many contexts in the biological, economic and social sciences. Such equations, even though simple and deterministic, can exhibit a surprising array of dynamical behaviour, from stable points, to a bifurcating hierarchy of stable cycles, to apparently random fluctuations. There are consequently many fascinating problems, some concerned with delicate mathematical aspects of the fine structure of the trajectories, and some concerned with the practical implications and applications. This is an interpretive review of them.

THE GENERAL AND LOGICAL THEORY OF AUTOMATA

JOHN VON NEUMANN

The Institute for Advanced Study
mind. The natural systems are of enormous complexity, and it is clearly necessary to subdivide the problem that they represent into several parts.

review article

Simple mathematical models with very complicated dynamics
 Robert M. May* E.g. : Logistic equations

First-order difference equations arise in many contexts in the biological, economic and social sciences. Such equations, even though simple and deterministic, can exhibit a surprising array of dynamical behaviour, from stable points, to a bifurcating hierarchy of stable cycles, to apparently random fluctuations. There are consequently many fascinating problems, some concerned with delicate mathematical aspects of the fine structure of the trajectories, and some concerned with the practical implications and applications. This is an interpretive review of them.

THE GENERAL AND LOGICAL THEORY OF AUTOMATA

JOHN VON NEUMANN
The Institute for Advanced Study
mind. The natural systems are of enormous complexity, and it is clearly necessary to subdivide the problem that they represent into several parts.

Approximation of Dynamical Systems by Continuous Time Recurrent Neural Networks

Ken-ichi Funahashi and Yuichi Nakamura

Toyohashi University of Technology
(Received 16 March 1992; revised and accepted 10 November 1992)

[^0]What about the "dimensionality" of complex networks?

What about the "dimensionality" of complex networks?
Singular value decomposition (SVD)

Rank r : how many singular values are not zero

What about the "dimensionality" of complex networks?
Singular value decomposition (SVD)

Rank r : how many singular values are not zero

What about the "dimensionality" of complex networks?
Singular value decomposition (SVD) Optimal low-rank approximation

Rank r : how many singular values are not zero

What about the "dimensionality" of complex networks?
Singular value decomposition (SVD) Optimal low-rank approximation

Rank r : how many singular values are not zero
Effective rank : how many singular values are significant
e.g., the stable rank is $\operatorname{srank}(W)=\sum_{i=1}^{r} \sigma_{i}^{2} / \sigma_{1}^{2}$

What about the "dimensionality" of complex networks?
Singular value decomposition (SVD) Optimal low-rank approximation

Rank r : how many singular values are not zero
Effective rank : how many singular values are significant
e.g., the stable rank is $\operatorname{srank}(W)=\sum_{i=1}^{r} \sigma_{i}^{2} / \sigma_{1}^{2}$

First indicator of the low-rank hypothesis
We observe that many random graphs are described as
\(\left.$$
\begin{array}{ccc}\begin{array}{c}\text { Random } \\
\text { weight matrix }\end{array} & \begin{array}{c}\text { Expected weight } \\
\text { matrix }\langle W\rangle\end{array} & \begin{array}{c}\text { Random } \\
\text { noise matrix }\end{array}
$$

W\end{array}\right)+\)| LoW-rank matrix L |
| :---: |

First indicator of the low-rank hypothesis
We observe that many random graphs are described as

Random weight matrix	$\begin{array}{cc}\text { Expected weight } & \text { Random } \\ \text { matrix }\langle W\rangle & \text { noise matrix }\end{array}$				
$W=$	$\Phi \underset{\text { Low-rank matrix } L}{ })^{+}$	R			
Model	Low-rank matrix L	$\operatorname{rank}(L)$	$\Phi(L)$		
$\mathcal{G}(N, p)$	$N p \hat{\mathbf{1}} \hat{\mathbf{1}}^{\top}$	1	L		
Chung-Lu	$\frac{\\|\kappa\\|^{2}}{2 M} \hat{\boldsymbol{\kappa}} \hat{\boldsymbol{\kappa}}^{\top}$	1	L		

First indicator of the low-rank hypothesis
We observe that many random graphs are described as

We observe that many random graphs are described as

Random weight matrix	$\begin{array}{cc}\text { Expected weight } & \text { Random } \\ \text { matrix }\langle W\rangle & \text { noise matr }\end{array}$		$\Phi(L)$		
$W \quad=$	$\Phi(\overbrace{\text { Low-rank matrix } L})+$				
Model	Low-rank matrix L	$\operatorname{rank}(L)$			
$\mathcal{G}(N, p)$	$N p \hat{\mathbf{1}} \hat{\mathbf{1}}^{\top}$	1	L		
Chung-Lu	$\frac{\\|\kappa\\|^{2}}{2 M} \hat{\boldsymbol{\kappa}} \hat{\boldsymbol{\kappa}}^{\top}$	1	L		
Degree-corrected stochastic block	$\Lambda \circ\left(\hat{\boldsymbol{\kappa}}_{\text {in }} \hat{\boldsymbol{\kappa}}_{\text {out }}^{\top}\right)$	\leq \#blocks	L		
Soft configuration*	$\boldsymbol{y} \overline{\boldsymbol{y}}^{\top}$	1	$\frac{L}{1-L}$		
S^{1} random geometric	$\frac{R^{2}}{\mu^{2}}\left(\overline{\boldsymbol{\kappa}}_{\text {in }} \overline{\boldsymbol{\kappa}}_{\text {out }}^{\top}\right) \circ \bar{\theta}$	$\leq 3^{* *}$	$\frac{1}{1+L^{\beta / 2}}$		
:	:	:	:		

* Garlaschelli, Phys. Rev. Lett., 2009
** Gower, Linear Algebra Appl., 1985

Impact on the random weight matrix

Hermann Weyl, Math. Ann., 1912

$$
\sigma_{i+j-1}(A+B) \leq \sigma_{i}(A)+\sigma_{j}(B) \quad \forall 1 \leq i, j, i+j-1 \leq N,
$$

Hermann Weyl, Math. Ann., 1912

$$
\begin{gathered}
\sigma_{i+j-1}(A+B) \leq \sigma_{i}(A)+\sigma_{j}(B) \quad \forall 1 \leq i, j, i+j-1 \leq N, \\
\Downarrow \\
\left|\sigma_{i}(W)-\sigma_{i}(\langle W\rangle)\right| \leq \underbrace{\|R\|_{2}}_{\text {"Noise strength" }}
\end{gathered}
$$

"the singular values of W cannot deviate from those of $\langle W\rangle$ more than $\|R\|_{2}$ "

Second indicator of the low-rank hypothesis : Rapid singular value decrease

Second indicator of the low-rank hypothesis : Rapid singular value decrease

Degree-corrected stochastic block

$$
\langle W\rangle=\Phi(L)=L
$$

$$
\operatorname{rank}(L) \leq \text { \#blocks }
$$

R: Poisson

Directed S^{1}
random geometric

$$
\begin{aligned}
& \langle W\rangle=\Phi_{\mathrm{Fo}}(L)=\frac{1}{1+L^{\beta / 2}} \\
& \operatorname{rank}(L) \leq 3 \\
& \text { R: Bernouilli }
\end{aligned}
$$

$$
\begin{aligned}
& \text { random geometric } \\
& \langle W\rangle=\Phi_{\mathrm{fo}}(L)=\frac{1}{1+L^{\beta / 2}} \\
& \operatorname{rank}(L) \leq 3 \\
& \text { R: Bernouilli }
\end{aligned}
$$

Weighted directed soft configuration

Second indicator of the low-rank hypothesis : Rapid singular value decrease

Degree-corrected
stochastic block

$\langle W\rangle=\Phi(L)=L$
rank $(L) \leq \#$ blocks
R: Poisson

$$
\begin{aligned}
& \quad \begin{array}{c}
\text { Directed S }{ }^{1} \\
\text { random geometric }
\end{array} \\
& \begin{array}{l}
\langle W\rangle=\Phi_{\mathrm{FD}}(L)=\frac{1}{1+L^{\beta / 2}} \\
\text { rank }(L) \leq 3 \\
\text { R: Bernouilli }
\end{array}
\end{aligned}
$$

Weighted directed soft configuration
$\langle W\rangle=\Phi_{\mathrm{BE}}(L)=\frac{L}{1-L}$
$\operatorname{rank}(L)=1$
$R:$ Geometric

Third indicator of the low-rank hypothesis : low-effective ranks

Degree-corrected stochastic block
$\langle W\rangle=\Phi(L)=L$
$\operatorname{rank}(L) \leq$ \#blocks
R: Poisson

Directed S^{1} random geometric
$\langle W\rangle=\Phi_{\mathrm{FD}}(L)=\frac{1}{1+L^{\beta / 2}}$
$\operatorname{rank}(L) \leq 3$
$R:$ Bernouilli
$0.1-10$

Weighted directed soft configuration

$$
\begin{aligned}
& \langle W\rangle=\Phi_{\mathrm{BE}}(L)=\frac{L}{1-L} \\
& \operatorname{rank}(L)=1 \\
& R: \text { Geometric }
\end{aligned}
$$

The low-rank hypothesis

It is the assumption that networks' weight matrices have rapidly decreasing singular values, implying low effective ranks.

The low-rank hypothesis

It is the assumption that networks' weight matrices have rapidly decreasing singular values, implying low effective ranks.

Let's verify it for real complex networks!

Experimental verification for real networks

Experimental verification for real networks

Many real complex networks have low effective ranks !*

* Udell, Townsend, "Why Are Big Data Matrices Approximately Low Rank ?", SIAM J. Math. Data Sci., 2019

Experimental verification for real networks

Many real complex networks have low effective ranks !*

* Udell, Townsend, "Why Are Big Data Matrices Approximately Low Rank ?", SIAM J. Math. Data Sci., 2019 What's the consequence for dynamics on these networks?

Dimension reduction of dynamical systems is about aligning vector fields.

High-dimensional dynamics

$$
\dot{x}=f(x ; W)
$$

High-dimensional dynamics : $\dot{x}=f(x)$
Low-dimensional dynamics : $\dot{X}=F(X)$ where $X=M x$

Theorem (simplified)

The vector field F^{*} that minimizes the quadratic error between the projected dynamics $\dot{p}=f(p)$ with $p=M^{+} M x$ and the reduced dynamics in $\mathbb{R}^{N}\left[M^{+} F(X)\right]$ is

$$
F^{*}(X)=M f\left(M^{+} X\right)
$$

Proof: Just use least-squares.

Choice of M and upper bound on the alignment error $\mathcal{E}_{f}(x)$

Theorem (simplified)

The alignment error $\mathcal{E}(x)$ for some $x \in \mathbb{R}^{N}$ is upper-bounded by

$$
\mathcal{E}(x) \leq \frac{1}{\sqrt{n}}\left[\left\|V_{n}^{\top} J_{x}\left(x^{\prime}, y^{\prime}\right)\left(I-V_{n} V_{n}^{\top}\right) x\right\|+\sigma_{n+1}\left\|V_{n}^{\top} J_{y}\left(x^{\prime}, y^{\prime}\right)\right\|_{2}\|x\|\right] .
$$

$\sigma_{i}: i$-th singular values of W
$M=V_{n}^{\top}: n$-truncated right singular vector matrix (justification, Eckart-Young)
$J_{x}, J_{y}:$ Jacobian matrices evaluated at some point x^{\prime}, y^{\prime}
n : dimension of the reduced system

Theorem (simplified)

The alignment error $\mathcal{E}(x)$ for some $x \in \mathbb{R}^{N}$ is upper-bounded by

$$
\mathcal{E}(x) \leq \frac{1}{\sqrt{n}}\left[\left\|V_{n}^{\top} J_{x}\left(x^{\prime}, y^{\prime}\right)\left(I-V_{n} V_{n}^{\top}\right) x\right\|+\sigma_{n+1}\left\|V_{n}^{\top} J_{y}\left(x^{\prime}, y^{\prime}\right)\right\|_{2}\|x\|\right] .
$$

$\sigma_{i}: i$-th singular values of W
$M=V_{n}^{\top}: n$-truncated right singular vector matrix (justification, Eckart-Young)
$J_{x}, J_{y}:$ Jacobian matrices evaluated at some point x^{\prime}, y^{\prime}
$n:$ dimension of the reduced system
First intuitive consequence : $\frac{\mathcal{E}(x)}{\|x\|} \leq \frac{\sigma_{n+1}}{\sqrt{n}}$

Theorem (simplified)

The alignment error $\mathcal{E}(x)$ for some $x \in \mathbb{R}^{N}$ is upper-bounded by

$$
\mathcal{E}(x) \leq \frac{1}{\sqrt{n}}\left[\left\|V_{n}^{\top} J_{x}\left(x^{\prime}, y^{\prime}\right)\left(I-V_{n} V_{n}^{\top}\right) x\right\|+\sigma_{n+1}\left\|V_{n}^{\top} J_{y}\left(x^{\prime}, y^{\prime}\right)\right\|_{2}\|x\|\right]
$$

$\sigma_{i}: i$-th singular values of W
$M=V_{n}^{\top}: n$-truncated right singular vector matrix (justification, Eckart-Young)
J_{x}, J_{y} : Jacobian matrices evaluated at some point x^{\prime}, y^{\prime}
n : dimension of the reduced system

First intuitive consequence : $\frac{\mathcal{E}(x)}{\|x\|} \leq \frac{\sigma_{n+1}}{\sqrt{n}}$
Second consequence : $J_{x}\left(x^{\prime}, y^{\prime}\right)=a I$ and $n \geq \operatorname{rank}(W) \quad \Rightarrow \quad$ Exact dim. red.

Alignment error for dynamics on real complex networks

Third consequence :

Rapid singular value decreases can induce rapid alignment error decrease.
... Average alignment error $\langle\mathcal{E}\rangle \quad \cdots$ Average upper-bound on $\mathcal{E}(x) \quad \cdots$ Rescaled singular values $\frac{\sigma_{n}}{\sigma_{1}}$

Alignment error for dynamics on real complex networks

Third consequence :

Rapid singular value decreases can induce rapid alignment error decrease.
... Average alignment error $\langle\mathcal{E}\rangle \quad \cdots$ Average upper-bound on $\mathcal{E}(x) \quad \cdots$ Rescaled singular values $\frac{\sigma_{n}}{\sigma_{1}}$

- $n=80 \approx \operatorname{erank}(e=0.04)$
- $n=90(e=0.03)$

Induced low-dimension hypothesis

A surprise : Higher-order interactions

QMF SIS : $\quad \dot{x}_{i}=-\alpha x_{i}+\beta\left(1-x_{i}\right) \sum_{j=1}^{N} W_{i j} x_{j}, \quad i \in\{1, \ldots, N\}$.

QMF SIS : $\quad \dot{x}_{i}=-\alpha x_{i}+\beta\left(1-x_{i}\right) \sum_{j=1}^{N} W_{i j} x_{j}, \quad i \in\{1, \ldots, N\}$.
Reduced QMF SIS :

$$
\dot{X}_{\mu}=-\alpha X_{\mu}+\beta \sum_{\nu=1}^{n} \mathcal{W}_{\mu \nu}^{(2)} X_{\nu}-\beta \sum_{\nu, \tau=1}^{n} \mathcal{W}_{\mu \nu \tau}^{(3)} X_{\nu} X_{\tau}, \quad \mu \in\{1, \ldots, n\}
$$

QMF SIS : $\quad \dot{x}_{i}=-\alpha x_{i}+\beta\left(1-x_{i}\right) \sum_{j=1}^{N} W_{i j} x_{j}, \quad i \in\{1, \ldots, N\}$.
Reduced QMF SIS :

$$
\dot{X}_{\mu}=-\alpha X_{\mu}+\beta \sum_{\nu=1}^{n} \mathcal{W}_{\mu \nu}^{(2)} X_{\nu}-\beta \sum_{\nu, \tau=1}^{n} \mathcal{W}_{\mu \nu \tau}^{(3)} X_{\nu} X_{\tau}, \quad \mu \in\{1, \ldots, n\}
$$

Kuramoto-Sakaguchi: $\quad \dot{z}_{j}=i \omega_{j} z_{j}+\sum_{k=1}^{N} W_{j k}\left[z_{k} e^{-i \alpha}-z_{j}^{2} \bar{z}_{k} e^{i \alpha}\right]$

QMF SIS : $\quad \dot{x}_{i}=-\alpha x_{i}+\beta\left(1-x_{i}\right) \sum_{j=1}^{N} W_{i j} x_{j}, \quad i \in\{1, \ldots, N\}$.
Reduced QMF SIS :

$$
\dot{X}_{\mu}=-\alpha X_{\mu}+\beta \sum_{\nu=1}^{n} \mathcal{W}_{\mu \nu}^{(2)} X_{\nu}-\beta \sum_{\nu, \tau=1}^{n} \mathcal{W}_{\mu \nu \tau}^{(3)} X_{\nu} X_{\tau}, \quad \mu \in\{1, \ldots, n\}
$$

Kuramoto-Sakaguchi : $\quad \dot{z}_{j}=i \omega_{j} z_{j}+\sum_{k=1}^{N} W_{j k}\left[z_{k} e^{-i \alpha}-z_{j}^{2} \bar{z}_{k} e^{i \alpha}\right]$
Reduced Kuramoto-Sakaguchi :

$$
\begin{gathered}
\dot{Z}_{\mu}=i \sum_{\nu=1}^{n} \Omega_{\mu \nu} Z_{\nu}+\sum_{\nu=1}^{n} \mathcal{W}_{\mu \nu}^{(2)} Z_{\nu} e^{-i \alpha}-\sum_{\alpha, \beta, \gamma=1}^{n} \mathcal{W}_{\mu \alpha \beta \gamma}^{(4)} Z_{\alpha} Z_{\beta} \bar{Z}_{\gamma} e^{i \alpha} \\
\mathcal{W}_{\mu \alpha \beta \gamma}^{(4)}=\sum_{j, k=1}^{N} M_{\mu j} M_{j \alpha}^{+} M_{j \beta}^{+} W_{j k} M_{k \gamma}^{+}
\end{gathered}
$$

QMF SIS : $\quad \dot{x}_{i}=-\alpha x_{i}+\beta\left(1-x_{i}\right) \sum_{j=1}^{N} W_{i j} x_{j}, \quad i \in\{1, \ldots, N\}$.
Reduced QMF SIS :

$$
\dot{X}_{\mu}=-\alpha X_{\mu}+\beta \sum_{\nu=1}^{n} \mathcal{W}_{\mu \nu}^{(2)} X_{\nu}-\beta \sum_{\nu, \tau=1}^{n} \mathcal{W}_{\mu \nu \tau}^{(3)} X_{\nu} X_{\tau}, \quad \mu \in\{1, \ldots, n\}
$$

Kuramoto-Sakaguchi: $\quad \dot{z}_{j}=i \omega_{j} z_{j}+\sum_{k=1}^{N} W_{j k}\left[z_{k} e^{-i \alpha}-z_{j}^{2} \bar{z}_{k} e^{i \alpha}\right]$
Reduced Kuramoto-Sakaguchi :

$$
\begin{gathered}
\dot{Z}_{\mu}=i \sum_{\nu=1}^{n} \Omega_{\mu \nu} Z_{\nu}+\sum_{\nu=1}^{n} \mathcal{W}_{\mu \nu}^{(2)} Z_{\nu} e^{-i \alpha}-\sum_{\alpha, \beta, \gamma=1}^{n} \mathcal{W}_{\mu \alpha \beta \gamma}^{(4)} Z_{\alpha} Z_{\beta} \bar{Z}_{\gamma} e^{i \alpha} \\
\mathcal{W}_{\mu \alpha \beta \gamma}^{(4)}=\sum_{j, k=1}^{N} M_{\mu j} M_{j \alpha}^{+} M_{j \beta}^{+} W_{j k} M_{k \gamma}^{+}
\end{gathered}
$$

The HOIs depend on the reduction matrix and the nonlinearity of the dynamics.

1. The low-rank hypothesis has been defined with three indicators along with its impacts.
2. Many real networks have rapidly decreasing singular values, leading to low effective ranks.
3. Alignment errors can rapidly decrease following the networks' singular values.
4. Dimension reduction can lead to the emergence of higher-order interactions that depends on the chosen observables and the nonlinearity of the system.

Acknowledgments

All details are in the manuscript : https://arxiv.org/abs/2208.04848

Some references : Valdano and Arenas, Phys. Rev. X, 2019
Udell and Townsend, SIAM J. Math. Data Sci., 2019
Thibeault et al., Phys. Rev. Res., 2020
Contact information : vincent.thibeault.1@ulaval.ca
Questions?

Thank you for your attention!

Fonds de recherche
Nature et
technologies
Québec

CQ
Calcul Québec

How low? The values of the effective ranks give a graded measure for that.
Low or high? at most a sublinear growth $O\left(N^{1-\epsilon}\right)$, with $\epsilon \in(0,1]$, as $N \rightarrow \infty$ (valid only for growing graph models)

*Summarizes SI IIC in Thibeault et al., https://arxiv.org/abs/2208. 04848 (e.g., Theorem 3)

Graphs and other random graphs

Theorem (Hypergeometric decrease (simplified))

Suppose that the singular values of matrix W satisfy the inequality

$$
\frac{\left(1-x_{i}\right)^{c^{*}-2}}{\left(1+\zeta^{*} x_{i}\right)^{b^{*}}} \leq \frac{\sigma_{i}}{\sigma_{1}} \leq \frac{\left(1-x_{i}\right)^{c_{*}-2}}{\left(1+\zeta_{*} x_{i}\right)^{b_{*}}}, \quad \forall i \in\{1, \ldots, N\},
$$

where $x_{i}=(i-1) /(N-1)$ and for some $0 \leq b_{*} \leq b^{*}, 2 \leq c_{*} \leq c^{*}, 0<\zeta_{*} \leq \zeta^{*}$. Then,

$$
\frac{N-1}{2 c^{*}-3} H\left(b^{*}, c^{*}, \zeta^{*}\right) \leq \operatorname{srank}(W) \leq 1+\frac{N-1}{2 c_{*}-3} H\left(b_{*}, c_{*}, \zeta_{*}\right),
$$

where $H(b, c, \zeta):={ }_{2} F_{1}(1,2 b ; 2(c-1) ;-\zeta)$, the Gaussian hypergeometric function.

[^0]: Abstract-In this paper, we prove that any finite time trajectory of a given n-dimensional dynamical system can be approximately realized by the internal state of the output units of a contimuous time recurrent neural network with n output units, some hidden units, and an appropriate initial condition. The essential idea of the proof is to embed

