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Emergence of collective phenomena (synchronization)

https://www.youtube.com/watch?v=tRPuVAVXk2M

https://www.youtube.com/watch?v=tRPuVAVXk2M
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Why dimension reduction?

Dimension reduction allows to ...

# find insightful observables Xµ,Wµν (e.g., synchro, global activity, ...) ;

# reduce computational cost ;
# get analytical results on resilience :
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We found n+ n2 linear observables (functions, measures,...)

Xµ =

N∑
i=1

Mµixi,

Wµν =

N∑
i,j=1

MµiWijM
>
jν ,

that both depend on only one n×N matrixM.

M is a reduction matrix to be determined.
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Hypothesis

Important neurons contribute strongly to the global activity
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Singular value decomposition (SVD)
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Reduced dynamics : Ẋµ ≈ F (Xµ) +G(Xµ,
∑n

ν=1WµνXν)

Ẇµν ≈ H(Xµ,Xν ,Wµν)

1. Get equilibrium points for all µ, ν : X ∗µ ,W∗µν

2. Combine these equilibrium points to get the global activities and weights :

X ∗ = a1X ∗1 + ...+ anX ∗n
W∗ = b11W∗11 + b12W∗12 + ...+ bnnW∗nn

3. Plot resilience curves X ∗ vs.W∗.
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Activity dynamics on a real network without plasticity
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Activity dynamics on an Erdős-Rényi network with plasticity

Complete dynamics : 10 200 ODEs
Reduced dynamics : 3 ODEs
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Next steps

# Treat plasticity + real networks ;
# Consider inhibitors (Wij < 0) ;
# Use nonlinear observables ;
# Get more profound insights on resilience.

Take home messages

# Reduced dynamics are valuable to disentangle dynamics with plasticity ;
# SVD is a powerful and interpretable tool for dimension reduction of dynamics.



13

References and acknowledgments

Thank you for your attention !
Thanks to the organizers !
Questions?

V. Thibeault et al., Phys. Rev. Res. (2020)
E. Laurence et al., Phys. Rev. X (2019)
J. Jiang et al., PNAS (2018)
J. Gao et al., Nature (2016)
Coauthors : M.Vegué, A. Allard, P. Desrosiers
Contact : vincent.thibeault.1@ulaval.ca
Website : https://dynamicalab.github.io/

https://dynamicalab.github.io/


14

Wilson-Cowan dynamics

In this model, F is linear and G is a sigmoid function :

τx ẋi = −xi + 1/(1 + e−a(yi−b)), with yi =
∑N

j=1Wijxj (1)

# xi : Firing rate of neuron or brain region i
# τx : Time scale of the firing rate
# a : Steepness of the activation function
# b : Firing rate threshold
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Frame Title

The Wilson-Cowan model is described by the set of differential equations

ẋi = −αxi +G(
∑N

j=1Wijxj), i ∈ {1, ..., N},

where G is the sigmoid function. By defining x = (x1 ... xN )>, we have the
equivalent form

ẋ = −αx+G(Wx). (2)

The reduced dynamics for X = Mx is

Ẋ = −αX +MG(LX), (3)

where we have rank-factorizedW as LM .
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Wilson-Cowan dynamics with BCM plasticity

This model is more complex :

τx ẋi = −αixi + βi/(1 + e−a(yi−b)), with yi =
∑N

j=1Wijxj + γi (4)

τw Ẇij = Dijxixj(xi − θi)− εWij with Wij(0) = dijDij (5)
τθ θ̇i = x2i − θi. (6)

θi : modify the threshold above (below) which the synapse potentiates (depresses).

αi, βi, γi : distinguish the dynamical behavior of each node i.

D = (Dij)
N
i,j=1 : structural backbone, Dij > 0 if the presynaptic neuron j excites

the postsynaptic neuron i, Dij < 0 if the presynaptic neuron j inhibits the
postsynaptic neuron i, and Dij = 0 if no edge exist between neurons i and j.
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Reduced dynamics

The reduced dynamics is described by the differential equations

Ẋµ ≈ F (Xµ;αµ) +G(Xµ,Yµ;βµ) with Yµ =
∑n

ρ=1WµρXρ + γµ (7)

Ẇµν ≈ DµνH(Xµ,Xν ,Θµ)−WµνJ(Xµ,Xν) (8)

Θ̇µ ≈ T (Xµ,Θµ) (9)

where

# ξµ =
∑

i M̂µiξi with ξ ∈ {α, β, γ}
# Dµν =

∑N
i,j=1MµiDijM

>
jν

# Wµν(0) = Dµν for all µ, ν ∈ {1, ..., n}


