DIMENSION REDUCTION OF HIGH-DIMENSIONAL DYNAMICS ON NETWORKS WITH ADAPTATION

Vincent Thibeault, Marina Vegué, Antoine Allard, and Patrick Desrosiers

23 May 2021

Département de physique, de génie physique, et d'optique
Université Laval, Québec, Canada

Emergence of collective phenomena (synchronization)

https://www.youtube.com/watch?v=tRPuVAVXk2M

Firing rate
or activity x
hulul
$\overrightarrow{\text { Time }} t$

Firing rate or activity x

$\overrightarrow{\text { Time }} t$

Firing rate or activity x

$\overrightarrow{\text { Time }} t$

Cells that fire together...

...wire together
$W_{i j}$

Firing rate or activity x

Time t

Nonlinear activity dynamics

Cells that fire together...

...wire together

Complete dynamics

$$
\begin{gathered}
N(N+1) \gg 1 \\
\dot{x}_{i}=F\left(x_{i}\right)+G\left(x_{i}, \sum_{j=1}^{N} W_{i j} x_{j}\right) \\
\dot{W}_{i j}=H\left(x_{i}, x_{j}, W_{i j}\right)
\end{gathered}
$$

Complete dynamics

$$
\begin{gathered}
N(N+1) \gg 1 \\
\dot{x_{i}}=F\left(x_{i}\right)+G\left(x_{i}, \sum_{j=1}^{N} W_{i j} x_{j}\right) \\
\dot{W}_{i j}=H\left(x_{i}, x_{j}, W_{i j}\right)
\end{gathered}
$$

Why dimension reduction?

Dimension reduction allows to ...
find insightful observables $\mathcal{X}_{\mu}, \mathcal{W}_{\mu \nu}$ (e.g., synchro, global activity, ...);

Why dimension reduction?

Dimension reduction allows to ...
\bigcirc find insightful observables $\mathcal{X}_{\mu}, \mathcal{W}_{\mu \nu}$ (e.g., synchro, global activity, ...);

- reduce computational cost;

Dimension reduction allows to ...find insightful observables $\mathcal{X}_{\mu}, \mathcal{W}_{\mu \nu}$ (e.g., synchro, global activity, ...);reduce computational cost;get analytical results on resilience :

Dimension reduction allows to ...find insightful observables $\mathcal{X}_{\mu}, \mathcal{W}_{\mu \nu}$ (e.g., synchro, global activity, ...);reduce computational cost;get analytical results on resilience :

Dimension reduction allows to ...find insightful observables $\mathcal{X}_{\mu}, \mathcal{W}_{\mu \nu}$ (e.g., synchro, global activity, ...);reduce computational cost;get analytical results on resilience :

Dimension reduction allows to ...find insightful observables $\mathcal{X}_{\mu}, \mathcal{W}_{\mu \nu}$ (e.g., synchro, global activity, ...);reduce computational cost;get analytical results on resilience :

Complete dynamics

$$
\begin{gathered}
N(N+1) \gg 1 \\
\dot{x_{i}}=F\left(x_{i}\right)+G\left(x_{i}, \sum_{j=1}^{N} W_{i j} x_{j}\right) \\
\dot{W}_{i j}=H\left(x_{i}, x_{j}, W_{i j}\right)
\end{gathered}
$$

\mathcal{W}

Complete dynamics

$$
\begin{gathered}
N(N+1) \gg 1 \\
\dot{x_{i}}=F\left(x_{i}\right)+G\left(x_{i}, \sum_{j=1}^{N} W_{i j} x_{j}\right) \\
\dot{W}_{i j}=H\left(x_{i}, x_{j}, W_{i j}\right)
\end{gathered}
$$

\mathcal{W}

We found $n+n^{2}$ linear observables (functions, measures,...)

$$
\begin{aligned}
\mathcal{X}_{\mu} & =\sum_{i=1}^{N} M_{\mu i} x_{i}, \\
\mathcal{W}_{\mu \nu} & =\sum_{i, j=1}^{N} M_{\mu i} W_{i j} M_{j \nu}^{\top}
\end{aligned}
$$

We found $n+n^{2}$ linear observables (functions, measures,...)

$$
\begin{aligned}
\mathcal{X}_{\mu} & =\sum_{i=1}^{N} M_{\mu i} x_{i}, \\
\mathcal{W}_{\mu \nu} & =\sum_{i, j=1}^{N} M_{\mu i} W_{i j} M_{j \nu}^{\top}
\end{aligned}
$$

that both depend on only one $n \times N$ matrix M.

$$
M \text { is a reduction matrix to be determined. }
$$

Hypothesis

Important neurons contribute strongly to the global activity

Hypothesis

Important neurons contribute strongly to the global activity

Example:Important paperImportant review

Authority centrality

Hub centrality

Hypothesis

Important neurons contribute strongly to the global activity

Hub centrality

Orthogonal $N \times N$ matrix

Diagonal $N \times N$ matrix
Orthogonal $N \times N$ matrix

Hub centrality
\approx V^{\top}

Authority

Hub centrality
$n \times N$
Optimal low-rank approximation ! (Eckart-Young theorem)

Reduction matrix

Reduction matrix Linear observables

$M=\underbrace{\text { Hub centrality }^{y}}_{n \times N} \quad \Rightarrow \quad \begin{aligned} \mathcal{X} & =M \mathbf{x} \\ \mathcal{W} & =M W M^{\top}\end{aligned}$

Hub centrality
V^{\top}

Orthogonal $N \times N$ matrix

Hub centrality $\tilde{\Sigma}$
$n \times n$

$$
n \times N
$$

Optimal low-rank approximation ! (Eckart-Young theorem)

Reduction matrix Linear observables
$M=\quad$ Hub centrality $\quad 2$

$$
\begin{aligned}
\mathcal{X} & =M \mathbf{x} \\
\mathcal{W} & =M W M^{\top}
\end{aligned}
$$

Reduced dynamics

$$
\begin{aligned}
& \dot{\mathcal{X}}_{\mu} \approx F\left(\mathcal{X}_{\mu}\right)+G\left(\mathcal{X}_{\mu}, \sum_{\nu=1}^{n} \mathcal{W}_{\mu \nu} \mathcal{X}_{\nu}\right) \\
& \dot{\mathcal{W}}_{\mu \nu} \approx H\left(\mathcal{X}_{\mu}, \mathcal{X}_{\nu}, \mathcal{W}_{\mu \nu}\right)
\end{aligned}
$$

Reduced dynamics :

$$
\begin{aligned}
& \dot{\mathcal{X}}_{\mu} \approx F\left(\mathcal{X}_{\mu}\right)+G\left(\mathcal{X}_{\mu}, \sum_{\nu=1}^{n} \mathcal{W}_{\mu \nu} \mathcal{X}_{\nu}\right) \\
& \dot{\mathcal{W}}_{\mu \nu} \approx H\left(\mathcal{X}_{\mu}, \mathcal{X}_{\nu}, \mathcal{W}_{\mu \nu}\right)
\end{aligned}
$$

1. Get equilibrium points for all $\mu, \nu: \mathcal{X}_{\mu}^{*}, \mathcal{W}_{\mu \nu}^{*}$

Reduced dynamics :

$$
\begin{aligned}
\dot{\mathcal{X}}_{\mu} & \approx F\left(\mathcal{X}_{\mu}\right)+G\left(\mathcal{X}_{\mu}, \sum_{\nu=1}^{n} \mathcal{W}_{\mu \nu} \mathcal{X}_{\nu}\right) \\
\dot{\mathcal{W}}_{\mu \nu} & \approx H\left(\mathcal{X}_{\mu}, \mathcal{X}_{\nu}, \mathcal{W}_{\mu \nu}\right)
\end{aligned}
$$

1. Get equilibrium points for all $\mu, \nu: \mathcal{X}_{\mu}^{*}, \mathcal{W}_{\mu \nu}^{*}$
2. Combine these equilibrium points to get the global activities and weights :

$$
\begin{aligned}
\mathcal{X}^{*} & =a_{1} \mathcal{X}_{1}^{*}+\ldots+a_{n} \mathcal{X}_{n}^{*} \\
\mathcal{W}^{*} & =b_{11} \mathcal{W}_{11}^{*}+b_{12} \mathcal{W}_{12}^{*}+\ldots+b_{n n} \mathcal{W}_{n n}^{*}
\end{aligned}
$$

Reduced dynamics: $\quad \dot{\mathcal{X}}_{\mu} \approx F\left(\mathcal{X}_{\mu}\right)+G\left(\mathcal{X}_{\mu}, \sum_{\nu=1}^{n} \mathcal{W}_{\mu \nu} \mathcal{X}_{\nu}\right)$

$$
\dot{\mathcal{W}}_{\mu \nu} \approx H\left(\mathcal{X}_{\mu}, \mathcal{X}_{\nu}, \mathcal{W}_{\mu \nu}\right)
$$

1. Get equilibrium points for all $\mu, \nu: \mathcal{X}_{\mu}^{*}, \mathcal{W}_{\mu \nu}^{*}$
2. Combine these equilibrium points to get the global activities and weights :

$$
\begin{aligned}
\mathcal{X}^{*} & =a_{1} \mathcal{X}_{1}^{*}+\ldots+a_{n} \mathcal{X}_{n}^{*} \\
\mathcal{W}^{*} & =b_{11} \mathcal{W}_{11}^{*}+b_{12} \mathcal{W}_{12}^{*}+\ldots+b_{n n} \mathcal{W}_{n n}^{*}
\end{aligned}
$$

3. Plot resilience curves \mathcal{X}^{*} vs. \mathcal{W}^{*}.

Activity dynamics on a real network without plasticity

$$
W \quad \begin{gathered}
\text { C. elegans } \\
N=279 \\
r=273
\end{gathered}
$$

Activity dynamics on a real network without plasticity

Activity dynamics on a real network without plasticity

Activity dynamics on a real network without plasticity

Activity dynamics on a real network without plasticity

Activity dynamics on an Erdős-Rényi network with plasticity

Complete dynamics: 10200 ODEs
Reduced dynamics: 3 ODEs

Activity dynamics on an Erdős-Rényi network with plasticity

Complete dynamics: 10200 ODEs

Reduced dynamics: 3 ODEs

- No plasticity

Complete dynamics: 10200 ODEs

Reduced dynamics: 3 ODEs

- No plasticity

Complete dynamics

Complete dynamics: 10200 ODEs

Reduced dynamics: 3 ODEs

- No plasticity

Complete dynamics

- Reduced dynamics \Longleftarrow

Complete dynamics : 10200 ODEs

Reduced dynamics: 3 ODEs

- No plasticity
- Complete dynamics
- Reduced dynamics

Complete dynamics : 10200 ODEs

Reduced dynamics: 3 ODEs

- No plasticity
- Complete dynamics
- Reduced dynamics

Complete dynamics: 10200 ODEs

Reduced dynamics: 3 ODEs

- No plasticity
$\left.\begin{array}{l}\text { Complete } \\ \text { dynamics } \\ \text { Reduced } \\ \text { dynamics }\end{array}\right)$

Complete dynamics: 10200 ODEs

Reduced dynamics: 3 ODEs

- No plasticity
- Complete
- Reduced
dynamics

Complete dynamics : 10200 ODEs

Reduced dynamics: 3 ODEs

- No plasticity
- Complete
- Reduced
dynamics

Next steps

- Treat plasticity + real networks;
- Consider inhibitors ($W_{i j}<0$) ;
\bigcirc Use nonlinear observables;
- Get more profound insights on resilience.

Take home messages

- Reduced dynamics are valuable to disentangle dynamics with plasticity;
- SVD is a powerful and interpretable tool for dimension reduction of dynamics.

Thank you for your attention!
Thanks to the organizers! Questions?

5iam. 2921

Conference on
Applications of Dynamical Systems
V. Thibeault et al., Phys. Rev. Res. (2020)
E. Laurence et al., Phys. Rev. X (2019)
J. Jiang et al., PNAS (2018)
J. Gao et al., Nature (2016)

Coauthors : M.Vegué, A. Allard, P. Desrosiers
Contact : vincent.thibeault.1@ulaval.ca
Website: https://dynamicalab.github.io/

Fonds de recherche
Nature et
technologies

Calcul Québec

In this model, F is linear and G is a sigmoid function :

$$
\begin{equation*}
\tau_{x} \dot{x}_{i}=-x_{i}+1 /\left(1+e^{-a\left(y_{i}-b\right)}\right), \quad \text { with } \quad y_{i}=\sum_{j=1}^{N} W_{i j} x_{j} \tag{1}
\end{equation*}
$$$x_{i}$: Firing rate of neuron or brain region $i$$\tau_{x}$: Time scale of the firing ratea : Steepness of the activation function

b : Firing rate threshold

The Wilson-Cowan model is described by the set of differential equations

$$
\dot{x}_{i}=-\alpha x_{i}+G\left(\sum_{j=1}^{N} W_{i j} x_{j}\right), \quad i \in\{1, \ldots, N\},
$$

where G is the sigmoid function. By defining $x=\left(\begin{array}{lll}x_{1} & \ldots & x_{N}\end{array}\right)^{\top}$, we have the equivalent form

$$
\begin{equation*}
\dot{x}=-\alpha x+G(W x) . \tag{2}
\end{equation*}
$$

The reduced dynamics for $X=M x$ is

$$
\begin{equation*}
\dot{X}=-\alpha X+M G(L X), \tag{3}
\end{equation*}
$$

where we have rank-factorized W as $L M$.

This model is more complex :

$$
\begin{align*}
\tau_{x} \dot{x}_{i} & =-\alpha_{i} x_{i}+\beta_{i} /\left(1+e^{-a\left(y_{i}-b\right)}\right), \quad \text { with } \quad y_{i}=\sum_{j=1}^{N} W_{i j} x_{j}+\gamma_{i} \tag{4}\\
\tau_{w} \dot{W}_{i j} & =D_{i j} x_{i} x_{j}\left(x_{i}-\theta_{i}\right)-\varepsilon W_{i j} \quad \text { with } \quad W_{i j}(0)=d_{i j} D_{i j} \tag{5}\\
\tau_{\theta} \dot{\theta}_{i} & =x_{i}^{2}-\theta_{i} . \tag{6}
\end{align*}
$$

θ_{i} : modify the threshold above (below) which the synapse potentiates (depresses).
$\alpha_{i}, \beta_{i}, \gamma_{i}$: distinguish the dynamical behavior of each node i.
$D=\left(D_{i j}\right)_{i, j=1}^{N}$: structural backbone, $D_{i j}>0$ if the presynaptic neuron j excites the postsynaptic neuron $i, D_{i j}<0$ if the presynaptic neuron j inhibits the postsynaptic neuron i, and $D_{i j}=0$ if no edge exist between neurons i and j.

The reduced dynamics is described by the differential equations

$$
\begin{align*}
\dot{\mathcal{X}}_{\mu} & \approx F\left(\mathcal{X}_{\mu} ; \alpha_{\mu}\right)+G\left(\mathcal{X}_{\mu}, \mathcal{Y}_{\mu} ; \beta_{\mu}\right) \quad \text { with } \quad \mathcal{Y}_{\mu}=\sum_{\rho=1}^{n} \mathcal{W}_{\mu \rho} \mathcal{X}_{\rho}+\gamma_{\mu} \tag{7}\\
\dot{\mathcal{W}}_{\mu \nu} & \approx \mathcal{D}_{\mu \nu} H\left(\mathcal{X}_{\mu}, \mathcal{X}_{\nu}, \Theta_{\mu}\right)-\mathcal{W}_{\mu \nu} J\left(\mathcal{X}_{\mu}, \mathcal{X}_{\nu}\right) \tag{8}\\
\dot{\Theta}_{\mu} & \approx T\left(\mathcal{X}_{\mu}, \Theta_{\mu}\right) \tag{9}
\end{align*}
$$

where$\xi_{\mu}=\sum_{i} \hat{M}_{\mu i} \xi_{i}$ with $\xi \in\{\alpha, \beta, \gamma\}$

- $\mathcal{D}_{\mu \nu}=\sum_{i, j=1}^{N} M_{\mu i} D_{i j} M_{j \nu}^{\top}$

○ $\mathcal{W}_{\mu \nu}(0)=\mathcal{D}_{\mu \nu}$ for all $\mu, \nu \in\{1, \ldots, n\}$

