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Kuramoto model on graph and mathematical contributions

θ̇j = ωj + σ

N∑
k=1

Wjk sin(θk − θj) , j ∈ {1, ..., N}

θj(t) : j-th phase at time t
ωj : j-th natural frequency
W : real weight matrix
σ : coupling constant
N : finite number of oscillators

1. We obtain the necessary&sufficient conditions on W for partial integrability.
2. We generalize Watanabe-Strogatz reduction to more heterogeneous graphs.
3. We demystify the reducibility with Lie symmetries and Koopman theory.
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Watanabe, Strogatz, 1994 : Identical oscillators...non-trivial, but partially integrable !

With identical frequencies and a complete graph (Wjk = 1 for all j, k),

θ̇j = ω + σ

N∑
k=1

sin(θk − θj) , j ∈ {1, ..., N}

# N − 3 integrals of motion (functions of θ1, ..., θN with null time derivative) ;
# Exactly reducible to 3 differential equations using

tan((θj(t)−Θ(t))/2) =

√
1 + γ(t)

1− γ(t)
tan((ψj −Ψ(t))/2) (WS transformation)
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Goebel, 1995 : Riccati equations and Möbius transformation

1. Change of coordinates : zj(t) = eiθj(t)

2. Kuramoto model as a system of Riccati equations :

żj(t) = i(f(t)zj(t)
2 + ωzj(t) + f̄(t)) with f(t) =

iσ

2

N∑
k=1

z̄k(t) , ∀j

3. Solutions are Möbius transformations :

zj(t) =
yj + F (t)

yj +G(t)
H(t) , ∀j .
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Marvel, Mirollo, Strogatz, 2009 : Automorphisms of the disk and cross ratios

Not any Mobius transformation : automorphisms of the disk (equivalent to WS)

The integrals of motions are cross-ratios (to remember ! ) :

cabcd(z) = (za, zb ; zc, zd) =
(zc − za)(zd − zb)

(zc − zb)(zd − za)
,

d

dt
cabcd(z(t)) = 0 .
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θ̇j = ωj + σ

N∑
k=1

Wjk sin(θk − θj) , j ∈ {1, ..., N}

Does the Watanabe-Strogatz approach fails when the graph is not complete?
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Short summary of existing results

:
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What are the precise conditions on W so that a cross-ratio cabcd is conserved?
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Theorem

Let the Kuramoto model on a general graph with real weight matrix W be

θ̇j = ωj + σ

N∑
k=1

Wjk sin(θk − θj) , j ∈ {1, ..., N} .

A cross-ratio cabcd is an integral of motion if and only if vertices a,b,c,d have the same

1. natural frequencies, i.e., ωa = ωb = ωc = ωd;

2. incoming edges from vertices other than {a, b, c, d}, i.e.,

Wak =Wbk =Wck =Wdk, ∀k ∈ {1, ..., N} \ {a, b, c, d};

3. outgoing edges towards {a, b, c, d}, i.e.,

Wba =Wca =Wda ,

Wab =Wcb =Wdb ,

Wac =Wbc =Wdc ,

Wad =Wbd =Wcd .
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Condition 3

Wba =Wca =Wda ,

Wab =Wcb =Wdb ,

Wac =Wbc =Wdc ,

Wad =Wbd =Wcd ,

establishes all motifs of 4 vertices related to one integral of motion cabcd.

* Always under the assumption that ωa = ωb = ωc = ωd (condition 1) is satisfied.
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Condition 2
Wak =Wbk =Wck =Wdk, ∀k ∈ {1, ..., N} \ {a, b, c, d};

constrains how to connect the motifs to form a larger network.
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Condition 2 becomes
W1k =W2k =W3k =W4k, for k = 8, 9 /∈ {1, 2, 3, 4};

and constrains the connections from vertices {8, 9} to vertices {1, 2, 3, 4}.
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Condition 2 becomes
W1k =W2k =W3k =W4k, for k = 8, 9 /∈ {1, 2, 3, 4};

and constrains the connections from vertices {8, 9} to vertices {1, 2, 3, 4}.

Generally, the oscillators have very heterogeneous out-degrees.



12

:

N − n integrals of motion
n ∈ {3, ..., N}

Special class of networks :
# Heterogeneous blocks ;

# Various motifs (not only stars) ;
# Unrestricted block ;
# Weighted, directed, signed.
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Generalization of the Watanabe-Strogatz reduction in one picture

Reduced system of n = #P0 + 3m real equations.
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If W contains m partially integrable parts, then in general 1 the number of reduced
equation is thus

n = rank(W ) + 2m.

∴ A low-rank hypothesis on W implies that the dynamics live in a low-dimensional space.

1 ...under very mild assumptions...
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Why it works? Lie symmetry group and Koopman theory (teaser)

We have one way to show that
there is a Lie symmetry group

acting behind the scenes.

Integrals of motions : U cabcd = 0

Symmetry condition : [U , v] = 0
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Take-home message and acknowledgments
# We proved the necessary and sufficient conditions for partial integrability in

the Kuramoto model on graph ;

# We generalized Watanabe-Strogatz reduction and showed how to design the
graph to have an arbitrary number of integrals of motion from 0 to N − 3.

Partial integrability is not restricted to identically connected Kuramoto oscillators !

References : Pikovsky, Rosenblum, Phys. Rev. Lett., 2008
Marvel, Mirollo, Strogatz, Chaos, 2009
Lohe, J. Math. Phys., 2019
Thibeault, Allard, Desrosiers, Nat. Phys., 2024

Contact : vincent.thibeault.1@ulaval.ca
Thanks to my collaborators and thank you for your attention ! Questions?
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Conditions such that there is a maximal number N − 3 of integrals of motion?

Corollary (Informal)
The maximal number of integrals of motion is attained if (1) the frequencies are identical
and (2) the weight matrix has the form
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Graph automorphism?

Graph automorphisms require permuting the rows AND the columns of the
weight matrix W and preserve W , which is not the case in general.
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About self-loops

The absence of restriction on self-loops in the theorem is a consequence of the
sinusoidal interaction :

dθj
dt

= ωj + σ

N∑
k=1

Wjk sin(θk − θj),

implying that the self-loops have no impact on the dynamics.
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Generalization of Watanabe-Strogatz reduction

1. Make the change of variable zj = eiθj :

żj = iωjzj + pj,1 − pj,−1z
2
j , pj,n =

σ

2

N∑
k=1

Wjkz
n
k .

2. Partition the graph as P = {P0, P1, ..., Pm} where
◦ P0 : non-partially integrable part ;
◦ P1, ..., Pm : partially integrable parts .

3. Apply the conditions of the theorem for P1, ..., Pm ;

4. Apply different Möbius transformations for each P1, ..., Pm ;

5. Obtain the reduced system;
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Reduced dynamics

Żµ = iΩµZµ + p1,µ − p−1,µZ
2
µ , µ ∈ {1, ...,m}

φ̇µ = Ωµ − 2 Im [p−1,µZµ]

żj = iωjzj +
σ

2

∑
k∈P0

Wjk(zk − z2j z̄k) +
σ

2

∑
k∈PI

Wjk[ζs(k)k − z2j ζs(k)k] , j ∈ P0

where

pn,µ =
σ

2

∑
k∈P0

Wµkz
n
k +

σ

2

∑
k∈PI

Wµkζ
n
µk and ζµℓ =MZµ,φµ(bℓ) .

There are

n = #P0 + 3m

real equations in the reduced system.


