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Kuramoto model on graph and mathematical contributions
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Kuramoto model on graph and mathematical contributions

N
9]' ZWj—FO'ZijSin(@k—Q]'), je{l,...N}

k=1
6;(t) : j-th phase at time ¢
wj : j-th natural frequency
W : real weight matrix
o : coupling constant
N : finite number of oscillators

1. We obtain the necessary&sufficient conditions on W for partial integrability.
2. We generalize Watanabe-Strogatz reduction to more heterogeneous graphs.
3. We demystify the reducibility with Lie symmetries and Koopman theory.
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Watanabe, Strogatz, 1994 : Identical oscillators...non-trivial, but partially integrable!

With identical frequencies and a complete graph (W;;, = 1 for all j, k),

N
éj:w+aZSin(9k—9j), Jje{l,..,N}
k=1

O N — 3 integrals of motion (functions of 6, ..., 0y with null time derivative);
O Exactly reducible to 3 differential equations using

1+ 7(t)
1—~(t)

tan((6;(t) — ©(t))/2) = tan((¢; — ¥(t))/2) (WS transformation)
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Goebel, 1995 : Riccati equations and Mdébius transformation

1. Change of coordinates : z;(t) = ¢%(!)

2. Kuramoto model as a system of Riccati equations :

2i(t) = i(f(1)z(1)* + wz;(t) + f(1)) with f(t) =

3. Solutions are Mobius transformations :

_ Yt E®) 4

40 = e
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Marvel, Mirollo, Strogatz, 2009 : Automorphisms of the disk and cross ratios

Not any Mobius transformation : automorphisms of the disk (equivalent to WS)

z-plane w-plane

oD




Marvel, Mirollo, Strogatz, 2009 : Automorphisms of the disk and cross ratios

Not any Mobius transformation : automorphisms of the disk (equivalent to WS)

z-plane w-plane
oD @)
D D
The integrals of motions are cross-ratios (to remember! ) :
Ze — 2a)(2d — 2 d
Cuted(2) = (s 70 20) = o ZEZ 2L ) = o0,

(ze — 2b) (24 — 24) dt



N
0; =wj+0Y Wisin(0y —0;), j € {1,..,N}
k=1

Does the Watanabe-Strogatz approach fails when the graph is not complete ?
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Consider N identical phase oscillators
6; = f + gcos@; + hsind;, j=1,--,N,
The key restriction is that f, g, » must not depend on the subscript j.
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Josephson junction arrays. The key is that f and g must be
the same for all oscillators, and thus do not depend on the
index j. We call such systems sinusoidally coupled because
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the network topology must be complete, i.e., we allow only global connectivity.
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Understanding the dynamics of biological
and neural oscillator networks through exact
mean-field reductions: a review
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The Ott-Antonsen reduction for the mean-field limit allows for the oscillators to be
nonidentical. By contrast, the Watanabe-Strogatz reduction of finite networks requires

oscillators to be identical. Neither of these approaches applies to finite networks of non-
identical oscillators, and understanding such networks remains a challenge. Direct nu-
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What are the precise conditions on W so that a cross-ratio ¢4 is conserved ?
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THEOREM

Let the Kuramoto model on a general graph with real weight matrix W be
N

éj:wj+UZijsin(9k—9j), je{1,..,N}.
k=1
A cross-ratio cqpeq is an integral of motion if and only if vertices a,b,c,d have the same

1. natural frequencies, i.e., w, = Wy = W = Wg;

2. incoming edges from vertices other than {a,b, c,d}, i.e.,
Wate = Wi = Wep = Wk, Vk e {1,..,N}\{a,b,c, d};
3. outgoing edges towards {a,b,c,d}, i.e.,

Wba - Wca — Wda7 Wac - Wbc - Wdc7
Wap = Wep = Wep, Waa = Wyg = Weq .
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establishes all motifs of 4 vertices related to one integral of motion c,pcq-
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* Always under the assumption that w, = wy = we = wq (condition 1) is satisfied.
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Condition 2
War = Wi = Wer = W, Vk € {1, ,N} \ {a, b,c, d};

constrains how to connect the motifs to form a larger network.

@)

W5 = Wg = Wy = Wg = Wy Arbitrary frequencies
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Condition 2 becomes
. fork=28,9¢{1,23,4};

and constrains the connections from vertices {8, 9} to vertices {1,2,3,4}.
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Condition 2 becomes
. fork=28,9¢{1,23,4};

and constrains the connections from vertices {8, 9} to vertices {1, 2, 3,4}.

o o ©) ® O o

@) O

@ @ There is NO restriction
on such outgoing edges.

Condition 2 is
satisfied for ¢1934.

Generally, the oscillators have very heterogeneous out-degrees.
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Watanabe, Strogatz, 1994 Pikovsky, Rosenblum, 2008 Vlasov, Zou, Pereira, 2015 Lohe, 2017

W = W = W = ?8%0 W =

#mtegrals: N_3 N —3m (N-1)-3 N -3
of motion

Most general case from the theorem

Special class of networks :
O Heterogeneous blocks;
O Various motifs (not only stars);
O Unrestricted block;
O Weighted, directed, signed.

N — n integrals of motion
ne{3,...,N}



Generalization of the Watanabe-Strogatz reduction in one picture

Partially :
integrable |
NV =

Partial integration
through four
WS transformations

Not”

) fintegrable' :
—
Kuramoto dynamics Exact reduced dynamics
(500 ODEs) (50 ODEs)

Reduced system of n = # Py + 3m real equations.
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If W contains m partially integrable parts, then in general ! the number of reduced
equation is thus

n = rank(W) + 2m..

! ..under very mild assumptions...



If W contains m partially integrable parts, then in general ! the number of reduced
equation is thus

n = rank(W) + 2m..

". A low-rank hypothesis on W implies that the dynamics live in a low-dimensional space.
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Solution ()

Z1 (f)

Transformed solution
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Why it works? Lie symmetry group and Koopman theory (teaser)

Solution (t)

=) aa(t)

Zl(f)

z1(t)

Transformed solution

We have one way to show that
there is a Lie symmetry group
acting behind the scenes.
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Why it works? Lie symmetry group and Koopman theory (teaser)

Solution ()

= alt)

Zl(f)

Z4(1)

Transformed solution

We have one way to show that
there is a Lie symmetry group
acting behind the scenes.

Finite-dimensional space

Observable
feo

Integrals of motions : U cgpeq = 0

Symmetry condition : [/, v] = 0

Measure

15
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O We generalized Watanabe-Strogatz reduction and showed how to design the
graph to have an arbitrary number of integrals of motion from o to N — 3.
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Conditions such that there is a maximal number N — 3 of integrals of motion?

COROLLARY (INFORMAL)

The maximal number of integrals of motion is attained if (1) the frequencies are identical
and (2) the weight matrix has the form

Lohe, 2017




Graph automorphism?

Graph automorphisms require permuting the rows AND the columns of the
weight matrix W and preserve W, which is not the case in general.



About self-loops

The absence of restriction on self-loops in the theorem is a consequence of the
sinusoidal interaction :

do,; E
ditj = w; _,_J;ijsmwk - 9])7

implying that the self-loops have no impact on the dynamics.



Generalization of Watanabe-Strogatz reduction

1. Make the change of variable z; = ¢'% :

N
-._'.,+._.2 o _ g W 2™
Zj = wWj%Zj T Pj1 — Pj—1%5 Pjn = 9 FLEIE
k=1

N

. Partition the graph as P = { P, P, ..., P, } where
o Py :non-partially integrable part;
o Pp,..., P, : partially integrable parts.

. Apply the conditions of the theorem for P, ..., P, ;

W

. Apply different Mobius transformations for each P, ..., P, ;

~

5. Obtain the reduced system;



Reduced dynamics

Zu :iQuZM—i—pLu—p_l,MZﬁ, pe{l,...,m}

Ou =y fQIm[p 1,2yl

Zj = Wiz + Z Wik(zk — 2371) Z Wikl — 27 Cagiyr] JE P
kePo kePI

where

g ag
= T Wt + 3 Y Wl and G = My, (),
kePy keP;

There are
n = #Po + 3m

real equations in the reduced system.



