NETSCI 2024, QUÉBEC

REVISITING THE KURAMOTO MODEL ON GRAPH: INTEGRALS OF MOTION, MOTIFS, AND SYMMETRIES

Vincent Thibeault, Benjamin Claveau, Antoine Allard, Patrick Desrosiers

20 juin 2024

Département de physique, de génie physique, et d'optique Université Laval, Québec, Canada

$$\dot{\theta}_j = \omega_j + \sigma \sum_{k=1}^N W_{jk} \sin(\theta_k - \theta_j), \qquad j \in \{1, ..., N\}$$

- $\theta_j(t)$: *j*-th phase at time *t* ω_j : *j*-th natural frequency *W*: **real weight matrix**
- σ : coupling constant
- ${\cal N}$: finite number of oscillators

$$\dot{\theta}_j = \omega_j + \sigma \sum_{k=1}^N W_{jk} \sin(\theta_k - \theta_j), \qquad j \in \{1, ..., N\}$$

- $\theta_j(t) : j$ -th phase at time t $\omega_j : j$ -th natural frequency W : real weight matrix σ : coupling constant
- N: finite number of oscillators

1. We obtain the **necessary&sufficient** conditions on *W* for **partial integrability**.

$$\dot{\theta}_j = \omega_j + \sigma \sum_{k=1}^N W_{jk} \sin(\theta_k - \theta_j), \qquad j \in \{1, ..., N\}$$

 $\theta_j(t)$: *j*-th phase at time *t* ω_j : *j*-th natural frequency *W* : **real weight matrix** σ : coupling constant *N* : finite number of oscillators

We obtain the necessary&sufficient conditions on *W* for partial integrability.
 We generalize Watanabe-Strogatz reduction to more heterogeneous graphs.

$$\dot{\theta}_j = \omega_j + \sigma \sum_{k=1}^N W_{jk} \sin(\theta_k - \theta_j), \qquad j \in \{1, ..., N\}$$

 $\theta_j(t) : j$ -th phase at time t $\omega_j : j$ -th natural frequency W : **real weight matrix** σ : coupling constant N : finite number of oscillators

- 1. We obtain the **necessary** & sufficient conditions on W for partial integrability.
- 2. We generalize Watanabe-Strogatz reduction to more heterogeneous graphs.
- 3. We demystify the reducibility with Lie symmetries and Koopman theory.

Watanabe, Strogatz, 1994 : Identical oscillators...non-trivial, but partially integrable !

With identical frequencies and a complete graph ($W_{jk} = 1$ for all j, k),

$$\dot{\theta}_j = \omega + \sigma \sum_{k=1}^N \sin(\theta_k - \theta_j), \qquad j \in \{1, ..., N\}$$

Watanabe, Strogatz, 1994 : Identical oscillators...non-trivial, but partially integrable !

With identical frequencies and a complete graph ($W_{jk} = 1$ for all j, k),

$$\dot{\theta}_j = \omega + \sigma \sum_{k=1}^N \sin(\theta_k - \theta_j), \qquad j \in \{1, ..., N\}$$

 \bigcirc *N* - 3 integrals of motion (functions of $\theta_1, ..., \theta_N$ with null time derivative);

Watanabe, Strogatz, 1994 : Identical oscillators...non-trivial, but partially integrable !

With identical frequencies and a complete graph ($W_{jk} = 1$ for all j, k),

$$\dot{\theta}_j = \omega + \sigma \sum_{k=1}^N \sin(\theta_k - \theta_j), \qquad j \in \{1, ..., N\}$$

○ N - 3 integrals of motion (functions of $\theta_1, ..., \theta_N$ with null time derivative); ○ *Exactly* reducible to 3 differential equations using

$$\tan((\theta_j(t) - \Theta(t))/2) = \sqrt{\frac{1 + \gamma(t)}{1 - \gamma(t)}} \tan((\psi_j - \Psi(t))/2) \quad \text{(WS transformation)}$$

Goebel, 1995 : Riccati equations and Möbius transformation

1. Change of coordinates : $z_j(t) = e^{i\theta_j(t)}$

Goebel, 1995 : Riccati equations and Möbius transformation

- 1. Change of coordinates : $z_j(t) = e^{i\theta_j(t)}$
- 2. Kuramoto model as a system of Riccati equations :

$$\dot{z}_j(t) = i(f(t)z_j(t)^2 + \omega z_j(t) + \bar{f}(t)) \quad \text{with} \quad f(t) = \frac{i\sigma}{2}\sum_{k=1}^N \bar{z}_k(t) \,, \qquad \forall j$$

Goebel, 1995 : Riccati equations and Möbius transformation

- 1. Change of coordinates : $z_j(t) = e^{i\theta_j(t)}$
- 2. Kuramoto model as a system of Riccati equations :

$$\dot{z}_j(t) = i(f(t)z_j(t)^2 + \omega z_j(t) + \bar{f}(t))$$
 with $f(t) = \frac{i\sigma}{2} \sum_{k=1}^N \bar{z}_k(t)$, $\forall j$

3. Solutions are Möbius transformations :

$$z_j(t) = \frac{y_j + F(t)}{y_j + G(t)} H(t), \qquad \forall j.$$

Marvel, Mirollo, Strogatz, 2009 : Automorphisms of the disk and cross ratios

Not any Mobius transformation : automorphisms of the disk (equivalent to WS)

Marvel, Mirollo, Strogatz, 2009 : Automorphisms of the disk and cross ratios

Not any Mobius transformation : automorphisms of the disk (equivalent to WS)

The integrals of motions are **cross-ratios** (to remember!):

$$c_{abcd}(z) = (z_a, z_b; z_c, z_d) = \frac{(z_c - z_a)(z_d - z_b)}{(z_c - z_b)(z_d - z_a)}, \qquad \frac{\mathrm{d}}{\mathrm{d}t}c_{abcd}(z(t)) = 0.$$

$$\dot{\theta}_j = \omega_j + \sigma \sum_{k=1}^N W_{jk} \sin(\theta_k - \theta_j), \ j \in \{1, ..., N\}$$

Does the Watanabe-Strogatz approach fails when the graph is not complete?

1994	2009
Physica D 74 (1994) 197–253	CHAOS 19, 043104 (2009)
Constants of motion for superconducting Josephson arrays Shinya Watanabe, Steven H. Strogatz Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Received 10 December 1993; revised 14 February 1994; accepted 14 February 1994	Identical phase oscillators with global sinusoidal coupling evolve by Möbius group action Seth A. Marvel, ^{1,47} Renato E. Mirollo ² and Steven H. Strogatz ¹ ¹ Center for Applied Mathematics, Cornel University, Itakas, New York 14835, USA ² Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02167, USA
Consider N identical phase oscillators $\dot{\theta}_j = f + g \cos \theta_j + h \sin \theta_j, j = 1, \dots, N,$ The key restriction is that f, g, h must not depend on the subscript j .	Josephson junction arrays. The key is that f and g must be the same for all oscillators, and thus do <i>not</i> depend on the index j . We call such systems <i>sinusoidally coupled</i> because
2019	2020
Systems of matrix Riccati equations, linear fractional transformations, partial	REVIEW Open Access
integrability and synchronization	and neural oscillator networks through exact
Cite as: J. Math. Phys. 60, 072701 (2019); https://doi.org/10.1063/1.5085248 Submitted: 11 December 2018 . Accepted: 22 June 2019 . Published Online: 19 July 2019	and neural oscillator networks through exact mean-field reductions: a review Christian Bick ^{13,03} , Marc Goodfellow ^{1,04} , Carlo R. Lang ¹ , and Erik A. Martens ^{10,11}

Short summary of existing results

Short summary of existing results

What are the precise conditions on W so that a cross-ratio c_{abcd} is conserved?

Theorem

Let the Kuramoto model on a general graph with real weight matrix W be $\dot{\theta}_j = \omega_j + \sigma \sum_{k=1}^N W_{jk} \sin(\theta_k - \theta_j), \qquad j \in \{1, ..., N\}.$

A cross-ratio c_{abcd} is an integral of motion if and only if vertices a,b,c,d have the same

THEOREM

Let the Kuramoto model on a general graph with real weight matrix W be

$$\dot{\theta}_j = \omega_j + \sigma \sum_{k=1}^N W_{jk} \sin(\theta_k - \theta_j), \qquad j \in \{1, ..., N\}$$

A cross-ratio c_{abcd} is an integral of motion if and only if vertices a,b,c,d have the same

1. *natural frequencies, i.e.*, $\omega_a = \omega_b = \omega_c = \omega_d$;

THEOREM

Let the Kuramoto model on a general graph with real weight matrix W be

$$\dot{\theta}_j = \omega_j + \sigma \sum_{k=1}^N W_{jk} \sin(\theta_k - \theta_j), \qquad j \in \{1, ..., N\}.$$

A cross-ratio c_{abcd} is an integral of motion if and only if vertices a,b,c,d have the same

- 1. *natural frequencies, i.e.,* $\omega_a = \omega_b = \omega_c = \omega_d$;
- **2**. *incoming edges* from vertices other than $\{a, b, c, d\}$, *i.e.*,

$$W_{ak} = W_{bk} = W_{ck} = W_{dk}, \quad \forall k \in \{1, ..., N\} \setminus \{a, b, c, d\};$$

THEOREM

Let the Kuramoto model on a general graph with real weight matrix W be

$$\dot{\theta}_j = \omega_j + \sigma \sum_{k=1}^N W_{jk} \sin(\theta_k - \theta_j), \qquad j \in \{1, ..., N\}.$$

A cross-ratio c_{abcd} is an integral of motion if and only if vertices a,b,c,d have the same

- 1. *natural frequencies, i.e.,* $\omega_a = \omega_b = \omega_c = \omega_d$;
- **2**. *incoming edges* from vertices other than $\{a, b, c, d\}$, *i.e.*,

$$W_{ak} = W_{bk} = W_{ck} = W_{dk}, \qquad \forall k \in \{1, \dots, N\} \setminus \{a, b, c, d\};$$

3. outgoing edges towards $\{a, b, c, d\}$, i.e.,

$$W_{ba} = W_{ca} = W_{da}, \qquad \qquad W_{ac} = W_{bc} = W_{dc},$$
$$W_{ab} = W_{cb} = W_{db}, \qquad \qquad W_{ad} = W_{bd} = W_{cd}.$$

$$\begin{split} W_{ba} &= W_{ca} = W_{da} , \qquad W_{ac} = W_{bc} = W_{dc} , \\ W_{ab} &= W_{cb} = W_{db} , \qquad W_{ad} = W_{bd} = W_{cd} , \end{split}$$

establishes all **motifs** of 4 vertices related to **one** integral of motion c_{abcd} .

$$\begin{split} W_{ba} &= W_{ca} = W_{da} , \qquad W_{ac} = W_{bc} = W_{dc} , \\ W_{ab} &= W_{cb} = W_{db} , \qquad W_{ad} = W_{bd} = W_{cd} , \end{split}$$

establishes all **motifs** of 4 vertices related to **one** integral of motion c_{abcd} .

* Always under the assumption that $\omega_a = \omega_b = \omega_c = \omega_d$ (condition 1) is satisfied.

 $W_{ak} = W_{bk} = W_{ck} = W_{dk}, \qquad \forall k \in \{1, \dots, N\} \setminus \{a, b, c, d\};$

 $W_{ak} = W_{bk} = W_{ck} = W_{dk}, \qquad \forall k \in \{1, \dots, N\} \setminus \{a, b, c, d\};$

$\label{eq:condition 2} \begin{array}{ll} \mbox{Condition 2} \\ W_{ak} = W_{bk} = W_{ck} = W_{dk}, \qquad \forall k \in \{1,...,N\} \setminus \{a,b,c,d\}; \end{array}$

 $W_{ak} = W_{bk} = W_{ck} = W_{dk}, \qquad \forall k \in \{1, \dots, N\} \setminus \{a, b, c, d\};$

Condition 2 becomes $W_{1k} = W_{2k} = W_{3k} = W_{4k},$ for $k = 8, 9 \notin \{1, 2, 3, 4\};$

and constrains the connections from vertices $\{8,9\}$ to vertices $\{1,2,3,4\}$.

Condition 2 becomes $W_{1k} = W_{2k} = W_{3k} = W_{4k}, \quad \text{for } k = 8,9 \notin \{1, 2, 3, 4\};$

and constrains the connections from vertices $\{8,9\}$ to vertices $\{1,2,3,4\}$.

Generally, the oscillators have very heterogeneous out-degrees.

Special class of networks : O Heterogeneous blocks;

Special class of networks :

- Heterogeneous blocks;
- Various motifs (not only stars);

Special class of networks :

- Heterogeneous blocks;
- Various motifs (not only stars);
- Unrestricted block;

S

Most general case from the theorem

Special class of networks :

- Heterogeneous blocks;
- Various motifs (not only stars);
- Unrestricted block;
- Weighted, directed, signed.

Generalization of the Watanabe-Strogatz reduction in one picture

Reduced system of $n = \#P_0 + 3m$ real equations.

If W contains m partially integrable parts, then in general ¹ the number of reduced equation is thus

 $n = \operatorname{rank}(W) + 2m.$

¹ ...under very mild assumptions...

If W contains m partially integrable parts, then in general ¹ the number of reduced equation is thus

 $n = \operatorname{rank}(W) + 2m.$

: A low-rank hypothesis on *W* implies that the dynamics live in a low-dimensional space.

 Article
 https://doi.org/10.1038/s41567-023-02303-0

 The low-rank hypothesis of complex systems

 Received: 18 October 2022
 Vincent Thibeault 9⁻¹³, Antoine Allard 9⁻¹³ & Patrick Desroeiers 9^{12,9}

 Accepted: 24 October 2023
 Complex systems are high-dimensional nonlinear dynamical systems

¹ ...under very mild assumptions...

Why it works? Lie symmetry group and Koopman theory (teaser)

Why it works? Lie symmetry group and Koopman theory (teaser)

We have one way to show that there is a Lie symmetry group acting behind the scenes.

Why it works? Lie symmetry group and Koopman theory (teaser)

We have one way to show that there is a Lie symmetry group acting behind the scenes.

Infinite-dimensional function space

Integrals of motions : $U c_{abcd} = 0$ Symmetry condition : [U, v] = 0

• We proved the necessary and sufficient conditions for partial integrability in the Kuramoto model on graph;

- We proved the necessary and sufficient conditions for partial integrability in the Kuramoto model on graph;
- We generalized Watanabe-Strogatz reduction and showed how to design the graph to have an arbitrary number of integrals of motion from 0 to N 3.

- We proved the necessary and sufficient conditions for partial integrability in the Kuramoto model on graph;
- We generalized Watanabe-Strogatz reduction and showed how to design the graph to have an arbitrary number of integrals of motion from 0 to N 3.

Partial integrability is not restricted to identically connected Kuramoto oscillators!

- We proved the necessary and sufficient conditions for partial integrability in the Kuramoto model on graph;
- We generalized Watanabe-Strogatz reduction and showed how to design the graph to have an arbitrary number of integrals of motion from 0 to N 3.

Partial integrability is not restricted to identically connected Kuramoto oscillators!

References : Pikovsky, Rosenblum, *Phys. Rev. Lett.*, 2008 Marvel, Mirollo, Strogatz, *Chaos*, 2009 Lohe, *J. Math. Phys.*, 2019 Thibeault, Allard, Desrosiers, *Nat. Phys.*, 2024 Contact : vincent.thibeault.1@ulaval.ca

Thanks to my collaborators and thank you for your attention! Questions?

Conditions such that there is a **maximal number** N - 3 of integrals of motion?

COROLLARY (INFORMAL)

The maximal number of integrals of motion is attained if (1) the frequencies are identical and (2) the weight matrix has the form

Graph automorphisms require permuting the rows AND the columns of the weight matrix *W* and preserve *W*, which is not the case in general.

The **absence of restriction on self-loops** in the theorem is a consequence of the sinusoidal interaction :

$$\frac{\mathrm{d}\theta_j}{\mathrm{d}t} = \omega_j + \sigma \sum_{k=1}^N W_{jk} \sin(\theta_k - \theta_j),$$

implying that the self-loops have **no impact** on the dynamics.

Generalization of Watanabe-Strogatz reduction

1. Make the change of variable $z_j = e^{i\theta_j}$:

$$\dot{z}_j = i\omega_j z_j + p_{j,1} - p_{j,-1} z_j^2, \qquad p_{j,n} = \frac{\sigma}{2} \sum_{k=1}^N W_{jk} z_k^n.$$

ΔT

- **2**. Partition the graph as $\mathcal{P} = \{P_0, P_1, ..., P_m\}$ where
- 3. Apply the conditions of the theorem for $P_1, ..., P_m$;
- 4. Apply different Möbius transformations for each $P_1, ..., P_m$;
- 5. Obtain the reduced system;

Reduced dynamics

$$\begin{aligned} \dot{Z}_{\mu} &= i\Omega_{\mu}Z_{\mu} + p_{1,\mu} - p_{-1,\mu}Z_{\mu}^{2}, \qquad \mu \in \{1, ..., m\} \\ \dot{\varphi}_{\mu} &= \Omega_{\mu} - 2\operatorname{Im}\left[p_{-1,\mu}Z_{\mu}\right] \\ \dot{z}_{j} &= i\omega_{j}z_{j} + \frac{\sigma}{2}\sum_{k \in P_{0}}W_{jk}(z_{k} - z_{j}^{2}\bar{z}_{k}) + \frac{\sigma}{2}\sum_{k \in P_{1}}W_{jk}[\zeta_{s(k)k} - z_{j}^{2}\bar{\zeta}_{s(k)k}], \qquad j \in P_{0} \end{aligned}$$

where

$$p_{n,\mu} = \frac{\sigma}{2} \sum_{k \in P_0} \mathcal{W}_{\mu k} z_k^n + \frac{\sigma}{2} \sum_{k \in P_1} \mathcal{W}_{\mu k} \zeta_{\mu k}^n \quad \text{and} \quad \zeta_{\mu \ell} = M_{Z_{\mu},\varphi_{\mu}}(b_{\ell}) \,.$$

There are

$$n = \#P_0 + 3m$$

real equations in the reduced system.