
Dimension reduction of high-dimensional dynamics
on networks with adaptation

Vincent Thibeault, Marina Vegué, Antoine Allard, and Patrick Desrosiers

2 April 2021

Département de physique, de génie physique, et d’optique
Université Laval, Québec, Canada



1

Emergence of collective phenomena (synchronization)

https://www.youtube.com/watch?v=tRPuVAVXk2M

https://www.youtube.com/watch?v=tRPuVAVXk2M
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Why dimension reduction?

Dimension reduction allows to ...

# find meaningful global variables Xµ,Wµν ;
# get analytical insights on resilience ;
# reduce computational cost.
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Contribution
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We found n+ n2 linear observables (functions, measures,...)

Xµ =

N∑
i=1

Mµixi,

Wµν =

N∑
i,j=1

MµiWijM
>
jν ,

that both depend on only one matrix.

M is a n×N matrix to be determined.
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Hypothesis

Important neurons contribute strongly to the global activity
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Singular value decomposition (SVD)



8

Singular value decomposition (SVD)



8

Singular value decomposition (SVD)

Let r = rank(W ).

If n ≥ r, the factorization is exact.

If n < r, it is the best* approximation ofW .
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We can combine the observables to get the global activities and weights :

X = a1X1 + ...+ anXn
W = b11W11 + b12W12 + ...+ bnnWnn

We are ready to get bifurcation diagrams X vs.W .
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Activity dynamics on real networks without plasticity
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Activity dynamics on an Erdős-Rényi network with plasticity

Complete dynamics : 10 200 ODEs
Reduced dynamics : only 3 ODEs
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Next steps

# Treat plasticity + real networks ;
# Consider inhibitors (Wij < 0) ;
# Get more profound insights on resilience.

Take home messages

# Plasticity leads to rich bifurcation diagrams ;
# SVD is a powerful and interpretable tool for dimension reduction of dynamics.
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Wilson-Cowan dynamics

In this model, F is linear and G is a sigmoid function :

τx ẋi = −xi + 1/(1 + e−a(yi−b)), with yi =
∑N

j=1Wijxj

# xi : Firing rate of neuron or brain region i
# τx : Time scale of the firing rate
# a : Steepness of the activation function
# b : Firing rate threshold
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Wilson-Cowan dynamics with BCM plasticity

This model is more complex :

τx ẋi = −αixi + βi/(1 + e−a(yi−b)), with yi =
∑N

j=1Wijxj + γi

τw Ẇij = Dijxixj(xi − θi)− εWij with Wij(0) = dijDij

τθ θ̇i = x2i − θi.

θi : modify the threshold above (below) which the synapse potentiates (depresses).

αi, βi, γi : distinguish the dynamical behavior of each node i.

D = (Dij)
N
i,j=1 : structural backbone, Dij > 0 if the presynaptic neuron j excites

the postsynaptic neuron i, Dij < 0 if the presynaptic neuron j inhibits the
postsynaptic neuron i, and Dij = 0 if no edge exist between neurons i and j.


