A NEW DIMENSION-REDUCTION METHOD FOR COMPLEX DYNAMICAL NETWORKS

SIAM

E. Laurence, N. Doyon, L.J. Dubé, and P. Desrosiers

July 12, 2018

Département de physique, de génie physique, et d’optique
Université Laval, Québec, Canada
Dynamical complex networks

Nodes
Activity $x_i(t)$

Edges
Weights $A = \{a_{ij}\}$

Dynamics

$$\dot{x}_i = F(x_i) + \sum_{j=1}^{N} a_{ij} G(x_i, x_j)$$
1-dimensional reduction

Red node activity = Weighted average activity

\[\langle x \rangle_w = \sum_{i=1}^{N} w_i x_i \]

\(w \) must be the dominant eigenvector of \(A \).

Gao et al. (2016) reduction is found as an approximation.
Star networks

- 2-dimensional

- # of eigenvalues on the spectral radius \rightarrow # of dimensions
Star networks

1-dimensional Structural parameter
Activity

2-dimensional Structural parameter

1-dimensional Structural parameter
Activity
Modular networks | A combined method

Combined method
The combined method predicts accurately the critical edges.
FURTHERMORE

Predicting global state using a low dimensional representation of dynamical complex networks

Available soon

- Many dynamics: SIS, Neural, Lotka-Volterra, Genes
- Critical transition of scale-free networks
- Error estimations

Take home message

- Systematic method
- Based on spectral properties of networks