



Supervision: Paul De Koninck & Patrick Desrosiers



### Larval zebrafish brain >100 000 neurons

Eye

Eye

Tg(elavl3:H2B-GCaMP6s)

### Whole-brain imaging in small animals

Small animal models allow us to see almost *everything* 



Lin, Albert, et al. "Imaging whole-brain activity to understand behaviour." Nature Reviews Physics (2022).

#### Whole-brain imaging in small animals

#### Small animal models allow us to see almost *everything*, but is it *too much*?



Lin, Albert, et al. "Imaging whole-brain activity to understand behaviour." Nature Reviews Physics (2022).





#### Discrete state decomposition





### Discrete state decomposition

Markov chains have been applied to a wide array of problems in neuroscience





# Neuronal populations

Cornblath *et al.* Communications biology (2020)

Wiltschko *et al. Neuron (2015)* 

# Behavioral states

#### Discrete state decomposition

Markov chains have been applied to a wide array of problems in neuroscience



![](_page_8_Figure_3.jpeg)

Wiltschko *et al. Neuron (2015)* 

# Behavioral states

## What happens at transitions?

![](_page_9_Figure_1.jpeg)

Are these state transitions the result of purely **excitatory/inhibitory** dynamics? Or do they require a little bit more help?

![](_page_10_Picture_0.jpeg)

Tg(elavl3:H2B-GCaMP6s)

If/how neuromodulators control brain state transitions

Dopaminergic and noradenergic cells

Anti-th immunolabeling

![](_page_12_Picture_0.jpeg)

#### 1. Measuring brain activity and behavior

![](_page_12_Picture_2.jpeg)

#### Experimental setup

#### Core elements of our microscopy setup

![](_page_13_Figure_2.jpeg)

Time

#### Whole-brain multi-plane imaging

20 example planes

#### Calcium imaging + Behavior

![](_page_15_Picture_1.jpeg)

![](_page_15_Picture_2.jpeg)

Speed 20x

#### High-speed tail tracking

Fish swim at 20-50 Hz and many locomotor patterns can be distinguished

![](_page_16_Figure_2.jpeg)

![](_page_17_Picture_0.jpeg)

#### 2. Extracting low-dimensional states

![](_page_17_Picture_2.jpeg)

## Brain atlas registration

Imaging volumes are registered on a brain atlas (*Mapzebrain, Herwig Baier Lab*)

1. Registration on atlas template brain (ANTs Registration)

![](_page_18_Picture_3.jpeg)

![](_page_18_Picture_4.jpeg)

#### 2. Mapping all segmented centroids into brain areas

Anatomical regions

#### Reference volume for multi-animal comparisons

Atlas template brain

In vivo stack

Step 1: Extracting region-averaged neuronal activity

![](_page_19_Figure_3.jpeg)

Cells mapped in atlas

#### Step 1: Extracting region-averaged neuronal activity

![](_page_20_Figure_2.jpeg)

Step 2: Consensus clustering along temporal axis

![](_page_21_Figure_2.jpeg)

Step 2: Consensus clustering along temporal axis

![](_page_22_Figure_2.jpeg)

## Consensus clustering

Most clustering algorithms typically yield different outputs on repeated runs Consensus clustering **averages results** across multiple runs

![](_page_23_Figure_2.jpeg)

What do these clusters actually look like?

#### Spontaneous brain states Ordered by prevalence

![](_page_24_Picture_1.jpeg)

Average states projected in *Mapzebrain atlas* (n = 7 fish)

### Motor state validation

State 8 can be recovered independently through behavioral regression

![](_page_25_Figure_2.jpeg)

State 8

Tail-correlated neurons + significant overlap across fish

#### Spontaneous brain states Ordered by prevalence

![](_page_26_Picture_1.jpeg)

Average states projected in *Mapzebrain atlas* (n = 7 fish)

![](_page_27_Picture_0.jpeg)

#### 3. Properties of brain states

![](_page_27_Picture_2.jpeg)

### Spatial properties of states

#### Modules/communities: Groups of strongly interconnected brain regions

Region

![](_page_28_Picture_2.jpeg)

 4 principal modules identified through hierarchical community detection

Kunst *et al. Neuron* (2019).

## Spatial properties of states

Coactivation is driven by strong recurrent connectivity

![](_page_29_Picture_2.jpeg)

Kunst *et al. Neuron* (2019).

![](_page_29_Picture_4.jpeg)

![](_page_29_Figure_5.jpeg)

![](_page_29_Picture_6.jpeg)

![](_page_29_Picture_7.jpeg)

![](_page_29_Picture_8.jpeg)

![](_page_29_Picture_9.jpeg)

### Temporal properties of states

![](_page_30_Figure_1.jpeg)

### Brain states are recurrent over days

#### Similar states are identified in the same fish at 6 and 7 dpf

![](_page_31_Figure_2.jpeg)

![](_page_31_Figure_3.jpeg)

![](_page_32_Picture_0.jpeg)

#### 4. Adding neuromodulators to the mix

![](_page_32_Picture_2.jpeg)

## Dopaminergic & noradrenergic cells

#### Sandra Mignault

### MultiMAP registration

![](_page_34_Picture_1.jpeg)

Registration Apply transform

![](_page_34_Picture_3.jpeg)

- 1. Functional imaging
- High-resolution anatomical 2. stack
- 3. Fixation
- Immunostaining 4.
- Registration 5.

Z = 290 μm

![](_page_34_Picture_11.jpeg)

![](_page_34_Picture_12.jpeg)

![](_page_34_Picture_13.jpeg)

![](_page_34_Picture_14.jpeg)

Z = 210 μm

Example colocalization

Z = 140 μm

Lovett-Barron et al. Cell (2017)

![](_page_35_Figure_0.jpeg)

### Future directions

#### Stim. + Yohimbine

![](_page_36_Figure_2.jpeg)

Sandrine Poulin

Antoine Légaré & Nick Benfey

### Future directions: Exposome

![](_page_37_Figure_1.jpeg)

Healthy brain dynamics

Altered brain dynamics

#### **PDK Lab**

Key results:

- Framework to study internal state transitions
- Neuromodulators identified in pan-neuronal data
- How are both related?

Danio rerio Paul De Koninck Patrick Desrosiers Mado Lemieux Vincent Boily Sandrine Poulin Sandra Mignault

### Thank you!

![](_page_38_Picture_6.jpeg)

#### Supp: Individuality is recovered over days

#### Similar states are identified in the same fish at 6 and 7 dpf

![](_page_39_Figure_2.jpeg)

100

![](_page_39_Figure_3.jpeg)

![](_page_39_Figure_4.jpeg)

![](_page_39_Figure_5.jpeg)