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We demonstrate the control of the chaotic dynamics of
Hamiltonian systems. This ability offers the possibility to
select (stabilize) at will regular behavior(s) within the chaotic
regime and to make efficient use of the richness and diversity
of chaos.

I. INTRODUCTION

The counter-intuitive notion of chaos control is well
summarized by the following statement due to Freeman
Dyson [1]:

A chaotic motion is generally neither predictable
nor controllable. It is unpredictable because a small
disturbance will produce exponentially growing per-
turbation of the motion. It is uncontrollable be-
cause small disturbances lead only to other chaotic
motions and not to any stable and predictable alter-
native.

An operational definition of chaos is helpful to appreci-
ate Dyson’s assertion. In our presentation, deterministic
chaos has a technical and precise meaning and despite
a lack of a universal definition, most researchers would
agree that it could be described as follows:

Chaos is a long-term aperiodic behavior of a dynamical
system that possesses the property of sensitivity to initial
conditions.

—long-term aperiodic behavior means that regularity (pe-
riodicity or quasi-periodicity) of the motion is absent.

— dynamical system indicates that determinism is present
and that the source of the irregularity is inherent to that
determinism and not to be found in a stochastic compo-
nent.

— sensitivity to initial conditions implies that a very small
deviation in the initial conditions is sufficient to create
large deviations in the future states (the so-called “but-
terfly effect”), i.e. despite the presence of determinism,
practical long-term predictability is lost.

This is the type of motion that Dyson had in mind. It is
not new of course and it is clear that Maxwell and Boltz-
mann, the founders of statistical physics, were acutely
aware of the property of sensitivity to initial conditions
and its consequences. Not before Poincaré [2] could one
ascertain the existence of this property in a system with
few degrees of freedom, namely the reduced 3-body prob-
lem. It was not until 1990 however that Ott, Grebogi
and Yorke (OGY) [3] addressed the question of control
of chaos and described the theoretical steps necessary to
achieve this goal. This method was very much in the

spirit of von Neumann who imagined as early as 1950,
that ¢ ¢ every unstable motion could be nudged into a
stable motion by small pushes and pulls applied at the
right places” [1]. The theoretical OGY work was rapidly
followed by experimental verification [3]: von Neumann’s
dream had become reality.

This brief report describes some practical implementa-
tions for the recovery of order from chaos. Our examples
are from the realm of conservative (Hamiltonian) sys-
tems. They are chosen because they have been much less
studied than their dissipative counterparts, because their
mixed (regular and chaotic) phase space offers new chal-
lenges to the standard control schemes and because of
the growing evidence that the mere existence of Hamil-
tonian chaos [4] may shed new light on the foundations of
statistical physics [5]. The stabilization of their chaotic
behavior offers new grounds for a fascinating adventure.
Many reviews on the control of chaos have appeared in
the last few years and the reader may wish to consult the
partial list given in [6].

II. A CONTROL STRATEGY

All stable processes, we shall predict.
All unstable processes, we shall control.

JOHN VON NEUMANN, circa 1950

In this Section, we show how the richness, the complex-
ity and the sensitivity of chaotic dynamics can be used
to select and stabilize at will, with small programmed
perturbations, an otherwise unstable state of the natural
dynamics. The goal is to achieve this feat without alter-
ing appreciably the original system. It is precisely the
properties that differentiate a chaotic motion from an ir-
regular or unstable behavior that are the solution to the
control task. The important ingredients are:

— unstable periodic orbits (UPO) are typically dense in
the chaotic attractor of dissipative systems or in the sto-
chastic web of conservative systems, i.e. there are prac-
tically an infinity of unstable states to choose from.

— chaotic motion is ergodic, meaning that a chaotic tra-
jectory will revisit infinitely often the neighborhood of
any point within the available phase space.

— chaotic dynamics is sensitive to initial conditions, im-
plying that small perturbations will naturally induce
large effects.

To go beyond qualitative description, we establish
some working conditions:



i. we suppose that the dynamics can be represented
by a d-dimensional nonlinear map (either given explicitly
or reconstructed from the observations)

Xnt1 = F(xn,p) (1)

where the discrete time is labeled by n, and p is an ac-
cessible system parameter, the control parameter.

i1. there exists one or more specific UPOs for a given
nominal value pg of the parameter, defined by

{x(i,po) : x(i,po) = Fm™) (x(i,p0),p0) ,¥Vi=1,m} (2)

for an orbit of period m, around which one wishes to
stabilize the dynamics. Here F(™) means the composition
of F m times with itself.

15. control is first initiated when a point, say xy, of
the free trajectory falls in a small neighborhood of the
UPOs, usually taken to be a ball Bs of radius § around

{X(i,po)} )

[|xy —x(i,po)|| <d  forsome i=1,m , (3)

hereafter referred to as the control or d—mneighborhood.
Control is then kept active as long as the controlled tra-
jectory stays within the prescribed Bs of {x(i,po)}.

w. we restrict the parameter variations dp, necessary
to achieve control, to a maximum small perturbation

0P| < |0pmax| < |pol (4)

defining the control range.

v. since the position of a periodic orbit is a function of
p, and we assume that the local dynamics does not vary
much within |dp|, a linear representation of the dynamics
is possible.

For simplicity, we will confine our discussion to two
dimensions. In 2D, the generic local neighborhood of a
UPO is equipped with a stable and unstable manifold. A
chaotic trajectory entering the neighborhood will move
toward the UPO along the stable direction and escape
along the unstable one. This is the “saddle dynamics”
illustrated in Figure (1).

FIG. 1. Saddle Dynamics: Local geometry of control in
2D.

OGY [3] realized that a possible solution of controlling
chaos could be obtained by locally displacing the man-
ifolds in order to eliminate (at least to first order) the
component of the motion along the unstable direction.
The subsequent evolution would then naturally lead the
orbit to the unstable point along the stable direction.
This idea is geometrically presented in Figure (1) for an
unstable fixed point, a situation much like the task of
bringing a ball bearing to rest on a saddle. The remain-
ing part of this section is devoted to the mathematical
implementation of “small pushes and pulls applied at the
right places”.

In order to stabilize a chaotic trajectory around one
of the existing UPOs, we have implemented a numeri-
cal version of the OGY method as modified in [7] for
area-preserving mappings. This method is believed to be
dynamically optimal in that it explicitly uses the local
geometry of the underlying system. Given a dynami-
cal system of the type (1), and a target UPO of period
m, {x(%,po)}i=1,m , at some nominal parameter value
Po, one characterizes the local stable and unstable man-
ifolds by the vectors e, ; and e, ; respectively as well as
their contravariant counterparts fs; and f,; satisfying
fu,i Ty, = fs,i e =1 and fu,i “€5,i = fs,i “€y,; = 0. The
stabilizing perturbations dp,, = p, — po are then obtained
by firstly linearizing the dynamics in a d-neighborhood of
a member of the periodic orbit, say x(k, pg) , and around
Po, namely

Xn+1 — X(k + 17pn) ~ Uy [X'fb - X(k‘,pn)] (5)

where the d x d Jacobian matrix U = Dy F(x, p) is eval-
uated at [x = x(k,po), p = po] and it is understood that
[1xn —x(k,po)|| < < 1and |dp,| < |pol.

Secondly, the control criterion is imposed that x, 11 =
F(xy, pn) should lie along the stable direction at x(k +
1,po), ie. fypt+1 - [Xne1 — x(k + 1,p0)] = 0 which,
together with the parametric variation of the periodic
points, x(k, po + dp) ~ x(k,po) + gk Ip , leads to the fol-
lowing expression for the parameter perturbation at the
n-th iteration:

fu,k+1 : {Uk [Xn - X(kapO)]}
fu it - (k1 — Ug g1)

opn(OGY) = — (6)

Alternatively, one could do without the local mani-
folds by imposing instead that ||x,+1 — x(k + 1,p0)|| =
minimum which results in a perturbation

(8k+1 — Uk gr) - {Ux [xn — x(k,po)]}
|(gk+1 — Uk gr)||?

6pn (MED) - =

(7)

This modification was first introduced in [8] and goes by
the name of minimal expected deviation (MED) method.



The two schemes give similar performances, although (6)
is somewhat more demanding numerically.

In summary, the stabilization procedure can be divided
in three separate stages: the learning stage, where one
identifies the desired UPOs, extracts the Jacobian matri-
ces, and (for the OGY scheme) calculates the correspond-
ing stable and unstable directions ey ; , e, ; to construct
the contravariant vectors f, ; ; the transient stage, where,
after randomly choosing an initial condition, the system
is let to evolve freely at the nominal parameter value
po until, at the control stage, once the chaotic trajectory
has entered the prescribed d-neighborhood, the control is
attempted by means of small parameter perturbations.

III. CHAOTIC DYNAMICS UNDER CONTROL

We have selected 2 examples for their novelty and com-
plexity. ALL the relevant control informations are ob-
tained numerically. Reliable methods (see e.g. [9]) exist
to locate the positions of the UPOs and we will assume
hereafter that their locations are known prior to the con-
trol session. The numerical construction of the Jacobian
matrices from time series is often a subtle task and is
beyond the scope of this article. The reader is referred
to [10] for technical details. In the following, the value of
the control parameter around which small perturbations
are applied is denoted by a sub-index 0.

A. Billiards: Chaos coming to Light

The study of the frictionless motion of a particle
bounded by a closed surface where it is specularly re-
flected is known as billiard dynamics and dates back to
Birkhoff [11]. It serves to illustrate the transition from
strict regularity (integrability) to chaos (ergodicity) in
Hamiltonian systems [11] and bears important connec-
tions to quantum chaos as well [12]. We have chosen to
study the 2D cosine billiard where the surface is parame-
terized in polar coordinates by the relation

r(¢) =1+€ecosgp . (8)

Geometrically, the parameter € is a measure of the asym-
metry of the surface with respect to circularity, and dy-
namically, it is a measure of nonintegrability since ¢ = 0
(the circle) represents the integrable limit. For all € # 0,
there are finite regions of phase space that contain chaotic
trajectories. Figure (2) shows on the left the mixed and
complex structure of phase space for ¢y = 0.3: the state
variables are the incident angles on the surface, {a,} ,
and the polar angles of the point of impact, {¢,}. Since
motion is free in between collisions with the surface, our
example belongs to the class of 2D area-preserving map-
pings, where attractors are absent and replaced by sto-
chastic bands mixed with regular regions. Within these

bands, the motion is ergodic: the blackened region is
produced by one single chaotic orbit. Embedded in this
stochastic web, one observes a number of UPOs whose
physical trajectories inside the boundary are shown in
the middle portion of Figure (2). By pulsating the defor-
mation parameter € about its nominal value ¢y, we have
achieved control of 3 UPOs of period 4, 5 and 9. We
used the MED control algorithm with a neighborhood
of § = 1072, A numerical OGY method gives identical
performance.

# UPO-4 4 UPD-5 x UPO-9

L O

500 1000 1500 2000 2500
iterates (100 points per iterate)

7 0

FIG. 2. Cosine Billiard: (left) mixed chaotic (filled) and
regular (open islands) phase space with embedded UPOs for
€0 = 0.3; (middle) MED controlled UPOs of period 4, 5 , 9;
(right) stabilized ¢ variable of the corresponding UPOs held
for 5 000 cycles each with § = 1072 (1 cycle = 1 complete
orbit).

We mention that the successful control of billiard dy-
namics may offer a solution to the degradation of finesse
in resonant optical microcavities [13]. It has been inferred
that the loss of lasing activities might be associated with
ray chaos (geometrical limit) in the optical resonators
where the photons are transported (via chaotic diffusion)
to regions of phase space where refractive escape (Snell’s
law) becomes possible. The (generally non-spherical) di-
electric droplets making up the resonators behave very
much like 2D billiards and we propose that programmed
variations of their asymmetry may help reduce photon
leakage. The viability of the proposal is currently be-
ing investigated. Further, the most powerful microlaser
in existence [14] has a mostly chaotic phase space (very
similar to the one studied here) and (classical) nonlinear
dynamics offers the explanation for its high-power, high-
directional emission. Our ability to control its dynamics
would allow us to change at will the emission patterns
and wavelengths. Chaos has come to light!

B. Flows: DKP revisited

Our next example is a continuous, 2 degrees of freedom
(4D phase space) Hamiltonian system. It represents the
motion of an electron under the combined influence of a
Coulomb and a magnetic field. It goes under the name,
diamagnetic Kepler problem (DKP), and occupies central
stage in classical and quantum chaos research [12]. We



use atomic units and semi-parabolic coordinates (u? =

r+z, v =r— 2z t=2rr) with generalized momenta
Pup = du,v/dr to write a resulting scaled Hamiltonian
(for angular momentum L = 0)

_ 1 1
(1 + vy Hpr = S0} +p)) = 2+ P02 (W + %)

— (24 e (9

~

where the Coulomb singularity has been explicitly re-
moved. The scaled energy € is related to the physical
energy E by ¢ = v 2/3 E where v = B/B,. denotes
the strength of the magnetic field relative to the unit
B, ~2.3510° T. It has proven useful to consider, instead
of (9), the Hamiltonian function with a fixed (pseudo)-
energy equal to 2, namely

) 1 1
hoi = 50 +p5) — € (W +v%) + gMQVQ(/iQ +17) =2,

(10)

where now e appears as a dynamical parameter. As €
is varied, the classical flow of (10) covers a wide range
of Hamiltonian dynamics reaching from bound, nearly
integrable behavior to completely chaotic and unbound
motion [15].

FIG. 3. Diamagnetic Kepler Problem for 2 scaled en-
ergies ¢ = —0.3 (period 2) and g = —0.2 (period 3) in top,
and bottom panels (respectively): (left) Poincaré section (PS)
u =0, > 0 showing one chaotic trajectory (filled space) and
the OGY controlled UPO (black dots); (middle) the stabilized
p, or v variable for the first 3000 intersections with the PS be-
fore control is turned off; (right) corresponding 3D stabilized
trajectory.

The dimension reduction (from 4D to 2D) and dis-
cretization is performed by observing the dynamics on
the Poincaré section defined by p = 0, i > 0. The energy
shell is then mapped to an area bounded by the condition

p? — 2¢ v? = 4 which represents an ellipse in the (v,p,)
plane. The left panels of Figure (3) shows the collection
of points {vp,pv.n} obtained by numerical integration of
the equations of motion for g = —0.3 and —0.2. One no-
tices, for these energies, that phase space has few regular
structures: apart from few lobes of regularity, the rest
of the ellipse is filled by the successive piercings of one
chaotic trajectory. The black dots indicate the positions
of the UPOs. We have succeeded in stabilizing a number
of UPOs for the system, two of them (periods 2 and 3
for g = —0.3 and —0.2 respectively) are displayed with
their 3D trajectories in Figure (3).

In attempting to bring order to the DKP dynamics, we
had to overcome a number of difficulties not encountered
in previous studies. First, a typical trajectory spends a
lot of time away from the Poincaré section and because
of the sensitivity of the dynamics we had to device an
efficient variable step symplectic integrator [16] thereby
preserving the geometrical structure of the Hamiltonian.
Second, we had to obtain numerical Jacobian matrices
(solely with informations gathered on the Poincaré sec-
tion) for all members of the UPOs because it was found to
be necessary to intervene at every crossing of the Poincaré
section. Third, the eigenvalues of area-preserving Jaco-
bian matrices are often complex and the stable and unsta-
ble manifolds are no longer along the directions of their
eigenvectors. A new method had to be implemented. De-
tails of the solutions to these problems can be found in
[17].

We should point out that this is the first control of a
realistic Hamiltonian system and the first complete nu-
merical (integration, determination of the Jacobian ma-
trices and the local manifolds) implementation of the
OGY strategy. It still remains an open question however
if manipulations of the magnetic field to induce stabi-
lization of a classical unstable orbit can be extended to
the realm of semi-classical physics. For example, certain
classes of non-spreading Rydberg wave packets localized
around classical circular or elliptical Kepler trajectories
[18] appear as prime candidates for future investigations.

IV. PROPERTIES OF THE CONTROL SCHEME

The lessons learned through the previous examples and
many more not reported here allow us to draw a list of the
properties and advantages of the adopted control ‘philos-
ophy’ and to point to remaining difficulties.

— no model dynamics is required a priori and only lo-
cal information is needed;

— computations at each step are minimal;

— gentle touch: the required changes in py can be quite
small (< 1% );

— multi-purpose flexibility: different periodic orbits can
be stabilized for the same system in the same parameter



range;
— control can be achieved even with imprecise measure-
ments of eigenvalues and eigenvectors: the methods are
robust;

— the methods can also be applied to synchronization of
several chaotic systems.

At least three complications come to mind when one
considers the implementation of chaos control strate-
gies to the laboratory. The presence of noise, ignored
so far, may induce occasional loss of control or hinder
it altogether. The average waiting time to fall in the
d-neighborhood may be very (too) long, especially for
Hamiltonian systems and a targeting strategy [19] should
complement the control method. Furthermore, the sys-
tem’s parameters may drift with time and this nonsta-
tionarity should be accounted for by updating the control
informations. Tracking [20] is the name given to this pro-
cedure.

V. CONCLUSIONS AND FUTURE CHALLENGES

We have presented some of our efforts to recover order
from chaos in Hamiltonian systems and we have discussed
some of the basic techniques for controlling their chaotic
motion. These same techniques (with slight modifica-
tions) apply equally well to dissipative systems. Applica-
tions of the control of chaos have been reported in such di-
verse areas as aerodynamics, chemical engineering, com-
munications, electronics, fluid mechanics, laser physics,
as well as, biology, finance (not confirmed!), medicine,
physiology, epidemiology and the list is constantly grow-
ing. Some of the earliest experimental successes of the
methods can be found in [21].

Although the last decade has seen much accomplish-
ments, challenges for the future are still numerous: gen-
eralization to spatio-temporal chaos, adaptive control for
non-stationary dynamics, effective control in the presence
of noise (dynamical and/or observational), adaptive syn-
chronization of chaos are some of the things that have
not yet reached maturity.

However, the greatest challenge will remain for some
times the application to complex biological systems and
in particular to brain dynamics [22]. Complex natural
systems are noisy, contain a strong stochastic component
and are not endowed with a behavior called chaos (at
least not in its mathematical rigorous sense). Yet, one
would like to believe that “the controlled chaos of the
brain is more than an accidental by-product of the brain
complexity” [23]. The perspective of unifying the tech-
niques of deterministic chaos control with a statistical
stochastic description as a possible therapeutic strategy
against dynamical diseases is surely something to con-
sider.
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in [12].
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