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2. Boundary element method
for annular cavities

The wave dynamics of the annular cavity is described by
the 2D Helmholtz equation

[Vz + n2(r)/~c2} Y(r) = 0.

Using Green’s second identity, one obtains the following bound-
ary integral equation

Y(r') = 7% ds [w(r)VG('r,r'; k) —G(r,r" k)Vw(r)}

J

1. Experimental setup

High )-factor erbium-doped silica annular cavities are
ideal candidates for integrated directional lasers. Non-
uniform emission can be achieved without significantly spoil-
ing the Q-factor of the unperturbed cavity (no inclusion).

where G (7, r’; k) is the homogeneous medium Green’s func-
tion. We have implemented a generalization of the bound-
ary element method [1]. This generalization allows to
find resonant modes of annular cavities (more generally, to
solve the problem in multiply connected domains). The
numerical procedure can be summarized as follows

Fig. 1: Scanning electron microscopy (left) and optical char-
acterization setup (right) of a silica annular microcavity.

Fabrication process: The silica (SiO9, refractive index
~ 1.5) disk is patterned using standard photolithographic
methods followed by wet HF' etching. A dry underetching of
the silicon base releases the outer region of the disk. A CO9
laser reflow is performed to generate a toroidal cavity. Fig. 2
Microstructures (e.g. holes) can be engraved using a focused
ion beam (Fig. 1).

1. A boundary integral equation is obtained for the three di-
electric domains (inclusion, disk, surroundings) shown on

2. The boundary is discretized in order to transform integral
equations in a non-linear eigenvalue problem

3. The complex resonant modes are found using analytic
(unperturbed) solutions as starting points for the eigen-
value search [2]. Every analytic solution is labeled by
an angular quantum number m and possesses a resonant
wavenumber kpes = k' — ik

Optical characterization: Light is coupled inside the
cavity using a 2 um tapered fiber (Fig. 1). The reso-
nant spectrum is obtained using a tunable laser source. Once
tuned to a resonant frequency, the far-field emission may be
recorded using various methods. A reflecting stage coupled
to an infrared camera has been developed for this purpose.

Goals

Acquire design rules to harness the far-field characteris-
tics of integrated optics devices. To guide the experiment, we
have pursued numerical simulations of the associated dy-
namics. T'wo types of dynamics are studied concomitantly.
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1. The wave dynamics (boundary element method)
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2. The classical dynamics (ray-escape simulations)

4. Ray-wave correspondence and universality of far-field emission
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Comparison of far-field intensities computed via the boundary element method and ray-escape simulations (blue). Odd (red) and even
(green) symmetry modes of the inhomogeneous annular cavity are quasi-degenerate, and the far-field intensity is therefore computed
as I = |o]? + |[¢e|? (black). (a) Resonant mode with unperturbed @ ~ 10%. (b) Resonant mode with unperturbed @ ~ 10°. (c) A
case closer to experimental reality (infrared vavelength, R = 50 pm) which is at present beyond the limit of our wave simulations.
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The ray-escape and wave results agree quite well with respect to the dominant emission directions, even for relatively low wavenumbers.
The global shape for a given configuration displays universal behaviour regardless of the wavenumber regime as long as pm, > pNR-

5. How to improve collimation?

Ray-escape and wave results suggest that the triple-peaked tfar-field profile observed for
silica cavities is similar for an inner inclusion, regardless of the geometry.

A simple model based on paraxial ray-optics can help improve collimation. Circu-
lar cavities (the backbone of annular cavities) are approximated as paraxial lenses and
focal points are found. A point source placed at a focal point will result in highly
collimated emission. For a silica cavity, this point is located outside the boundary.

Promising designs

While this model is mostly accurate in the regime R, << X (“point” inclusion), it suggests
many interesting designs that might exhibit better emission directionality

e Fig. 3a: Replacing an inclusion by an exclusion (coupled silica cavities, photonic
molecules)

e Fig. 3b: Cavities with a defect on the boundary, e.g. [4] (¢) ny = 3.2

e Fig. 3c: Silicon-On-Insulator (SOI) annular cavities. Fig. 3: Focal points of a circular cavity
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3. Ray-escape simulations

The annular cavity consists of a circular disk of radius R and
refractive index no, surrounded by a medium of index ni,
with a circular inclusion of radius R, and index n; displaced
a distance d from the cavity center.
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Fig. 2: Annular cavity geometry and associated phase space

The annular billiard provides a useful model for the emis-
sion properties of annular cavities. Three important phase-
space limits exist in the case of the open billiard

1. The non-regular (NR) boundary separating regular and
chaotic trajectories, pNyg = (d + Rg)/ R

2. The total internal reflection (TIR) limit, ppir = ni/no

3. The semiclassical wave momentum, p,, = m/nok’R.

Ray-escape simulations give us access to universal far-
field characteristics, those expected in the semi-classical regime.

Choice of geometric parameters

An eccentric inclusion (d # 0) and an appropriate choice
of R, can induce non-uniform emission while preserving the

Q-factor of WGMs [3]. Two conditions must be satisfied

1. TIR region embedded in NR region (pTir < pPNR)
2. WGM localized outside NR region (py, > pNR)-

Parameter |d/R| Rqy/R pNR | PTIR
Value 0.0 02 |0.7]0.67

6. Conclusions and outlooks

The ray-wave correspondence allowed us to infer universal
far-field properties of silica annular cavities. This permits
computation beyond the limit of wave simulations.

A simple geometric model was developed in order to help im-
prove emission directionality via new designs (modified
geometries as well as different refractive indices).

The next experimental step is to obtain reliable far-field
measures, while a numerical investigation of promising ge-
ometries/medium combinations is being made.
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