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1. Experimental setup
High Q-factor erbium-doped silica annular cavities are
ideal candidates for integrated directional lasers. Non-
uniform emission can be achieved without significantly spoil-
ing the Q-factor of the unperturbed cavity (no inclusion).

Fig. 1: Scanning electron microscopy (left) and optical char-
acterization setup (right) of a silica annular microcavity.

Fabrication process: The silica (SiO2, refractive index
∼ 1.5) disk is patterned using standard photolithographic
methods followed by wet HF etching. A dry underetching of
the silicon base releases the outer region of the disk. A CO2
laser reflow is performed to generate a toroidal cavity.
Microstructures (e.g. holes) can be engraved using a focused
ion beam (Fig. 1).

Optical characterization: Light is coupled inside the
cavity using a 2 µm tapered fiber (Fig. 1). The reso-
nant spectrum is obtained using a tunable laser source. Once
tuned to a resonant frequency, the far-field emission may be
recorded using various methods. A reflecting stage coupled
to an infrared camera has been developed for this purpose.

Goals
Acquire design rules to harness the far-field characteris-
tics of integrated optics devices. To guide the experiment, we
have pursued numerical simulations of the associated dy-
namics. Two types of dynamics are studied concomitantly.

1. The wave dynamics (boundary element method)

2. The classical dynamics (ray-escape simulations)

2. Boundary element method
for annular cavities
The wave dynamics of the annular cavity is described by
the 2D Helmholtz equation[

∇2 + n2(r)k2
]
ψ(r) = 0.

Using Green’s second identity, one obtains the following bound-
ary integral equation

ψ(r′) =

∮
Γj
ds ·

[
ψ(r)∇G(r, r′; k)−G(r, r′; k)∇ψ(r)

]
whereG(r, r′; k) is the homogeneous medium Green’s func-
tion. We have implemented a generalization of the bound-
ary element method [1]. This generalization allows to
find resonant modes of annular cavities (more generally, to
solve the problem in multiply connected domains). The
numerical procedure can be summarized as follows

1. A boundary integral equation is obtained for the three di-
electric domains (inclusion, disk, surroundings) shown on
Fig. 2

2. The boundary is discretized in order to transform integral
equations in a non-linear eigenvalue problem

3. The complex resonant modes are found using analytic
(unperturbed) solutions as starting points for the eigen-
value search [2]. Every analytic solution is labeled by
an angular quantum number m and possesses a resonant
wavenumber kres = k′ − ik′′.

3. Ray-escape simulations
The annular cavity consists of a circular disk of radius R and
refractive index n2, surrounded by a medium of index n1,
with a circular inclusion of radius Ra and index n1 displaced
a distance d from the cavity center.

Fig. 2: Annular cavity geometry and associated phase space

The annular billiard provides a useful model for the emis-
sion properties of annular cavities. Three important phase-
space limits exist in the case of the open billiard

1. The non-regular (NR) boundary separating regular and
chaotic trajectories, pNR = (d + Ra)/R

2. The total internal reflection (TIR) limit, pTIR = n1/n2

3. The semiclassical wave momentum, pm = m/n2k
′R.

Ray-escape simulations give us access to universal far-
field characteristics, those expected in the semi-classical regime.

Choice of geometric parameters

An eccentric inclusion (d 6= 0) and an appropriate choice
of Ra can induce non-uniform emission while preserving the
Q-factor of WGMs [3]. Two conditions must be satisfied

1. TIR region embedded in NR region (pTIR < pNR)

2. WGM localized outside NR region (pm > pNR).

Parameter d/R Ra/R pNR pTIR
Value 0.5 0.2 0.7 0.67

4. Ray-wave correspondence and universality of far-field emission
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Comparison of far-field intensities computed via the boundary element method and ray-escape simulations (blue). Odd (red) and even
(green) symmetry modes of the inhomogeneous annular cavity are quasi-degenerate, and the far-field intensity is therefore computed
as I = |ψo|2 + |ψe|2 (black). (a) Resonant mode with unperturbed Q ' 104. (b) Resonant mode with unperturbed Q ' 105. (c) A
case closer to experimental reality (infrared vavelength, R = 50 µm) which is at present beyond the limit of our wave simulations.

The ray-escape and wave results agree quite well with respect to the dominant emission directions, even for relatively low wavenumbers.
The global shape for a given configuration displays universal behaviour regardless of the wavenumber regime as long as pm� pNR.

(a) n2 = 1.5 (b) n2 = 2.0

(c) n2 = 3.2

Fig. 3: Focal points of a circular cavity

5. How to improve collimation?
Ray-escape and wave results suggest that the triple-peaked far-field profile observed for
silica cavities is similar for an inner inclusion, regardless of the geometry.

A simple model based on paraxial ray-optics can help improve collimation. Circu-
lar cavities (the backbone of annular cavities) are approximated as paraxial lenses and
focal points are found. A point source placed at a focal point will result in highly
collimated emission. For a silica cavity, this point is located outside the boundary.

Promising designs
While this model is mostly accurate in the regimeRa� λ (“point” inclusion), it suggests
many interesting designs that might exhibit better emission directionality

�Fig. 3a: Replacing an inclusion by an exclusion (coupled silica cavities, photonic
molecules)

�Fig. 3b: Cavities with a defect on the boundary, e.g. [4]

�Fig. 3c: Silicon-On-Insulator (SOI) annular cavities.

6. Conclusions and outlooks
The ray-wave correspondence allowed us to infer universal
far-field properties of silica annular cavities. This permits
computation beyond the limit of wave simulations.

A simple geometric model was developed in order to help im-
prove emission directionality via new designs (modified
geometries as well as different refractive indices).

The next experimental step is to obtain reliable far-field
measures, while a numerical investigation of promising ge-
ometries/medium combinations is being made.
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