
A Stochastic Approach to the Study of Large Biological Neural Networks’ Dynamics
Vincent Painchaud1,3, Nicolas Doyon1,3,4 and Patrick Desrosiers2,3,4

1 Département de mathématiques et de statistique, Université Laval, Québec, Canada
2 Département de physique, de génie physique et d’optique, Université Laval, Québec, Canada

3 Centre interdisciplinaire en modélisation mathématique de l’Université Laval, Québec, Canada
4 Centre de recherche CERVO, Québec, Canada

Microscopic point of view – A continuous-time Markov chain

We consider a network of N neurons, whose states evolve
stochastically according to a Markov process. The state of a
neuron j at time t is a random variable X j

t with possible values:
0, representing the sensitive state,
1, representing the active state, and
i , representing the refractory state.

The allowed transitions and their associated rates are de-
scribed in Fig. 1. The transition rates 𝛽j and 𝛾j are both con-
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Fig. 1: States and tran-
sitions for neuron j.

stant, but the activation rate is a nonlinear function of the network’s state:
Neuron j activates at a constant rate 𝛼j only if its input exceeds its threshold 𝜃 j.

The evolution of the network’s state is ruled by a system of 3N − 1 differential equations.
Our goal is to reduce this system, but to go beyond the mean-field approximation.

Splitting in populations
We split the network into n populations sharing similar properties, as described in Fig. 2.
For each population J, we introduce analogs to the state of a neuron:

SJ, the sensitive fraction of the population,
AJ, the active fraction of the population,
RJ, the refractory fraction of the population.

Since SJ + AJ + RJ = 1, only two fractions of each population, AJ and RJ, are needed.

We then see the expected values of the AJ ’s and RJ ’s as dynamical variables. As ex-
pectations of products appear naturally when developing equations for mean population
behaviors, we also see covariances (including variances) of the AJ ’s and RJ ’s as dynam-
ical variables, and obtain a reduced system of n(2n + 3) differential equations.
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Fig. 2: (a) Network with n = 2 populations: excitatory (blue)
and inhibitory (red). (b) Schematic of the reduced network corre-
sponding to (a).

Macroscopic point of view – An ODE
Let BJ be the input in population J and F𝜃J be the cumulative distribution function of the
thresholds in J, assumed to be three times differentiable. We denote by 𝛼J the mean
value of the 𝛼j ’s in J, and follow the same pattern for other transition rates.

To simplify notation, let

AJ := E[AJ], RJ := E[RJ], SJ := E[SJ], and BJ := E[BJ],
and let CJK

XY := Cov[XJ,YK ] with X and Y standing for either A, R, S or B. For any
populations J and K (which can be the same), we have

¤AJ = −𝛽JAJ + 𝛼JF𝜃J (BJ)SJ + 𝛼J Cov[SJ, F𝜃J (BJ)] (1a)
¤RJ = −𝛾JRJ + 𝛽JAJ (1b)

¤CJK
AA = −(𝛽J + 𝛽K )CJK

AA + 𝛼K Cov[AJ,SK F𝜃K (BK )] + 𝛼J Cov[AK ,SJF𝜃J (BJ)], (1c)
¤CJK

RR = −(𝛾J + 𝛾K )CJK
RR + 𝛽JCJK

AR + 𝛽KCKJ
AR (1d)

¤CJK
AR = −(𝛽J + 𝛾K )CJK

AR + 𝛽KCJK
AA + 𝛼J Cov[RK ,SJF𝜃J (BJ)] (1e)

where the dot denotes time derivative.
I System (1) generalizes Wilson–Cowan’s model [2], which assumes that the AJ ’s and

RJ ’s are all independant, and sets the RJ ’s to their equilibrium solutions.
I System (1) is not closed. More approximations must be made in (1a), (1c) and (1e).

Moment closure – The naive approach

The simplest approach is to approximate F𝜃J (BJ) with a second-order Taylor expansion
around BJ, and neglecting all centered moments of order 3 of higher. This yields

Cov[SJ, F𝜃J (BJ)] ≈ F ′
𝜃J
(BJ)CJJ

SB + 1
2F ′′

𝜃J
(BJ)CJJ

BB, (2a)
Cov[XJ,SK F𝜃K (BK )] ≈ F𝜃K (BK )CJK

XS + F ′
𝜃K
(BK )SKCJK

XS, (2b)

where X stands for A or R. Then (1)–(2) define a dynamical system in Rn(2n+3), but
physiologically speaking, its solutions only make sense in a bounded subset ofRn(2n+3).

The naive approach is not enough
The naive approach will give rise to the following problems.
I Numerical integrations show that, in many cases, the system (1)–(2) has solutions

which are meaningless, physiologically speaking.
I In system (1)–(2), the long-term behavior of solutions can change if covariances are

considered. However, the behavior predicted with covariances may not be consistent
with the microscopic model. An example is given on Fig. 3.

Fig. 3: On top, a solution of the dynamical system (1)–(2). In the middle, a solution of (1)–(2) from
the same inital expectations as on top, but neglecting covariances from the start. On bottom, a sample
trajectory of the underlying Markov process. The same network parameters were used in all cases. The
labels E and I mean “excitatory” and “inhibitory”, respectively.

Moment closure – Other possible method
System (1) could also be closed by finding other approximations to the expectations
E[SJF𝜃J (BJ)] and E[XJSK F𝜃K (BK )], where X stands for A or R, in such a way that
they stay bounded between 0 and 1. We are currently studying this avenue.
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