

Controlling transport properties in dielectric billiards

Context

Dynamical tunneling in quantum systems of more-than-onedegree-of-freedom exhibits many features lacking from the well-known one-degree-of-freedom tunneling. One of those new phenomena is Chaos-Assisted Tunneling (CAT) which occurs when the interaction between two "regular" states is enhanced by the proximity of a third "chaotic" state.

Out of the many fields that will benefit improvements in understanding this phenomenon, optics is one that could lead to important technological advances. We propose a simple physical model to study CAT in optical microcavities.

Interaction models

When states of a given system interact by dynamical tunneling, their eigenvalue generally exhibits avoided-crossings through parametric modification. To understand this phenomenon, one can model the system near the interaction with a local interaction matrix. Two important cases are presented below: direct tunneling and CAT.

Direct tunneling

Interaction of 2 states $|E_1\rangle$ and $|E_2\rangle$

- Control parameter: α
- Unperturbated levels: $E_1 = -E_2 = \alpha$
- Local interaction matrix:

$$\mathbf{M}_{Direct} = \begin{pmatrix} E_1(\alpha) & v_{12} \\ v_{21} & E_2(\alpha) \end{pmatrix}, \quad (1)$$

Fig. 1: Direct coupling between two locally isolated states.

- $v_{12} = v_{21}^*$: coupling strength
- Energy levels: $E_{\pm} = \pm \sqrt{\alpha^2 + v_{12}v_{21}}$, anti-crossing.

Chaos-Assisted Tunneling (CAT) Interaction of 3 states: $|E_1\rangle$ and $|E_2\rangle$ are "regular" and $|E_C\rangle$ is "chaotic"

- Regular states' control parameter: α
- Chaotic state's control parameter: λ
- Vanishing direct tunneling: $v_{12} = v_{21} = 0$
- Local interaction matrix:

$$\mathbf{M}_{CAT} = \begin{pmatrix} E_1(\alpha) & 0 & v_{1c} \\ 0 & E_2(\alpha) & v_{2c} \\ v_{c1} & v_{c2} & E_c(\lambda) \end{pmatrix}, \qquad (2)$$

 $v_{jc} = v_{cj}^*$: coupling strength

• Energy levels (perturbative sol'n): Regular levels' splitting increases with proximity of chaotic level.

Tomsovic, S. J. Phys. A, 1998, 31, 9469-9481

Julien Poirier, Guillaume Painchaud-April, Louis J. Dubé

Département de Physique, de Génie Physique, et d'Optique, Université Laval, Québec, Canada

Physical set-up

The physical problem of interest concerns the time-independent monochromatic electric field $\psi(\mathbf{r})$ inside an optical microcavity. In this case, Maxwell's equations reduce to Helmholtz equation

$$\left[\nabla^2 + n^2(\mathbf{r})k^2\right]\psi(\mathbf{r}) = 0, \qquad (3)$$

- Transverse magnetic polarization: $\mathbf{E}(\mathbf{r}) = \psi(\mathbf{r})\mathbf{\hat{a}}_z$
- Inhomogeneous refractive index: $n(\mathbf{r})$
- Wavenumber: k.

Full-wave solution (finite k)

Closed cavity scenario ("perfectly conducting boundary")

- Dirichlet BCs: $\psi(\mathbf{r})|_{\partial\Omega} = 0$
- Discrete set of eigenvalues: $\{k_m\} \in \mathbb{R}$
- Sol'n: Finite Element Method.

Semiclassical limit

The limit $k \to \infty$ leads to semi-classical dynamics:

- Birkhoff billiards: Specular reflection
- Quantification: Optical Path Length (OPL).
- Poincaré section on the boundary: $(s, p = \sin \chi)$
- Husimi's distribution $F^H(s, p)$: A distribution in canonical coordinates associated with $\psi(\mathbf{r})$; establishes ray-wave correspondence

Crespi, B. et. al. Rev. E, 1993, 47, 986-991

Inhomogeneous ellipse

The proposed geometry consists in an ellipse with constant refractive index containing two circular "holes", as Fig. 2depicts. This system features many parameters:

Fig. 2: Elliptic cavity featuring 2 holes. The whole structure may be regarded as an inhomogeneous cavity of integrable shape.

Ellipse

- \bullet Area: A
- Eccentricity: ϵ
- Refractive index: n_0 .
 - Two "holes"
- Positions: $x_1 = -x_2 \equiv x_0$
- Radii: $R_{1,2}$
- Refractive indexes: $n_{1,2} = 1$.

This geometry supports 3 distinct trajectory types

- Regular with elliptic caustic (type 1)
- Regular with hyperbolic caustic (type 2)
- Chaotic.

Controlling CAT follows a simple procedure:

1. Find a weak coupling between 2 regular states (direct coupling) using ϵ

Fig. 4 illustrates a desirable configuration of eigenvalues in order to observe and control CAT. This set-up is further analyzed in the next section.

Control parameters

The different parameters are chosen such that the 3 regions of phase space are well separated (Fig. 3). One then considers the effects of the parameters on the interaction scenarios.

Direct coupling

The parameter ϵ affects all state types. However, regarding the classical dynamics of the regular modes, ϵ

• Increases the OPL of type 1 trajectories • Decreases the OPL of type 2 trajectories.

One may then distinguish type 1 from type 2 by their parametric dependency. This behaviour will generate avoidedcrossings between type 1 and type 2 states: $\epsilon \sim \alpha$. CAT

Since the ellipse is y-axis symmetrical, modifying $R_2 \leq R_1$

• Does not affect regular states (types 1 and 2) • Affects only chaotic states (type 3).

One may then consider matrix (2) as a valid model for local description near a 3 states interaction: $R_2 \sim \lambda$.

2. Steer a neighboring chaotic state close to the interaction region using R_2 .

Fig. 4: Typical eigenvalue behaviour with regards to parameter ϵ near a 3 states interaction region. Husimi's distribution relates $\psi(\mathbf{r})$ to the corresponding phase space domain. Constant $R = \sqrt{A}$ is a characteristic length.

Fig. 3: Phase space for $A = \pi, \epsilon = 0.615, n_0 =$ $1.5, x_0 = 0.679, R_1 = 0.1414$ and $R_2 = 0.035$ and typical trajectory for the 3 regions of phase space.

The adiabatic behaviour of one chaotic state over a range of $R_2 \in [0.530, 0.247]$ is investigated: the chaotic state intersects the avoided-crossing between two regular states. For CAT to occur, the splitting between the regular doublet should vary as the chaotic level approaches.

Fig. 5: R_2 parametric dependency of the eigenstates of the triplet of Fig. 4. Each figure presents a different scenario : (a) the chaotic level approaches the regular doublet (b) the chaotic level leaves the regular doublet (c) all 3 levels are strongly interacting. For (a)-(b), two spectra are superimposed in order to show the levels' dynamics, the black dots identify the higher R_2 value.

Fig. 6: The measured minimal splitting between the two regular states as the parameter R_2 is varied. This range of parameter is the same as shown on Fig. 5. For $R_2 \in [0.035, 0.039]$, those three modes are strongly interacting and the minimal splitting between the two regular states cannot be measured.

Conclusion

CAT in action

• A method to predict and control CAT in a real physical system has been presented.

• Dynamical tunneling connects different phase space regions. • Same behaviour should appear for the equivalent open system. This could lead to control of directional emission.