Phase space as an optical engineering tool in open microcavity designs
Guillaume Painchaud, Julien Poirier, Louis J. Dubé
Département de Physique, de Génie Physique, et d’Optique, Université Laval, Québec City, Canada

Physical set-up
Dielectric microcavities have attracted considerable attention recently due to promising technological advances in sensing and laser applications [1]. These resonators consist in a thin slab of dielectric material whose boundaries’ geometry and refractive index define the behaviour of the supported light field (Figs. 1 and 2). Light is emitted in the far-field.

Wave / Classical dynamics
For a monochromatic electric field normal to the plane of a thin cavity, the corresponding scalar electric field ψ(r) is solution of Helmholtz’s wave equation

\[\nabla^2 \psi + k^2 \psi = 0, \quad r \in \mathbb{R}^2 \]

(1)

- \(n(r) \): refractive index; \(k \): wavenumber
- BCs: Continuity of the field and its derivative
- Sol’n: Scattering matrix formalism.

Setting \(k \rightarrow \infty \) leads to semi-classical limit:

- Spectral reflection at boundary
- Refraction: \(n_\text{in} \sin \chi = n_\text{out} \sin \chi_\text{r} \)
- Total Internal Reflection (TIR) when

\[|\sin \chi| > n_\text{in}/n_\text{R} \]

(2)

- BILLIARD system: Manifolnd dynamics
- Poincaré section on external boundary
- Canonical coordinates: \(s \) (arc-length along boundary) and \(p = \sin \chi \) (linear momentum).

Bridging the gap
Correspondence between classical and wave dynamics may be drawn using Husimi’s distribution \(F^H(s,p) \) [2]:

- \(F^H(s,p) \) associates \(\psi(s) \) with a distribution in phase space
- Canonical coordinates \(s,p \) on Poincaré section

A paradigm for mixed system: The annular cavity
Because of the seemingly impossibility to meet both high directionality and storage capacity requirements, we consider mixed dynamics systems supporting both regular regions and a “chaotic sea”. One particular member of this large set of systems is the annular cavity [3] (Fig. 6).

Harnesing the power flow: Parametric control
Figs. 8-9 show that it is possible to trigger anisotropic emission. We can now “control” the emission by modifying hole radius \(s \) while keeping \(d = \text{const} \). (\(d = 0.7 \))

- Set of initial conditions around \(|s| = (d + a)/R \)
- \(F^H(s,p) \) of mode (27,3) is restricted to emission region.

Extreme scenarios
The properties of the field contained in dielectric cavities strongly depend on the boundary geometry:

- Disc cavity (Fig. 4): Non-directional emission / High energy containment
- Completely regular phase space
- Sol’n of eq. (1) inside cavity: \(\psi_\text{in} \sim J_0(\alpha_\text{in} kr) \cos \theta \)
- Husimi’s distribution is a gaussian function centered at \(p = \alpha_\text{in} k R \) for \(s = R \).

- Stadium cavity (Fig. 5, \(k > 0 \)):
- Highly directional emission / Poor energy containment
- Completely chaotic phase space
- Light emission guided by unstable manifolds [3].

Fig 6: Schematic view of the annular cavity. A “hole” with refractive index \(n_\text{in} \) is inserted in a disc cavity: annular space.

Fig 7: Regions of phase space associated with regular and “chaotic” trajectories. Inset: Corresponding domain in (s,p) space.

Fig 8: Extremes of \(F^H(s,p) \) for \(k = 8, \alpha_\text{in} = 0.1, R = 1, s = 0.2 \); the chaotic region is embedded inside an annular region: Right, isotropic emission in the far-field; “chaotic” modes (27,3) and resonance level remain mostly unaffected.

Fig 9: Phase space with \(F^H(s,p) \) and far-field emission for \(a = 0.1 \) (top), \(a = 0.5 \) (middle) and \(a = 0.3 \) (bottom).

- Classical emission: Extension of unstable manifolds in emission region
- \(F^H(s,p) \) follow unstable manifolds: Emission modified.

Through the modification of phase space, we may then

- Induce anisotropic emission of the disc’s modes and
- Modify the far-field emission patterns
- While keeping high energy storage levels.