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Future directions
• Inclusion of clustering.

•Dynamical networks that evolve in time.

•Co-evolution of networks and dynamics (retroaction of pro-
cess dynamics on network topology).

•Co-infection (interaction of more than one disease).

•Networks of networks.

Work in progress

Mapping generations to continuous time

This is an add-on to Contribution A aiming at mapping
this discrete-time generation based formalism to ob-
servables varying continuously in time.

Basically, we get the infected proportion of each generations
at any given time then translate this to the desired observable.
Complications occur when one introduces finite-size.

Genuine continuous-time formalism

This is an alternative to Contribution A aiming for a true
continuous time evolution formalism on finite-size net-
works with heterogeneous degree distribution.

We have designed a high-dimensional ODE system that fulfil
these requirements. Some properties of the formalism indi-
cate that an analytical solution might be possible for impor-
tant special cases.

Types of links

We extend the PGF formalism of Contribution B in order
to include different types of links.

Similarly to the “type of nodes” approach of Contribution
B that needs a list of degrees for every node type, this ap-
proach requires a list of degrees for every link type (types of
nodes are a special case of this formalism). In addition to
allow new network structures, this could make the formalism
particularly well adapted for survey data.

Types of nodes
[Allard et al. 2009]

Individuals differ from one another (e.g. age, gender, so-
ciocultural group, . . . ). This affects the dynamics in two
important ways by:

• introducing correlations on how the nodes are linked to
one another (network structure) and

•modifying the probability of transmission between
connected nodes.

We use a PGF formalism [Newman 2002] generalized for
many different types of nodes.

type 1: , type 2: , type 3: , . . .

This allows for new net-
work structures where
the degree kj of a node
must be specified for each
possible type j.

· · ·
T11 T12 T13 · · ·
T21 T22 T23 · · ·
T31 T32 T33 · · ·

...
...

...
...

. . .

Different probability of
transmission are consid-
ered for each ordered pair
of infectious and suscepti-
ble node types.

Using a 2 types network, simulations (symbols) confirm ana-
lytical results (lines) for outbreaks. . .

. . . as well as for large-scale epidemics!

Contribution B
Formalism for dynamics on networks of multiple
types of nodes with heterogeneous degree
distribution.

Information about the simulations

Network of N = 105 nodes (see paper for degree distribution). The trans-

mission probability matrix is T = γ

[
0.95 0.98
0.48 1.00

]
.

Generations and finite-size
[Noël et al. 2009]

Time is crucial for intervention scenarios. For example, what
if a X% efficient vaccine is discovered after Y months?

Discrete time approach: generations.

. . .

g = 0 g = 1 g = 2 . . .

We first use an infinite-size network approximation based on
a PGF formalism [Newman 2002] adapted to include gen-
erations [Marder 2007] then add corrections for the finite
size of the network.

The results for the final state (g = ∞) of this finite-size al-
gorithm also compares favourably with those of other for-
malisms.

Contribution A
Formalism for discrete time evolution on
finite-size networks with heterogeneous de-
gree distribution.

Information about the simulations

Network of N = 1000 nodes. Each node has probability pk ∝ k−2 e−k/5 to

be of degree k. In the first figure, the transmission probability is T = 0.8.

Fundamentals

At a given time, each individual is in a specific state.

Susceptible individuals do not have the disease but
can get infected by contact with infectious.

Ifectious individuals have the disease and can trans-
mit it to susceptibles through contacts.

Removed individuals neither have nor can get the
disease. This include death, quarantine and recovery by
immunization.

In traditional compartmental models, anyone can have con-
tact with anyone (the fully-mixed approximation) and the
dynamics is governed by “mass-action” ODE (S + I + R =
N = constant).

Ṡ = −βSI
İ = βSI − µI
Ṙ = µI

In network models, contacts are restricted
by the network structure.

Many real-world networks are highly heterogeneous in de-
gree (e.g. STIs). The formalisms presented here hold for
random networks with arbitrary degree distribution.

Motivation

Efficient tools are required by decision
makers in matter of disease propagation to:

• predict and quantify risks;

• optimize prevention methods; and

• evaluate intervention scenario efficacy.

Numerical simulations? Part of the solution. . .

Pros

•Generality
}

Describe the dynamics,
program what you have described!•Availability

Cons

•Computation time (some simulations “impossible”).
•Lack of insight (compared to analytical solutions).

Our goal is to provide analytical tools that are as general
and as close to the real-world system as possible.
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