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Problem and contributions

Synchronization has attracted much attention over the last decade, partly due to the intrigu-
ing chimera states, a state where coherence and incoherence cohabit. Yet the effects of network
structure on the various synchronization states are still mysterious. To decipher the impact
of mesoscale structure of networks on synchronization, we study, both theoretically and numeri-
cally, the dynamics of Kuramoto oscillators interacting on networks drawn from the stochastic
block model (SBM). This allows to:

• Find new regions in the structural parameter space where chimeras exist;

• Predict the critical coupling at which synchronization can occur;

• Measure the effects of structure on the chaotic behavior of chimeras.

Kuramoto model

There are n oscillators interacting on a network of adjacency matrix A and evolving according to

θ̇i = ωi +
σ

n

n∑
i=1

Aij sin (θj − θi − α)

• θi is the phase of the ith oscillator;

• ωi is the natural frequency of the ith oscillator;

• σ is the coupling constant;

• α is a phase-lag.

Structure-function parameters

Structural parameters

• Two asymmetric blocks (communities) of sizes

n1 = f1n and n2 = f2n.

• Block indices

B1 = {1, ..., n1} and B2 = {1, ..., n2}.

• Asymmetry is characterized by the parameters

f =
f1

f2
=
n1

n2
and β =

n1(n1 − 1) + n2(n2 − 1)

n(n− 1)
.

• Probability of connecting nodes inside and outside the
same block: pin and pout, respectively.

•Density space has coordinates

ρ = βpin + (1− β)pout, ∆ = pin − pout.

Synchronization measures

•Macroscale order parameter

R(t) =
∣∣∣1
n

n∑
j=1

eiθj(t)
∣∣∣

It describes the global behavior of the oscillators.

•Mesoscale order parameter

Rµ(t) =
∣∣∣ 1

nµ

∑
j∈Bµ

eiθj(t)
∣∣∣

It describes the behavior of the oscillators in each block.

Fig. 1: Typical network in the two-
block SBM
There are n = 500 nodes with n1 = 300 and
n2 = 200 (f = 1.5, β ≈ 0.52). These parame-
ters were also used in Fig. 2, 3 & 4.

Fig. 2: What is a chimera state?
It is a state where one block is synchronized
(R1 = 1) and the other block is partially syn-
chronized (R2 ≡ RI < 1).

• Is it possible to have chimeras for a particular graph drawn from the SBM ensemble?
Yes, if we relax the definition. We observe states where neither R1(t) and R2(t) are perfectly
synchronized, but where these order parameters oscillate around different values. Note also that
in the dense regime A ≈ 〈A〉, the mean SBM adjacency matrix. For this reason, simulations
in Fig. 2, 3 & 5 use 〈A〉 instead of A.

• How to choose the initial conditions to get a chimera?
We need to draw multiple initial conditions from a uniform distribution for each point in the
parameter space. The number of observed chimeras per initial condition is not equal everywhere.

• How does the size of the chimera region (see Fig. 3) evolve as the structural parameters change?
It evolves in a nonlinear way when we increase f . For α = 1.45, the area of the chimera region
in the density space is smaller for f = 1 than for f = 1.5. However, the area for f = 1.5 is
bigger than for f = 2.

New chimera regions

To obtain the analytical results we

1. Take the continuum limit;

2. Introduce a continuity equation;

3. Apply the Ott-Antonsen Ansatz [1];

4. Perform a linear stability analysis.

The ensuing reduced dynamics is then
characterized by two time-dependent vari-
ables: rI(t) as the mesoscale order parameter

of the incoherent community and φ(t) = φ1 − φ2
as the mesoscale phase difference. A linear rela-
tionship emerges between ∆ and ρ

∆ =
ρ [rI cosα + f cos(φ− α)]

βf cos(φ− α)− (1− β)rI cosα
,

which we then use to detect possible bifurcations
(here Hopf and saddle-node). The results are val-
idated numerically in Fig. 3.

Fig. 3: Chimeras in the density space
(Top) Each point represents the value of 〈RI〉t, the time average of the mesoscale order parameter of the incoherent
community. Parameters: f = 1.5, α = 1.45, ωi = 0 ∀i. (Bottom left) Breathing chimera at (ρ,∆) = (0.75, 0.3)
obtained from the reduced dynamics. (Bottom right) Stable chimera at (ρ,∆) = (0.8, 0.25) obtained from the reduced
dynamics. Bottom figures trajectories have the same initial condition ( rI(0) , φ(0) ) = (0.48, 0.24).

What about bifurcations ?

•HomoclinicHomoclinicHomoclinicHomoclinicHomoclinicHomoclinicHomoclinicHomoclinicHomoclinicHomoclinicHomoclinicHomoclinicHomoclinicHomoclinicHomoclinicHomoclinicHomoclinic: A breathing chimera (limit cycle) encounters a saddle point. It is obtained
numerically from the integration of the Kuramoto model.

•Hopf (supercritical)Hopf (supercritical)Hopf (supercritical)Hopf (supercritical)Hopf (supercritical)Hopf (supercritical)Hopf (supercritical)Hopf (supercritical)Hopf (supercritical)Hopf (supercritical)Hopf (supercritical)Hopf (supercritical)Hopf (supercritical)Hopf (supercritical)Hopf (supercritical)Hopf (supercritical)Hopf (supercritical): A stable chimera (fixed point) loses stability and trajectories converge
to a stable breathing chimera. It is obtained analytically by taking the trace of the Jacobian
matrix of the reduced dynamics equal to 0.

• Saddle-nodeSaddle-nodeSaddle-nodeSaddle-nodeSaddle-nodeSaddle-nodeSaddle-nodeSaddle-nodeSaddle-nodeSaddle-nodeSaddle-nodeSaddle-nodeSaddle-nodeSaddle-nodeSaddle-nodeSaddle-nodeSaddle-node: A stable chimera is created or destroyed. It is obtained analytically by taking
the determinant of the Jacobian matrix of the reduced dynamics equal to 0.

Critical coupling and 〈A〉 spectrum

When the coupling σ is below a critical value
σcrit, the oscillators cannot synchronize. To
predict σcrit, we use the exact expression for
the largest eigenvalue [2] of the mean
SBM adjacency matrix. The theoretical value
depends mainly on the structural parameter:

σcrit =
4π−1g(0)−1

pin +
√

(f1 − f2)2p2
in + 4f1f2p

2
out

where g(ω) is the density of natural frequen-
cies (ex. Lorentzian, Gaussian). This predic-
tion is validated numerically in Fig. 4.

Fig. 4: Transition to global synchronization
Time-averaged global order parameter R versus the cou-
pling ratio σ/σcrit. Each point represents a different simu-
lation with randomly chosen adjacency matrices and initial
conditions.

Chaos in chimera dynamics

The chimera states obtained from the same initial con-
ditions only exist in a very restricted region of the den-
sity space. To gain more insight on the evolution of the
chimeras in that region, we investigate the variation,
along the ρ axis, of the extrema of the mesoscale
order parameter [3] as well as the maximum Lya-
punov exponent. As shown in Fig. 5, the extrema
exhibit different behaviors:

• Stable periodic orbits;

• Period doubling;

• Chaos.
Fig. 5: Chaos in the extrema dynamics
(Top) Extrema of the mesoscale dynamics versus ρ. (Bottom) Largest Lyapunov exponent in the evolution of the
maxima of R2 = RI for each density ρ. The vertical dotted line is at ρ = 0.5155 and represents the transition from
chaotic to periodic solutions. Parameters: n1 = n2 = 128, f = 1, β ≈ 0.5, α = 1.47, ωi = 0 ∀i and ∆ = 0.28.
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