Geometric evolution of complex networks

Charles Murphy¹, Antoine Allard^{1,2}, Edward laurence¹, Guillaume St-Onge¹ and Louis J. Dubé¹

Département de physique, de génie physique, et d'optique, Université Laval, Québec, Canada
Centre de Recerca Matemàtica, Bellaterra (Barcelona), Spain

Dynamica research group

Summary

Real complex networks feature scale-free degree distribution $P(k) \sim k^{-\gamma}$, high clustering coefficient and assortativity (disassortativity). Whereas the first two properties are well reproduced by some network growth mechanisms, such as **preferential at**tachment (PA) [1] and network geometry [2], it is fair to say that assortative mixing patterns have, for the most part, escaped a systematic description.

- We present a growing geometric networks model where new nodes connect **homogeneously** with the existing nodes.
- We calculate the model's degree distribution, degree correlation and clustering coefficient via a hidden variable framework.
- The parameters of the model can be tuned to reproduce any degree distributions and assortative mixing patterns.

Model

Growth process

Consider the surface of a $(\mathcal{D}+1)$ -dimensional sphere, noted $\mathbb{S}^{\mathcal{D}}$, as the embedding space of the geometric networks generated. The growth process goes as follow:

- 1) At time $t \geq 1$, a new node (noted t) is assigned a random position x_t uniformly distributed on $\mathbb{S}^{\mathcal{D}}$.
- 2) Node t connects with the existing nodes s < t with timevarying connection probability $p[x_t, x_s; \mu(t), \beta]$.
- 3) Steps 1 and 2 are repeated until a total of N nodes has been reached.

Fermi-Dirac connection probability

We choose the following **Fermi-Dirac** connection probability:

$$p[x, y; \mu(t), \beta] = \frac{1}{\exp\{\beta[d(x, y) - \mu(t)]\} + 1}$$

 \circ $\mu(t)$: chemical potential

 \circ d(x,y): distance between x and y on $\mathbb{S}^{\mathcal{D}}$.

 \circ β : inverse temperature

Illustration of the growth process on S^2 : $\beta \to \infty, d_{ts} \equiv d(x_t, x_s).$ The gray area corresponds to a region centered on xwhere $p[x, y; \mu(t), \beta]$ is non

Birth of node t' > tBirth of node t

Analytical results

With the hidden variable framework of [3], where the variables are h = (x, t), a **detailed analysis** of the model's structural properties becomes accessible.

Degree sequence

We calculate the expected degree $\kappa(\tau)$ of each node with respect to its normalized birth time $\tau \equiv t/N$:

$$\kappa(\tau) = N \left[\tau n(\tau) + \int_{\tau}^{1} n(\tau') d\tau' \right]$$

where

$$n(\tau) = \int_{\mathbb{S}^{\mathcal{D}}} p[x_t, y; \mu(\tau N), \beta] \rho \, dy$$

is the averaged probability that node t connects to any existing nodes, with ρ as the density of nodes on $\mathbb{S}^{\mathcal{D}}$. Node t effectively connects **homogenouesly** with probability $n(\tau)$ with any existing nodes.

• The chemical potential $\mu(t)$ can be chosen to reproduce any degree sequences.

Degree correlation

We use the average degree of the nearest neighbors (ANND) $\kappa_{nn}(\tau)$ to characterize the degree correlation given by

$$\kappa_{nn}(\tau) = N \left[\int_0^{\tau} \frac{\kappa(\tau')n(\tau)}{\kappa(\tau)} d\tau' + \int_{\tau}^1 \frac{\kappa(\tau')n(\tau')}{\kappa(\tau)} d\tau' \right]$$

• The **ordering** in which nodes appear in the network affects the degree correlation.

Clustering coefficient

We find an integral expression of the local clustering coefficient $c(\tau)$ of node t and investigate two limit

• Geometric phase $(\beta \to \infty)$: $\langle c \rangle = \mathcal{O}(1)$;

• Random phase $(\beta \to 0)$: $\langle c \rangle = \mathcal{O}(N^{-1})$.

Phase transition

A phase transition occurs in the clustering coefficient as a function of the inverse temperature β . A similar result was found in Ref. [2]. We estimate the **critical** threshold to $\beta_c \sim 1$.

- When $\beta < \beta_c$, the networks are random;
- When $\beta > \beta_c$, the networks are geometric:
- The phase transition is present for any degree sequences.

Phase transition of the clustering coefficient for scale-free networks $(\kappa(\tau) \propto \tau^{-\alpha})$: $N = 10^4$, $\alpha = 0.5$ $(\gamma = 3), \langle k \rangle = 50$. The dashed lines correspond to analytical solutions for the cold limit $(\beta \to \infty)$ and the hot limit $(\beta \to 0)$, and $\delta \sim \frac{N}{2}$ corresponds to the clustering saturation point. Results averaged over 20 instances.

Preliminary results: Inference

Using a MCMC algorithm, we sample scale-free networks histories and reinfer the parameters $\mu(t)$ with only the structure as a prior information.

- \circ $\mu_{infer}(t)$ is strongly correlated with $\mu_{\rm real}(t)$;
- A similar procedure could be used on real complex networks:
- Geometric evolution is an effective growth process

Inference of $\mu(t)$ for synthetic scale-free geometric networks $(\kappa(\tau) \propto \tau^{-\alpha})$: $N = 10^3$, $\alpha = 0.83$ $(\gamma = 2.2), \langle k \rangle = 35, \beta = 10^6$. The inset shows the inference of the network history.

Network History

Let us consider a generated network with a specific degree sequence $\{k_i\}$. We define the **network history** as

$$H = \{\tau_i\}, \text{ such that } \kappa(\tau_i) = k_i$$

where $\tau_i \in [0, 1)$.

- \circ Although different histories H, with an appropriate choice of $\mu(t)$, can be made to respect $\{k_i\}$, they lead to different structural properties;
- The selection of H can accommodate our need for **assortative** or disassortative behaviour.

Degree correlation (ANND) for scale-free networks with different histories. (top) An decreasing degree ordered history (assortative)—the high degree nodes are old while the low degree ones are young $(\kappa(\tau) \propto \tau^{-\alpha})$ (bottom) An increasing degree ordered history (disassortative)—the high degree nodes are young while the low degree ones are old $(\kappa(\tau) \propto (1-\tau)^{-\alpha}).$ We used $N = 10^4$, $\alpha = 0.83$ $(\gamma = 2.2), \langle k \rangle = 6$ and $\beta = 10^6$. Results averaged over 48 instances.

 \sim $\alpha = 0.8, \ \langle k \rangle = 5, \ N = 10^5, \ \beta = 10^6$

birth time (τ)

Expected degree of each node τ for

scale-free networks $(\kappa(\tau) \propto \tau^{-\alpha})$:

over 96 instances.

 $N=10^5, \, \gamma=1+1/\alpha$. Results averaged

charles.murphy.1@ulaval.ca

dynamica.phy.ulaval.ca

Bibliography

This work is presented in detail in:

C. Murphy et al., arXiv:1710.01600 (2017).

Boguñá, Phys. Rev. E 82, 036106 (2010).

[1] A.-L. Barabasì and R. Albert, Science **286**, 509 (1999). [2] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat and M.

[3] M. Boguñá and R. Pastor-Satorras, Phys. Rev. E **68**, 036112 (2003).

Fonds de recherche

et les technologies

sur la nature

