Summary

Real complex networks feature scale-free degree distribution
P(k) ~ k=7, high clustering coefficient and assortativity (disas-
sortativity). Whereas the first two properties are well reproduced
by some network growth mechanisms, such as preferential at-
tachment (PA) [1] and network geometry [2], it is fair to say
that assortative mixing patterns have, for the most part, escaped
a systematic description.

o We present a growing geometric networks model where new
nodes connect homogeneously with the existing nodes.

o We calculate the model’s degree distribution, degree correla-
tion and clustering coeflicient via a hidden variable framework.

o The parameters of the model can be tuned to reproduce any
degree distributions and assortative mixing patterns.

Model

Growth process

Consider the surface of a (D+1)-dimensional sphere, noted SP, as
the embedding space of the geometric networks generated. The
growth process goes as follow:

1) At time ¢t > 1, a new node (noted t) is assigned a random
position x; uniformly distributed on S™.

2) Node t connects with the existing nodes s < t with time-
varying connection probability p|zs, xs; u(t), B].

3) Steps 1 and 2 are repeated until a total of N nodes has
been reached.

Fermi-Dirac connection probability

We choose the following Fermi-Dirac connection probability:

1
exp {Bld(z,y) — p(t)]} +1

plz, y; u(t), 8] =

o u(t): chemical potential o d(x,y): distance between x

: and y on SP.
o [3: inverse temperature

Illustration of the
growth process on S:
B — 00, dis = d(xt, xs).
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Analytical results

With the hidden variable framework of [3], where the variables are h = (x,t), a detailed analysis of

the model’s structural properties becomes accessible.
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Degree sequence
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We calculate the expected degree x(7) of each node with respect ©

to its normalized birth time 7 =t/N:
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1
k(T) =N [Tn(T) —I—/ n(T’)dT’]
where 100 =
n(7) = /D plze,y; p(TN), Blp dy | | | |
> 0.0 0.2 0.4 0.6 0.8 1.0
is the averaged probability that node ¢ connects to any existing birth time (7)
nodes, with p as the density of nodes on SP. Node t effectively Expected degree of each node 7 for

connects homogenouesly with probability n(7) with any
existing nodes.

o The chemical potential u(t) can be chosen to reproduce any
degree sequences.

Degree correlation

scale-free networks (k(7) oc 77 %):
N =10°, vy = 1 + 1/c. Results averaged
over 96 instances.

We use the average degree of the nearest neighbors (ANND) k,,,, (7) to characterize the degree correlation

given by

o) = 8] [N g [ N ]

o The ordering in which nodes appear in the network affects the degree correlation.

Clustering coeflicient

We find an integral expression of the local clustering coefficient ¢(7) of node t and investigate two limit

cases.
o Geometric phase (5 — 00): (¢) = O(1); o Random phase (8 — 0): (c) = O(N™1).
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define the network history as Z 10! = histories.
< (top) An decreasing degree
ordered history
H = {’7'7;}, such that IQ(T?;) — kz . (assortative)—the high
10 1 | degree nodes are old while the
10° 10! 102 low degree ones are young
where 7; € [O, 1) 104 = (k(T) o 77 9).

o Although different histories H, with

an appropriate choice of u(t), can be
made to respect {k;}, they lead to
different structural properties:;
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o The selection of H can accommodate | ==
our need for assortative or 100 - -
disassortative behaviour. 10° 10* 10? 10°

degree (k)

(bottom) An increasing degree
ordered history
(disassortative)—the high
degree nodes are young while
the low degree ones are old
(k(T) x (1 —71)"%).

We used N = 104, a = 0.83

(v =2.2), (k) =6 and

B = 10°. Results averaged
over 48 instances.
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Phase transition

A phase transition occurs in the
clustering coefficient as a function
of the inverse temperature 5. A

average clustering coefficient ({c))
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similar result was found in Ref. [2].
We estimate the critical
threshold to 8. ~ 1.
o When 8 < ., the networks are 02 100 107 10/ 10f
r andom* inverse temperature ()
Y
Phase transition of the clustering
o When 6 > 567 the networks are coeflicient for scale-free networks

(k(T) o T7): N =10% a=0.5
(v = 3), (k) = 50. The dashed lines

oy . correspond to analytical solutions for the
o The phase transition is present cold limit (8 — oo) and the hot limit
for any degree sequences. (8 — 0), and § ~ 4 corresponds to the
clustering saturation point. Results
averaged over 20 instances.
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Preliminary results: Inference

Using a MCMC algorithm, we _
sample scale-free networks histories o0 w—F=mas p
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o A similar procedure could be
used on real complex
networks;

. Co.frelatio'n on u(t): 0.921
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fhreal(t)
o Geometric evolution is an Inference of n(t) for synthetic
effective growth process. scale-free geometric networks
(k(T) x 77*): N =10%, a = 0.83
(v = 2.2), (k) = 35, 8 = 10°. The inset
shows the inference of the network history.
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