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Microscopic model

Weconsider a network of# neurons, whose states evolve
stochastically according to a Markov process. The state
of a neuron 9 at time C is a random variable -9(C) with
possible values:

0, representing the sensitive state,
1, representing the active state, and
8, representing the refractory state.

The allowed transitions and their associated rates are
described in Fig. 1. The transition rates � 9 and �9 are both
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Fig. 1: States and tran-
sitions for neuron 9.

constant, but the activation rate is a nonlinear function of the network’s state:
Neuron 9 activates at a constant rate 
 9 only if its input exceeds its threshold �9.

The evolution of the network’s state is governed by 3# differential equations.

Dimension reduction
We split the network into = populations sharing similar properties, as described
in Fig. 2. For each population �, we introduce analogs to the state of a neuron:
(� , the sensitive fraction of the population,
�� , the active fraction of the population,
'� , the refractory fraction of the population.

Since (�+��+'�=1, only two fractions of eachpopulation,�� and'� , are needed.

We then see the expected values and covariances (including variances) of the
��’s and '�’s as dynamical variables, and obtain a reduced system of =(2= + 3)
differential equations.
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Fig. 2: (a) Network with = = 2 populations: excitatory
(blue) and inhibitory (red). (b) Schematic of the reduced
network corresponding to (a).

Reduced dynamical system

Let �� be the input in population � and ��� be the cumulative distribution
function of the thresholds in �, assumed to be three times differentiable. We
denote by 
� the mean value of the 
 9’s in �, and follow the same pattern for
other transition rates.

To simplify notation, let
A� := E[��], R� := E['�], S� := E[(�], and B� := E[��],

and let C� 

-.
:= Cov[-� , . ] with - and . standing for either �, ', ( or �. For

any populations � and  (which can be the same), we have
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where the dot denotes time derivative.

Remarks
I System (1) generalizes Wilson–Cowan’s model [3].
I System (1) is defined inR=(2=+3), but physiologically speaking, the dynamical

variables only make sense in a bounded subset of this space, which we call
the physiological domain.

One population

Here we denote by 2 the connection coefficient from the population � to itself.
Theorem. System (1) always has a fixed point with zero covariances within the
physiological domain, and any such fixed point is stable if �� > 
�2 sup �′�� .

Theorem. All fixed points of (1) within the physiological domain have zero
covariances if �� > 
�2 sup �′�� .

Theorem. System (1) always has a fixed point with non-zero covariances.

Two populations

With a network as in Fig. 2, we observe that considering covariances can change
qualitatively the long-term behavior of the system: as shown in Fig. 3, it ex-
pands the domain of parameters where limit cycles are possible.

Fig. 3: Two solutions of the reduceddynamical systemobtainednumerically from the same initial
expectations, but considering non-zero covariances for the solution on top, and neglecting them
from the start for the solution at the bottom. The same network parameters were used in both
cases. The labels � and � mean “excitatory” and “inhibitory”, respectively.

Possible generalizations to more populations

Simulations suggest that regimes as shown in Fig. 3 generalize to more popu-
lations. For instance, one can
I weakly connect another population to the network used in Fig. 3, or
I weakly connect two networks identical to that used in Fig. 3,
and still observe qualitatively the same behavior, that is, a stable fixed point
without covariances, and oscillations with them.
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