Stochastic dimensional reduction on large biological neural networks
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Microscopic model

Two populations

With a network as in Fig. 2, we observe that considering covariances can change
qualitatively the long-term behavior of the system: as shown in Fig. 3, it ex-
pands the domain of parameters where limit cycles are possible.
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With covariances

We consider a network of N neurons, whose states evolve
stochastically according to a Markov process. The state
of a neuron j at time ¢ is a random variable X;(t) with
possible values:

0, representing the sensitive state,
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1, representing the active state, and

i, representing the refractory state. Vi
Fig. 1: States and tran-

The allowed transitions and their associated rates are O .
sitions for neuron j.

described in Fig. 1. The transition rates §; and y; are both

Let B be the input in population | and Fyg, be the cumulative distribution
function of the thresholds in J, assumed to be three times differentiable. We
denote by a; the mean value of the a;’s in J, and follow the same pattern for
other transition rates.

To simplify notation, let
Aj = E[A;], R :=E[R/], S;:=E[S;], and Bj:=E[By],

and let C&KY ;= Cov[Xj, Yx] with X and Y standing for either A, R, S or B. For
any populations | and K (which can be the same), we have
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in Fig. 2. For each population |, we introduce analogs to the state of a neuron: % K K K , K

& pop & i = =(B) + yI)Cly + ayFo,(B)Cls + BrClYy + aiFy (B)S/Cry (1)

0.6

0.4

0.2

0.0
0

Without covariances

4
Time [ms]

S;, the sensitive fraction of the population,

Fig. 3: Two solutions of the reduced dynamical system obtained numerically from the same initial

where the dot denotes time derivative. expectations, but considering non-zero covariances for the solution on top, and neglecting them

from the start for the solution at the bottom. The same network parameters were used in both
cases. The labels E and I mean “excitatory” and “inhibitory”, respectively.

Aj, the active fraction of the population,
R;j, the refractory fraction of the population.

Remarks

Since 5;+A;+R;=1, only two fractions of each population, Ajand R}, areneeded. = » System (1) generalizes Wilson-Cowan’s model [3].

Possible generalizations to more populations

> System (1) is defined in R"(2"+3) pbut physiologically speaking, the dynamical
variables only make sense in a bounded subset of this space, which we call
the physiological domain.

We then see the expected values and covariances (including variances) of the
Aj’s and R;’s as dynamical variables, and obtain a reduced system of n(2n + 3)

Simulations suggest that regimes as shown in Fig. 3 generalize to more popu-
differential equations.

lations. For instance, one can

(b)

» weakly connect another population to the network used in Fig. 3, or

One population

Here we denote by c the connection coefficient from the population | to itself.

» weakly connect two networks identical to that used in Fig. 3,

and still observe qualitatively the same behavior, that is, a stable fixed point
without covariances, and oscillations with them.
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Excitators
Theorem. System (1) always has a fixed point with zero covariances within the

physiological domain, and any such fixed point is stable if f; > ajcsup F ’8].

Theorem. All fixed points of (1) within the physiological domain have zero

covariances if 87 > ajcsup F., .
Inhibitors Py > ajcsup by,

Theorem. System (1) always has a fixed point with non-zero covariances.
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Fig. 2: (a) Network with n = 2 populations: excitatory
(blue) and inhibitory (red). (b) Schematic of the reduced
network corresponding to (a).
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