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Model

The activity of each node evolves according to the firing-rate model: 
Firing-rate model

;

Adaptive connectivity dynamics
Each excitatory edge can adapt according to Hebb's rule with 
saturation:

Weights are bounded  Weights deteriorate if inactive

;

The ratio          will prove to be an important parameter.                

In 2016, Ref. [2] proposed an effective formalism to describe the 
dynamics of a network under perturbations.

We obtain an effective description of neural dynamics.

Unidimensional description of N-dimensional systems.
Single focal node description and single effective structural parameter.

We define the input activity        of node i as

Excitatory dynamics

Homogeneous networks
Directed and weighted networks

Validity of the approximation:

Effective formalism

Consider a graph composed of n nodes (neurons) and m directed edges 
(synapses).  At time t, node i has activity        while the weight of the 
edge from j to i is          . 
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Adaptive connectivity
Critical perturbation
After an attack, we let the system recover using its adaptive connectivity rule.  

Attacks result in a change of      .

       is driven by the adaptive connectivity until a steady-state is reached.
Loss of resilience happens if the system is unable to recover its initial activity xeff 
and structure     .

Left figure 
Influence of the ratio of characteristic times. 
An initial state (black circles) is attacked 
(black star). Then, the system recovers until 
steady-state is reached (squares). 

Future works
To quantifiy the resilience using our formalism. Promising 
candidates are:

Recovery time
Size of the hysteresis region
Attractiveness of the fixed points

To obtain an effective and analytical description of the recovery process.

To include inhibition in our model. To do so, we need to

Define an adaptive connectivity rule for inhibitory neurons
Extend the formalism to competitive dynamics

Ratio of characteristic times 
influences greatly the recovery 
results.

Resilience of networks

There is at least one fixed point and at 
most three fixed points.

Stability analysis
We study the stability of the effective system.  

Three fixed points emerge at                
and          .

Right figure
Bifurcation diagram for the dynamics system 

without adaptation.

Hysteresis
For a given set of parameters, the system 
shows a hysteresis region with three fixed 
points, two of which are stable.  

Analytical description of the hysteresis 
region.
Effective description independent of the 
attack strategy.

Validity of the approximation
The effective formalism approximates the 
network to an effective node. We have tested 
this approximation for different structures.

Excellent fit for homogeneous connectivity.
Poor approximation for heteregenous 
graphs. 

Left figure 
Comparison of the effective  approximation for networks 
of size n = 100 with modular structure and scale-free 
degree distribution.

Top figure 
Comparison of the analytical solution and 
numerical simulations of the dynamics on 
random graphs of size n = 100 and density p = 
0.2. During a rescaling attack, each edge's 
weight is rescaled. On edge removal, a fraction 
of edges are removed from the graph.

Summary
The brain is a notoriously resilient system. Although dynamical effects 
on the brain activity resulting from failures of its network have been 
found [1], most studies about resilient complex systems have so far 
focused on purely topological properties.

We present a model of dynamics on network with connectivity 
adaptation to study resilience of neural networks.
An effective formalism accurately describes the functional and 
structural states of neural networks. 
New resilience patterns emerge from the recovery of the system.
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