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Case Study

The size distributions are obtained
by  summing the probabilities over 
configurations of the same size
under the same dynamical process.  

Exact size distribution and mean size of the giant component, with associated
error bars.

Advantages

Single computation allows us to solve for all dynamics on a given network.
One only needs to choose the appropriate response function.

Exact probability for configurations that occur so rarely that their numerical 
evaluation using Monte Carlo simulations is virtually impossible.

using multiple seeds,

on random graphs containing arbitrary distribution of subgraphs,
with multiple states (inhibitor, inactive, active, superactive),

Future Work and Extensions

as a function of time.

Solving cascade dynamics,
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The mean size of the giant component can be
effectively computed from the size distribution
averaged over all configurations and the
inherent variance of the size distribution can 
be obtained exactly (error bars).
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Let   be a vector of length    describing a subgraph whose 
components    is 1 if node    belongs to the subgraph. 

2. Activate a node adjacent to the active component and calculate
   its probability          . Repeat this step.

Summary Binary Cascade Dynamics
Nodes can be in any one of two states (inactive, active), and irreversibly change from inactive 
to active, as soon as their neighborhood satisfies a predetermined condition.

Process
1. Assign a threshold to each node following a response function.
2. Activate a seed node.
3. Activate nodes whose number of active neighbors exceed their
    threshold. Repeat this step until no futher change is possible.
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Example

Response Function
Probability for a node of degree    to be active when
it has     active neighbors. 
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Modified Breadth-First Method Modified Depth-First Method

The key is to multiply the probability to activate the subgraph    by the probability
that the inactive nodes have a threshold higher than their number of active neighbors.

Then:
The following recursive set of equations exactly solves the cascade dynamics:

A configuration is said possible if every active node can be reached from 
the seed node by following a path consisting only of active nodes.
For sparse graphs, the majority of the configurations are impossible.

Example

1. Start with the configuration where only the seed node is activated.

we can write

Using

Then, the probability          can be expressed as the 
sum over smaller configurations times a coefficient. 

Maths

Algorithm

Since the sum is over       , every            has already
been computed previously by the algorithm.

Example

Algorithm

Nodes are labeled as undiscovered, discovered and explored. Every node is
initially undiscovered. A node stays in discovered state for one algorithm
step; it is then marked as explored.

discovered
explored
undiscovered

1. Start with a single discovered node (seed).

2. Enumerate every configurations contai-
   ning at least one undiscovered neighbor
   of the discovered node(s).

3. For each new configuration, mark the 
   undiscovered neighbors as discovered, 
   and return to step 2.

The probability           depends on the
order in which discovered nodes are 
encountered.

Cascade dynamics have been extensively studied using analytical 
formalisms suited to a broad class of dynamical models [1]. 
Noteworthy examples include site and bond percolation, Watt’s model
of threshold dynamics, and Susceptible-Infected-Removed (SIR) 
disease transmission. 
Using recursive equations, Ref [2] was able to solve exactly bond 
percolation on arbitrary graph. We extend this method to cascade
dynamics. 

We exaclty solve cascade dynamics on arbitrary networks.

Also, we propose two algoritms to compute the solution.
Our method has a number of advantages:

Single computation for all dynamics.
Exact evaluation of probability of rare events.
Multiple results can be obtained exactly : size distribution, mean
size of giant component, probability of activation of a single node...

Consider a graph composed of    nodes.

Let    be the equivalent vector for the entire graph.

Examples of            for specific processes [1] : 

4. When there is no undiscovered neighbors
   left, backtrack and repeat steps 2-3.

Probability that every component of the
subgraph   of graph     are active. 


