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Summary

Scale independence is observed in all aspects of human life and
often modeled through preferential attachment (PA). Net-
work science and PA processes tend to focus on one feature at a
time; e.g. degree distribution [1] or community structure [2].

Complex networks are constructs obtained by projecting complex
hierarchical systems on a set of nodes and links; collapsing
geographical/age/cultural/professional correlations.

Why not directly model the hierarchical system itself instead of
its projection?
What can emerge from a simple hierarchy of scale independent
organizations?

Hierarchical Preferential Attachment features

� the simplicity of preferential attachment,

� complex networks as an emerging property.

Complex networks emerge from hierarchy?

Hierarchical systems produce networks when projecting under a
chosen level of structure. Correlations inter and intra levels of
structures dictate properties of the network:

� locally: degree and clustering;

� globally: centrality, self-similarity;

� + complex properties such as geometrical mapping!

Hierarchy makes complex networks complex.
HPA is perfectly suited to model scale-independent networks.

Hierarchical Preferential Attachment (HPA)
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HPA ≡ colored balls are thrown in embedded bins.

� Embedded bins (top left) represent a tree-like hierarchy (top right).

� Balls/bins are different structural levels (e.g. people, communities, cities, countries).

� At level i, let pi ≡ probability that a ball falls in a new bin;
qi ≡ probability that the color of the ball is new for that bin.

� Whenever an existing bin and/or color has to be chosen, it is done preferentially to its
size/frequency at that level.

� A network is obtained by projecting the system on a given level.

� For the network on the right: colors found in a common bin on the lowest levels are
linked in the network. This could be a network of collaborating scientists, projecting
labs (level 3) across cities (level 2) and countries (level 1) on a single social network.

� Other projections are possible; e.g., a network of the boxes of level 3 that share at
least one color could be a network of collaborations between research groups.

Proof of concept: Fractality and geometrical mapping

Fractal (& non-fractal) networks from hierarchy:

HPA yields fractal and non-fractal networks: self-similarity might imply hierarchy, the opposite is not true.

� Well-mixed hierarchies have a network diameter D scaling with the logarithm of the number of nodes N (non-fractal)

� Systems with well defined hierarchy lead to a power-law relation between D and N (fractal)

Fractality is uncovered with box-counting [3]: groups of nodes within a distance r (number of links) are
assigned to the same box. The fractal dimension db relates the number Nb of boxes and their size r: Nb ∝ r−db.

Figure on the left: box counting results on a fractal network (protein interaction network of Homo Sapiens) and a
non-fractal network (the Internet at the level of autonomous systems) [3].

∴ HPA models how both of these networks span and cover their respective space.

Hyperbolic mapping of networks [4]:

Mapping of a network: assign geometrical positions to nodes to embed the network in an hyperbolic space. Nodes
close (in links) in the network must be geometrically close (in space).
Navigability of complex networks:

� predicts existence of links as a function of geometrical distance between nodes, enabling an efficient navigation.

� is not captured by classical preferential attachment.

Figure on the left: probability of connection Pc(l) between nodes at a distance l after an inferred projection of the
networks unto an hyperbolic space [4].

� The Internet and its HPA model share a similar scaling exponent for their degree distribution (inset).

� The CCM (Correlated Configuration Model) corresponds to a rewired Internet preserving degree distribution and
degree-degree correlations, but obviously lacking the more complex structural correlations.

∴ Geometrical constraints can emerge simply from hierarchy.

Case study: movie production structure

Hierarchy: countries (largest bins, level k = 1) containing production companies (middle
bins, level k = 2) producing movies (smallest bins, level k = 3) with producers (colored balls).

We set all {pi, qi} with Sk,n (distribution of level k structures of sizes n) and Nk,m (distribution of
colors appearing in m level k structures) by comparing data (dots) and simulations (lines).
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Projection for a realization of HPA:

� Project the system in a network of co-producing credits:
links between producers who have produced together, regardless of companies and country.

� Random HPA network captures structure from real network not captured by Standard PA:

1. degree distribution n(k)

2. local clustering coefficient C(k) around nodes of degree k (C(k) = 0 ∀ k in Standard PA)

3. distribution n(c) of coreness c, i.e. number of nodes in a shell of the k-core decomposition
(n(c) = δc,1 in Standard PA)
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