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Goal

To model stochastic processes taking place on complex networks.

Analytical methods are sought. Although this work focuses on epidemiological

dynamics, different phenomena may also be considered.

Recipe

•Specify a way to represent the characteristics of the system

(which includes the network topology) with a state vector x(t).

This mapping does not need to be a bijection (partial representation).

•Specify all the events that may occur with shift vectors rj.

An event of type j takes the system from state x to state x + rj.

•Obtain inference terms P (y|x), when required.

Some events may be affected by unknown quantities y(t) that have to be

inferred from the available information x(t).

(Recall that x(t) may not completely encode the status of the system.)

•Specify the rates of occurrence q+
j (x) for all events.

An event of type j has probability q+
j

(
x(t)

)
dt to occur during [t, t+dt). When

events may occur in the backward direction (i.e. x becomes x−rj), also specify

q−j (x). Use inference terms when required.

Birth-death Markov process

The probability distribution P (x|t) is governed by the master equation

dP (x|t)
dt

=
∑
j

[
q+
j

(
x− rj

)
P
(
x− rj

∣∣t)− q+
j (x)P (x|t)

+ q−j
(
x + rj

)
P
(
x + rj

∣∣t)− q−j (x)P (x|t)
]

.

For large systems, using a continuous approximation for the state vector

leads to the stochastic differential equation (Fokker-Planck equation)

∂P (x|t)
∂t

= −
∑
i

∂

∂xi

[
ai(x)P (x|t)

]
+

1

2

∑
ii′

∂2

∂xi∂xi′

[
Bii′(x)P (x|t)

]
ai(x) =

∑
j

rji
[
q+
j (x)− q−j (x)

]
Bii′(x) =

∑
j

rji r
j
i′
[
q+
j (x) + q−j (x)

]
.

When the main contribution of P (x|t) is located around its mean value, using a

mean-field approximation provides the ordinary differential equation

d

dt
〈x(t)〉 = a

(
〈x(t)〉

)
.

A Gaussian approximation determines how P (x|t) behaves around this

mean value. Assuming deterministic initial conditions, this behaviour is given by

P (x|t) =
1

(2π)d/2
∣∣Ĉ(t)

∣∣1/2
exp

(
−1

2

(
x(t)− 〈x(t)〉

)T
· Ĉ(t)−1 ·

(
x(t)− 〈x(t)〉

))

Ĉ(t)=

∫ t

0

Â(t, t′)·B̂
(
〈x(t′)〉

)
·Â(t, t′)Tdt′ Â(t, t′)=exp

[∫ t

t′
Ĵa

(
〈x(t′′)〉

)
dt′′
]

where d is the dimensionality of x, Ĉ(t) is the covariance matrix of P (x|t), and

Ĵa

(
〈x(t′′)〉

)
is the Jacobian matrix of a evaluated at 〈x(t′′)〉.

See C. W. Gardiner, Handbook of Stochastic Methods, Springer (2004).

High complexity

Usually non-solvable

Better correspondence with reality

Lower complexity

Easier to solve

Possible discrepancies

Real-world system Full network model Representation approx. Continuity approx. Gaussian approx. Mean-field approx.

Master equation Master equation Stochastic differential eq. Ordinary differential eq. Ordinary differential eq.
(huge state vector) (manageable state vector) + two integrals

Epidemiological dynamics

In simple epidemiological models, there are three possible intrinsic node states.

Susceptible nodes do not have the infection (but could acquire it).

Infectious nodes have the infection and can transmit it.

Removed nodes neither acquire nor transmit the infection.

Changes in node states during [t, t+dt) depend on the specificity of the infection.

SI: S nodes become I with probability proportional to number of I neighbours.

SIS: As in SI, except that I nodes become S with constant probability.

SIR: As in SI, except that I nodes become R with constant probability.

SIRS: As in SIR, except that R nodes become S with constant probability.

These changes correspond to the events of the birth-death process.

Motifs

A vast class of state vectors amounts to an enumeration of the network motifs.

Pair motifs Perhaps the simplest description of a network system.

S S motif S I motif I R motif

A pair motif informs about the intrinsic state of the two (linked) nodes forming

it; nothing is said about the presence (or absence) of other neighbours.

Pair models are usually supplemented by node motifs (intrinsic node states).

The state vector may then enumerate the total number of each types of motifs.

Example: x =
(
xS, xI, xR, xS S, xS I, xS R, xI I, xI R, xR R

)
.

First neighbourhood motifs Simple yet powerful.

S( S)2( I)2( R)1 motif

The intrinsic state of the central node and of each

of its neighbours is known. Second neighbours are

unspecified, although motifs based on higher order

neighbourhood are also possible.

On-the-fly assignment A special case of first neighbourhood.

?

!

!
?

?

?
S( ?)4 motif

The central node may have some neighbours known to be

irrelevant for future evolution ( ! ). The total number of

other neighbours, of unknown intrinsic state, is specified ( ? ).

In some cases, SI and SIR dynamics may exactly be represented

with state vectors based on such simple motifs.

Short cycles and other motifs Endless possibilities.

S I S motif S I S motif S( S)1( I)2(CRS )1 motif

Triple, triangle and first neighbourhood with triangles motifs are

shown. Motifs for intrinsic link states and directed networks are also possible.

Notation inspired by T. House et al., Bull. Math. Biol. 71, 1693 (2009).

Example: SIS pair model

•State vector based on node and pair motifs: x =
(
xS, xI, xS S, xS I, xI I

)
.

•Events S( S)k( I)l
kl⇐⇒ I( S)k( I)l depend on the first neighbourhood of

the changing node. The shift vectors are rkl =
(
-1, 1, -k, k − l, l

)
.

• Inference terms are required since x only specifies node and pair motifs.

•Rates of occurrence depend on these inference terms.

q+
kl(x) = β xS I P

(
S( S)k( I)l

∣∣S reached through random S I link,x
)

q−kl(x) = αxI P
(
I( S)k( I)l

∣∣random I node,x
)

Although presented differently, the Gaussian approximation of this model for regular

random graphs is equivalent to C. E. Dangerfield et al., J. R. Soc. Interface 6, 761 (2009).

Example: SI on-the-fly assignment

For a configuration model network allowing for repeated links and self-loops, the

following representation exactly corresponds to the full network model.

x=
(
22, 1, 3, 4, 2

)
;λ(x)=5

3
=⇒

x=
(
20, 1, 3, 4, 1

)
;λ(x)=6

-1
=⇒

x=
(
18, 1, 3, 4, 1

)
;λ(x)=4

•State vector x =
(
x-1, x0, x1, x2, x3 · · ·

)
where x-1 is the total number of

unassigned stubs and the other xk are the number of S( ?)k motifs. The total

number of stubs belonging to infectious nodes is λ(x) = x-1 −
∑∞

k=0 kxk.

•Events occur when an I node’s stub form a link with another stub. The event

is of type j = -1 if the other stub belongs to any I node and of type j ≥ 0 if

it belongs to a S node with j unassigned stubs
(
rji =

{
-2 if i = -1

-δij if i ≥ 0

)
.

• Inference terms are trivial in this case.

•Rates of occurrence q+
-1(x) = βλ(x)

λ(x)−1
x-1−1 and q+

j (x) = βλ(x)
jxj
x-1−1 (j ≥ 0).
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t = 1 t = 3 t = 6 t→∞ Using β = 1. Initial condition

x(0)=(520, 0, 152, 76, 38, 19).

Black: Full network and

on-the-fly simulations (same).

Blue: Gaussian approx.

Red: Full network explicitly

forbidding repeated links and

self-loops.

Further examples

The following mean-field models are compatible with the philosophy presented

here. As such, Gaussian approximations could be obtained for these models.

Adaptive networks V. Marceau et al. PRE 82, 036116 (2010).

Based on first neighbourhood motifs. A special SIS model where S nodes may

disconnect from their I neighbours and reconnect to another S node instead.

Community structure L. Hébert-Dufresne et al. PRE 82, 036115 (2010).

SIS model tracking both first neighbourhood and clique motifs in the state vector.

Interacting epidemics V. Marceau et al. arXiv:1103.4059.

On-the-fly model for two interacting SIR dynamics (total 9 intrinsic node states).

Two overlaying networks are considered using intrinsic link states.


