Epidemiological dynamics

In simple epidemiological models, there are three possible intrinsic node states.

- **Susceptible** nodes do not have the infection (but could acquire it).
- **Infectious** nodes have the infection and can transmit it.
- **Removed** nodes neither acquire nor transmit the infection.

Changes in node states during \([t, t+dt]\) depend on the specificity of the infection.

SI: S nodes become I with probability proportional to number of I neighbours.

SIS: As in SI, except that I nodes become S with constant probability.

SIR: As in SI, except that I nodes become R with constant probability.

SIRS: As in SIR, except that R nodes become S with constant probability. These changes correspond to the events of the birth-death process.

Birth-death Markov process

The probability distribution \(P(x|t)\) is governed by the master equation:

\[
\frac{dP(x|t)}{dt} = \sum \frac{\partial \hat{a}_i(x)}{\partial x^i} P(x|t) + \sum \frac{\partial^2 \hat{a}_i(x) P(x|t)}{\partial x^i \partial x^j} + \hat{a}_i(x) P(x|t) - \hat{q}_i(x) P(x|t) + \hat{q}_i(x) P(x^i - x|t)
\]

For large systems, using a continuous approximation for the state vector leads to the **stochastic differential equation** (Fokker-Planck equation):

\[
\frac{\partial P(x|t)}{\partial t} = -\sum \frac{\partial}{\partial x^i} \left[\hat{a}_i(x) P(x|t) \right] + \frac{1}{2} \sum \left[\frac{\partial^2}{\partial x^i \partial x^j} \hat{a}_i(x) P(x|t) \right] - \frac{1}{2} \sum \left[\frac{\partial^2}{\partial x^i \partial x^j} \hat{q}_i(x) P(x|t) \right]
\]

When the main contribution of \(P(x|t)\) is located around its mean value, using a mean-field approximation provides the ordinary differential equation:

\[
\frac{d}{dt} \langle x(t) \rangle = a(\langle x(t) \rangle).
\]

A Gaussian approximation determines how \(P(x|t)\) behaves around this mean value. Assuming deterministic initial conditions, this behaviour is given by

\[
P(x) \approx \frac{1}{\sqrt{2\pi d |\hat{C}(0)|^{1/2}}} \exp \left(-\frac{1}{2} \left(x - \langle x(t) \rangle - \hat{C}^{-1}(t)(x - \langle x(t) \rangle) \right) \right).
\]

where \(d\) is the dimensionality of \(x\), \(\hat{C}(t)\) is the covariance matrix of \(P(x|t)\), and \(\hat{a}(\langle x(t) \rangle)\) is the Jacobian matrix of \(a(\langle x(t) \rangle)\).

Example: SIS pair model

- **State vector** based on node and pair motifs: \(x = \{x_S, x_I, x_R, x_{SI}, x_{IR}, x_{RS}, x_{ISR}\}\).
- **Events** \(\frac{dx}{dt} = \beta x_I (K-x)|S|\) depend on the first neighbourhood of the changing node. The **shift vectors** are \(r^{S-I} = (-1, 1, 1(k+1))\).
- **Inference terms** are required only for \(x\) and pair motifs.
- **Rates of occurrence** depend on these inference terms.

\[
q_{SI}(\beta) = \beta x_I \left(\langle S \rangle x_I |S| \right) \frac{|S|}{|S|+|I|} \text{ (random S-I link, x)}
\]

Although presented differently, the Gaussian approximation of this model for regular random graphs is equivalent to C. E. Dangerfield et al., J. R. Soc. Interface 6, 761 (2009).

Example: SI on-the-fly assignment

For a configuration model network allowing for repeated links and self-loops, the following representation *exactly* corresponds to the full network model:

\[
x = (2, 1, 3, 4, 2) \Rightarrow x = (20, 1, 3, 4, 1, 0) \Rightarrow x = (18, 1, 3, 4, 1, 0)
\]

- **State vector** \(x = \{x_S, x_I, x_R, x_{SI}, x_{IR}, x_{RS}, x_{ISR}\}\) where \(x_S\) is the total number of unassigned stubs and \(x_{IR}\) are the number of SI-IR motifs. The total number of stubs belonging to infectious nodes is \(\lambda(x) = x_S - \sum_i x_{IR}\).
- **Events** occur when an I node's stub form a link with another stub. The event is of type \(j = 1\) if the other stub belongs to any I node and of type \(j \geq 2\) if it belongs to a S node with j unassigned stubs: \(r^j = (\lambda, 0, \delta_{j1} - 1)\).
- **Inference terms** are trivial in this case.
- **Rates of occurrence** \(q_{SI}^j = \beta x_I \left(\langle S \rangle x_I |S| \right) \frac{|S|}{|S|+|I|} \text{ (random I node, x)}\).

Using \(j = 1\). Initial condition \(k(0) = (520, 152, 76, 38, 19)\).

Further examples

The following mean-field models are compatible with the philosophy presented here. As such, Gaussian approximations could be obtained for these models.

Adaptive networks V. Marceau et al. PRE 82, 056116 (2010)

Based on first neighbourhood motifs. A special SIS model where S nodes may disconnect from their I neighbours and reconnect to another S node instead.

Community structure L. Hébert-Dufresne et al. PRE 82, 056117 (2010)

SIS model tracking both first neighbourhood and clique motifs in the state vector.

Interacting epidemics V. Marceau et al. arXiv:1103.4059

On-the-fly model for two interacting SIR dynamics (total 9 intrinsic node states). Two overlaying networks are considered using intrinsic link states.