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Conclusion
We have introduced an improved compartmental ap-
proach able to reproduce with accuracy the complete time
evolution of disease and topology on adaptive networks
with various initial configurations.

Future directions

•Analytical solution for the endemic state.

• Inclusion of more realistic features in the model,
e.g. community structure, preferential rewiring.

• Simultaneous evolution of the disease and the pop-
ulation awareness.

Stationary states
Our formalism compares favorably with previous approaches
about the bifurcation structure of systems with initial
Poisson networks:
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Our results suggest two important conclusions:

• Link rewiring as a control strategy is more efficient
on homogeneous networks.

•There exists a universal endemic state, which de-
pends only on the density parameter 〈k〉 and interac-
tion parameters α, β, and γ of the system. Initial
conditions determine if this state can be reached.

Time evolution
To attest the validity of our approach, we compared analytic
predictions (lines) with results obtained from Monte-
Carlo simulations (symbols) of the dynamics on net-
works of size N = 25000 with 〈k〉 = 2. Parameters used
are α = 0.005, β = 0.06, γ = 0.02 and ε = 0.1.

Evolution of the disease prevalence I(t) on networks with
different initial degree distributions:
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Degree-regular (DR)
network : pk(0) = δk,2

Power-law (PL) network :
pk(0) ∼ k−2.161, 1 ≤ k ≤ 20

Poisson (P) network :
pk(0) = 2ke−2/k!

Evolution of the susceptible and infectious degree dis-
tributions sk(t) and ik(t) on a DR initial network:
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Evolution of the topological observables SI(t), κSIS(t) and
CSS(t) on a DR initial network:
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By analyzing the time evolution of disease and topology, we
can bring new insights about their interplay. For example,
in a DR initial network, the dynamics is characterized by two
distinct phases:

1. A separation phase, from t = 0 to t ≈ 200, char-
acterized by a segregation of the network in tightly
connected susceptible and infectious communities.

2. An invasion phase, from t ≈ 200, characterized by
the invasion of the susceptible community.

Formalism
Improved compartmental formalism in which nodes are
categorized according to their state but also according to
the state of their neighbors.

[Noël et al., 2009, Marceau et al.]

• Skl(t): fraction of nodes that are susceptible and have k
neighbors of which l are infectious at time t.

• Ikl(t): fraction of nodes that are infectious and have k
neighbors of which l are infectious at time t.

• pk(t): fraction of nodes that have k neighbors at time t.

Zeroth order moments:

S ≡
∑
kl

Skl , I ≡
∑
kl

Ikl

First order moments:

SS ≡
∑
kl

(k − l)Skl , SI ≡
∑
kl

lSkl , IS ≡
∑
kl

(k − l)Ikl , II ≡
∑
kl

lIkl

Second order moments:

SSI ≡
∑
kl

(k − l)lSkl , SII ≡
∑
kl

l2Skl , etc.

Dynamical equations

dSkl
dt

=αIkl − βlSkl + α

[
(l + 1)Sk(l+1) − lSkl

]
+ β

SSI
SS

[
(k − l + 1)Sk(l−1) − (k − l)Skl

]
+ γ

[
(l + 1)Sk(l+1) − lSkl

]
+ γ

SI
S

[
S(k−1)l − Skl

]
dIkl
dt

=− αIkl + βlSkl + α

[
(l + 1)Ik(l+1) − lIkl

]
+ β

SII
SI

[
(k − l + 1)Ik(l−1) − (k − l)Ikl

]
+ γ

[
(k − l + 1)I(k+1)l − (k − l)Ikl

]
Initial conditions. The dynamics is initialized by infecting
at random a fraction ε of the individuals in the population:

Skl(0) = (1− ε)pk(0)

(
k

l

)
εl(1− ε)k−l

Ikl(0) = εpk(0)

(
k

l

)
εl(1− ε)k−l

Conservation of nodes: S + I = 1

Conservation of links: SS + SI + IS + II = 〈k〉

Undirected nature of links: SI = IS

Observables

Several relevant observables can be readily computed from
this formalism. They can help us to understand the interplay
between disease and topology in the system.

• I(t) : Total disease prevalence.

• sk(t) ≡
∑
l Skl/S : Susceptible degree distribution.

• ik(t) ≡
∑
l Ikl/I : Infectious degree distribution.

• SI(t) : Density of SI links.

• κSIS(t) ≡ SSI/SI : Effective branching factor.

• CSS(t) ≡ SS
SS + SI

: Susceptible aggregation coefficient.

Model
Network model. A population of N individuals is repre-
sented by a contact network of N nodes and M links.

SIS dynamics. At a given time t, each individual is in a
specific state:

Susceptible individuals do not have the disease but
can get infected by their infectious neighbors.

Infectious individuals have the disease and can trans-
mit it to their susceptible neighbors. They recover and
become susceptible again after a given infectious period.

Adaptive rewiring. For every link between a susceptible
(S) and an infectious (I) individual (SI link), the S individual
can decide to break the connection and reconnect it with
another randomly chosen S individual in the network.

[Gross et al., 2006]

Important parameters:

• α : rate at which I individuals recover.
• β : rate at which I individuals infect their S neighbors.
• γ : rate at which links are rewired.
• 〈k〉 : average degree of the network (〈k〉 = 2M/N).

Illustration:

At time t1 At time t2 > t1

Introduction
The majority of network-based epidemiological models rely
on the paradigm of static networks. They neglect mu-
tual interactions thay may exist between the states of
the nodes and the underlying network topology.

Adaptive networks are a new class of
networks in which there exists a feedback
loop between the dynamics on the network
and the dynamics of the network.

Existing analytic approaches: based
on mean-field formalisms derived from low-
order moment closure approximations.

Advantages
•Low complexity.
•Sufficient to highlight novel dynamical features.

Main drawback
•Unable to reproduce the time evolution of disease
and topology from various initial configurations.

Our goal is to develop an integrated analytic approach
able to describe with accuracy the time evolution of both
dynamical elements of adaptive networks, process and struc-
ture.

Why	adaptive	networks

in	epidemiology?

Healthy	individuals	ma
y	

avoid	contacts	with	tho
se	

who	are	infectious	to	

reduce	their	chances	o
f	

catching	the	disease.
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