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Conclusion

We have introduced a generalized multitype network model that
takes into account detailed social clustering. While the un-
derlying structure is analyticaly tractable due to its treelike
topology, the modular approach permits the existence of closed
loops. This model will allow to push further our understanding of
the impact of non-trivial sub-structures on the global topology
of networks and of their influence on propagation dynamics.

Numerical validation

In order to validate our formalism, we compare its predictions with
the results of extensive numerical simulations with

• 3 types of nodes and 3 types of groups

• w = [0.25, 0.25, 0.50]

• Pi(k, ξ) : every node is linked to one type-1 group, every type-1
node and half of the type-2 nodes are linked to one type-2 group,
and every type-3 node is linked to one type-3 group

• Each group type have its own size distribution (Rκ(n)) and edge
density (pκ)

• Uniform transmissibility matrix (Tij = T ∀ i, j)

• 105 nodes (near Tc) and 104 nodes (elsewhere)

• At least 104 simulations for each value of T
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Bond percolation

Using propagation arguments and a PGF formalism [1,3], we ob-
tain topological properties of the network ensemble.

• Tij : i→ j edge occupation probability (elements of T)

• Θiκ(x; pκ) becomes Θiκ(x; pκ,T) using Tijpκij instead of pκij

Percolation threshold

• Γ
(×n)
(∗j) : average number of neighbouring [type-n nodes reached

following an × → n edge] of a [type-j node previously reached by
an ∗ → j edge] (computed using Θiκ(x; pκ,T) and Pj(k, ξ))(

× and ∗ may refer to group or node types
)

• A : propagation matrix giving the average number of new nodes
reached after a node-to-node translation on the network(

built using Γ
(×n)
(∗j) ∀ ×, ∗

)
• The phase transition happens at det(A− I) = 0, marking

the point where the giant component first appears

Probability of reaching the giant component

The probability that a randomly chosen node leads to the giant
component is given by

P = 1−
∑
i

wi

∑
k,ξ

Pi(k, ξ)
∏
l,ν

[
1+(−→ajl−1)Tjl

]kl[
Θjν(
−→
bν ; p,T)

]ξν
(−→
bν ≡

[−→
bν1, . . . ,

−→
bνM
])

where −→aij and
−→
bµj are respectively the probability that an outgoing

i→ j and µ→ j edge does not lead to the giant component. Those
quantities are obtained by solving(

µ→ j : edge followed from a type-j node to a type-µ group
)

−→aij =
∑
k,ξ

kiPj(k, ξ)

〈ki〉Pj(k,ξ)

∏
l,ν

[
1+(−→ajl−1)Tjl

]kl−δil[
Θjν(
−→
bν ; p,T)

]ξν

−→
bµj =

∑
k,ξ

ξµPj(k, ξ)〈
ξµ
〉
Pj(k,ξ)

∏
l,ν

[
1+(−→ajl−1)Tjl

]kl[
Θjν(
−→
bν ; p,T)

]ξν−δµν

Giant Component Size and Composition

The fraction of the network occupied by type-i nodes that belong
to the giant component is given by

Si = wi

1−∑
k,ξ

Pi(k, ξ)
∏
l,ν

[
1+(←−ajl−1)Tlj

]kl[
Θjν(
←−
bν ; p†,T†)

]ξν
where←−aij and

←−
bµj are respectively the probability that an incoming

j → i and j → µ edge does not link to the giant component. Those
quantities are obtained by solving

←−aij =
∑
k,ξ

kiPj(k, ξ)

〈ki〉Pj(k,ξ)

∏
l,ν

[
1+(←−ajl−1)Tlj

]kl−δil[
Θjν(
←−
bν ; p†,T†)

]ξν

←−
bµj =

∑
k,ξ

ξµPj(k, ξ)〈
ξµ
〉
Pj(k,ξ)

∏
l,ν

[
1+(←−ajl−1)Tlj

]kl[
Θjν(
←−
bν ; p†,T†)

]ξν−δµν
.

Sub-component size distribution

To take advantage of the tractability of the CM, we must
first solve independently for the size distribution of each sub-
component type.

Multitype Clusters

• Fully connected cluster composed of n nodes (fig. a)(
i.e. ni type-i nodes ∀ i

)
• In a type-κ group, i→ j edges exist independently with proba-

bility pκij (fig. b).(
i→ j : edge followed from a type-i node to a type-j node

)

(a) (b)

• Let us define for κ = 1, . . . ,Λ.

pκ ≡


pκ11 pκ12 . . . pκ1M
pκ21 pκ22 . . . pκ2M

... ... . . . ...
pκM1 pκM2 . . . pκMM


.

Component Size Distribution

• Qiκ(k|n; pκ) : probability of finding a component of k nodes in
a type-κ group composed of n nodes and reached from a type-i
node. (

k nodes: ki nodes of type-i ∀ i
)

• Qiκ(k|n; pκ) is obtained recursively using

Qiκ(k|n; pκ) = Qiκ(k|k; pκ)
∏
j,l

[(
nj−δij
kj−δij

)
(1−pκlj)kl(nj−kj)

]
and

Qiκ(k|k; pκ) = 1−
k∑
l=δi
|l|<|k|

Qiκ(l|k; pκ)

from the starting value Qiκ(δi|δi; pκ) = 1.(
δi ≡ [δi1, . . . , δiM ] and |k| ≡

∑
i ki

)

Probability Generating Function (PGF)

• Rκ(n) : size distribution of type-κ groups

• The component size distribution in type-κ groups reached from
a type-i node is generated by:

Θiκ(x; pκ) =

∞∑
n=0

niRκ(n)

〈ni〉Rκ

 n∑
k=δi

Qiκ(k|n; pκ)

M∏
l=1

xkl−δκll


(
〈ni〉Rκ ≡

∑
n niRκ(n)

)

Multitype modular networks

We introduce a multitype [3] and modular [4] generalization of
the Configuration Model.

Multitype network

• Composed of individuals or groups

• Individuals and groups are differentiated into categories by
assigning each to a specific type(

e.g. individuals : gender, age; groups : households, schools
)

• There are M types of individuals and Λ types of groups

• Individuals can be linked to other individuals (e.g. to model
friendship) and can be linked to groups they belong to

• Pi(k, ξ) : probability for a type-i individual to be linked to k
individuals and ξ groups(

i.e. ki type-i individuals and ξκ type-κ groups ∀ i, κ
)

• wi : fraction of individuals that are of type-i

Collapsed network

• Individuals sharing a common group have a probability to be
directly linked to one another

• Although the groups shape the structure, they do not appear in
the resulting network

Introduction

Tackling the structural complexity of social networks in an ana-
lytical framework is not an easy task and many existing models
must rely on simplifying assumptions in order to be solvable.

Widely used approximation: Configuration Model (CM) [2]

• analytical tractability

• explicit neglect of sub-structures (treelike assumption)

We have developped an analytical bond percolation formalism
that succesfully describes topological properties of net-
works featuring detailed substructures.
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