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Conclusion

•Control of the directionality of the FF emission in an an-
nular dielectric cavity is feasible

• FF profiles of both full-wave and classical simulations show
similar structures

•This work opens the way to the phase space design scenar-
ios for high-Q directional emission

•This method can be generalized to any inclusion shapes,
thereby enabling FF customization.
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Fig. 3: Left column: classical emission distributions obtained
using 250,000 starting points. Right column: Husimi distributions
of the Non-Regular outgoing part of the even mode ψeNR. Each row is for
different sets of parameters: from top to bottom r0 = 0.064R0, 0.127R0

and 0.211R0 with d + r0 fixed at 0.55.

•The NR outgoing part of the even mode

ψeNR =
∑

|m|<nckR0pNR

BmH
(1)
m (nokr)e

imφ.

•Maximum intensity is always located inside HSRout.

•Good agreement between classical and wave calculations,
except for first row where the diffractive limit: 2r0� λ/nc
is not respected.

Classical/Wave Results

For demonstration, one mode
has been selected to present
evidence of FF modulations

• TM(m=11;n=1), m and n
azimuthal and radial mode
number respectively

• kR0 ∼ 4.5

• Even and odd symmetries

• r0 ∈ [0.05, 0.5], with d + r0 = 0.55
(a)

(b) (c) (d)

Fig. 2: (a) FF contrast measure. A large range of parameters leads to
a non-uniform FF, arbitrarily defined as C11 > 0.5. (b)-(d) FF profiles
for 3 parameter values: r0 = 0.064R0, 0.127R0 and 0.211R0. The full
curve represents the combined envelope of the two symmetries |ψe(11,1)|2 +

|ψo(11,1)|2, while the dashed line displays the classical FF profile obtained
by ray escape using initials conditions near pNR.

The Wave Equation

The physical problem of interest reduces to solving the 2D
Helmholtz equation[

∇2 + n2(r)k2
]
ψ(r) = 0. (3)

Outside of the cavity (r ≥ R0), the solutions are expanded in
an angular basis

ψ(r) =

∞∑
m=−∞

[
AmH

(2)
m (nokr) + BmH

(1)
m (nokr)

]
eimφ, (4)

with H
(1,2)
m (·) being the Hankel functions and Am (Bm) the

incoming (outgoing) wave coefficients. For an unperturbed
mode (no inclusion), only one component, say m0, is present.

Contrast measure

In order to characterize the emission profile, a contrast mea-
sure Cm0 is defined as

Cm0(r) =

∑
|m|6=m0

∣∣∣BmH(1)
m (nokr)

∣∣∣2
∑
m

∣∣∣BmH(1)
m (nokr)

∣∣∣2 . (5)

Two interesting limits

•Near field : Cm0(r = R0) = 0⇒ high Q-factor.

• Far field : Cm0(r→∞) = 1⇒ directional emission profile.

The Classical Phase Space

The classical dynamics on the annular cavity possess inter-
esting and almost unique characteristics

•Poincaré map on the cavity boundary
P : (si, pi = sinχi) 7→ (si+1, pi+1)

•Well separated mixed phase space:
• Non-Regular region for |p| < pNR = (d + r0)/R0
• Regular region for |p| ≥ pNR

•Emission region bounded by Total Internal Reflection
(TIR)
E = {(s, p) : 0 ≤ s ≤ 2πR0, |p| ≤ pTIR = no/nc}

Hole Scattering Region (HSR)

•Together, these regions define the mixing properties

•HSRout gives rise to an effective emission region originat-
ing from HSRin

W = P(P−1(E) ∩ Ē), (1)

with Ē being the complement of E.
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Ray escape

1. Initials conditions: {si, pi, Ii = 1} are given by the Husimi
distribution [2] of the unperturbed modes inside HSRin.

2. Ray-splitting dynamics: Rays are allowed to split as they
interact with the inclusion. Intensities (reflected and trans-
mitted) are calculated according to the Fresnel coefficients.

3. FF escape: For each interaction with the cavity boundary,
the Fresnel coefficients generalized for curved interfaces [3]
determine the loss in intensity. This gives rise to a set of
escaping rays {sij, p

i
j, I

i
j, θ

i
j}.

4. Classical emission distribution equivalent to the Husimi
distribution:

Hclass(s, p) ∝
∑
i,j

IijG(s; sij)G(p; pij), (2)

where G(a; b) is a Gaussian function centered at a and eval-
uated at b with a dispersion equal to the one of the Husimi
distribution.

Annular Cavity

Fig. 1: The annular
cavity.

Our system’s configuration is a dielectric an-
nular cavity: a circular cavity of radius R0
and refractive index nc, surrounded by a
medium of index no, with a circular inclu-
sion (hole) of radius r0 and index nh dis-
placed a distance d from the cavity center.
For the sake of the presentation, some nu-
merical parameters are fixed at nominal val-
ues: R0 = 1, no = nh = 1 and nc = 3.2.
The two remaining variables (d; r0) will serve
as control parameters.

Scenario 1: Inducing directional FF emission

It has been shown elsewhere [1] that an ec-
centric inclusion (d 6= 0) and an appropriate
choice of d and r0 can induce a directional
FF emission while preserving the NF charac-
ter (and therefore a high Q-factor) of WGMs.

For more details, see the companion
presentation to this poster:
• Session MPM III, Tu.C4.6

Scenario 2: Controlling the FF emission

Having chosen a directional mode with Sce-
nario 1, the FF directions may be controlled
by keeping the group d + r0 constant and
changing r0. The phase-space engineering
associated with this approach (Scenario 2)
and its effects on the FF is the subject of
this presentation.

Context

Optical microcavities of regular shape (disk, toroid, sphere)
are known to give rise to high quality resonances, the so-called
Whispering Gallery Modes (WGMs). However, these modes
display a uniform intensity distribution both in the near-field
(NF) and the far-field (FF). Geometric perturbation alone
of these cavities (e.g. circular to quadrupolar) can lead to
directional FF emission, but this is generally associated with
an important loss in Quality factor. Many applications, such
as microlasers, require both a directional FF emission and a
high Q-factor.

We present a method to achieve this apparently conflicting
goal on an annular cavity (Fig. 1). Emphasis is given on the
control and the prediction of the FF profile.
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