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Optimization in physics
Optimization problems are ubiquitous in physics. Notable in-
stances include

yDesign of integrated optical devices

yDesign of injectors and magnets in accelerator design

y Topological solitons in nonlinear classical field theories

y Ising models in condensed matter physics

Most real-life optimization problems cannot be solved analyti-
cally and are NP-hard. The most common approach is to use
metaheuristics, algorithms based on empirical rules for explor-
ing large solution spaces.

Two key concepts for metaheuristics

1. Diversification: Global exploration of the solution space in
order to identify regions containing “fit” solutions

2. Intensification: More thorough investigation of “promising”
solution regions [1].
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Fig. 1: Blackbox scenario for fitness function evaluation [1]

Laser beam shaping problem

Fig. 2: Basic scatterer grid for the
optimization problem. There are
256 possible solutions

Goal: To find a photonic lat-
tice configuration which pro-
duces a scattered wavefunc-
tion that matches a desired
profile in a given plane [2].

y Binary encoding

y Vertical symmetry

y Fitness function (scattered
field) computed via gener-
alized Lorenz-Mie theory.
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Fig. 3: Generating a m = 1 Hermite-Gauss beam using a genetically op-
timized photonic crystal lattice. Diameter of holes D = 0.6Λ, core index
n = 2.76. The incident field is a TM-polarized gaussian beam with half-
width w0 = 2.5Λ and incident wavenumber k0Λ= 1.76 [3].

Genetic algorithm
Developed by J. Holland in the 1970’s. Commonly used in pho-
tonics research, for instance integrated waveguide design [2].

y Stochastic, population-based, nature-inspired algorithm

yMemoryless method. The escape from local minima relies
on random mutations

y Best suited for diversification. This stems from the popula-
tion based nature of the algorithm

y 3 adjustable parameters to specify: Population size, muta-
tion and crossover rates

Application to single-objective optimization
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Fig. 4: Evolution diagram of
the standard genetic algorithm
(SGA) applied to the incoherent
beam shaping problem. The al-
gorithm exhibits rapid conver-
gence to an “acceptable” solu-
tion, but tends to remain stuck
in local minima (see definition
of g1 in bottom panel).
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Standard genetic algorithm
min(g1) = 0.053
< g1 >= 0.088

σ= 0.022
N = 100

Fig. 5: Performance assessment
of SGA. Each simulation repre-
sents 5000 generations, with an
average of 60 objective function
evaluations per generation.

Parallel tabu search
First proposed by F. Glover in the 1980’s. More commonly used
in scheduling and networking problems.

yDeterministic, local, non-nature inspired algorithm [1]

yUses a short-term memory to escape from local minima

y Best suited for intensification of search. Parallel implemen-
tation allows to combine exploration and intensification.
Initialization of solutions is the only random process

yOnly 1 adjustable parameter: Number of entries in the Tabu
list

Application to single-objective optimization
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Fig. 6: Evolution diagram of one
parallel tabu search (PTS) pro-
cess applied to the incoherent
beam shaping problem. Al-
though initial convergence is
slow, the short-term memory of
the algorithm allows for “hill-
climbing”, thus avoiding getting
stuck in local optima.
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Parallel tabu search
min(g1) = 0.046
< g1 >= 0.076

σ= 0.044
N = 100

Fig. 7: Performance assessment
of PTS. The algorithm exhibits
better overall convergence, and
finds some solutions inaccessi-
ble to the SGA. Each simula-
tion represents 5000 iterations,
with at most 56 objective func-
tion evaluations per iteration.

Multiobjective optimization (amplitude and phase control)
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Fig. 8: Multiobjective optimization results obtained via PTS. (Left) Sampling of the Pareto front (set of optimal solutions satisfying both objectives) for the coherent beam
shaping problem. The dotted lines indicate the best possible value for each of the two objectives. This sampling is achieved using an aggregate cost function. (Center)
Optimized Hermite-Gauss beam profile at device output, with the best possible reproduction of the amplitude profile. (Right) Best possible trade-off between the two
objectives. Since the phase is controlled, the Hermite-Gauss profile shape is preserved over a greater propagation distance. In other words, controlling both the amplitude
and the phase allows for a greater field depth. This can be seen in the smaller number of ridges in the profile [4].

Aggregation method Amplitude objective function Phase objective function

min
ξ∈Ξ

p∑
i=1

αi fi (ξ), fi =
gi

g max
i

g1(ξ) =
∫ ∣∣|u(x0, y)|2−|ū(x0, y)|2

∣∣d y∫ |ū(x0, y)|2d y
g2(ξ) =

∫ ∣∣Im[u(x0, y)e−iφ(x0,0)]
∣∣2

d y∫ |ū(x0, y)|2d y

Outlooks
Engineering of non-diffracting beams

Non-diffracting beams can be used in many applications, like
atom guiding and microscopy. Various generation methods
have been proposed.

y Axicon-shaped photonic crystals [H. Kurt, J. Opt. Soc. Am. B
26, 981 (2009)]

y Phase plates optimized via GA [P. A. Sanchez-Serrano et al.,
Opt. Lett. 37, 5040 (2012)]

yHuygens’ surfaces, composed of 2D arrays of polarizable par-
ticles [C. Pfeiffer and A. Grbic, PRL 110, 197401+ (2013)]

Optimization of random laser action
Recent studies have shown that optimizing the pump shape al-
lows control of laser thresholds and emission directionality.
This optimization process implies the computation of a special
kind of eigenstate, the constant-flux state [5].

Fig. 9: Constant-flux state
of an asymmetric photonic
molecule composed of 4
dielectric atoms. Emission
profile computed via gen-
eralized Lorenz-Mie the-
ory. Constant-flux states
are more physically mean-
ingful than the usual quasi-
bound states.

Summary
1. Since parallel tabu search combines search diversification

and intensification, it outperforms the SGA in the case of our
model problem of beam shaping.

2. The performance gain associated with PTS allows for multi-
objective optimization in photonics design.

3. Optimization of random lasers and engineering non diffract-
ing beams are potential applications of our algorithms in op-
tics and photonics.
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