
To investigate mesoscopic brain networks, we built a multimodal imaging system to measure 
whole-brain neuronal activity in 6-8 dpf transgenic larvae expressing a pan-neuronal calcium 
sensor2 using resonant piezo-scanning two-photon microscopy while monitoring tail 
movements with a high-speed camera.

Whole-brain calcium imaging in transparent larval zebrafish offers an unprecedented 
opportunity to study mesoscopic neuronal dynamics at cellular resolution1. Using a recent 
multimodal zebrafish brain atlas, we investigated how  functional connectivity across brain 
regions is constrained by structural pathways. We then identified spontaneously reoccurring 
brain states whose spatial footprints were tightly constrained by structural communities. Our 
goal is to link these states and their transitions to the activity of neuromodulators, as their 
influence on large-scale brain dynamics remains poorly characterized.

Figure 1: a) Neuronal and behavioral imaging configuration; b) whole-brain calcium imaging pipeline; c) high-speed tail 
tracking of head-restrained larvae and identification of distinct behavioral events.

References: 1. Bezel, R.F. (2020), Network Neurosci. 2. Vladimirov et al. (2014), Nat. Methods. 3. Kunst et al. (2019), Neuron. 4. Lovett-Barron et al. (2017), Cell. 5. Chen et al. (2018), Neuron. 6. Finn et al. (2015), Nat. Neurosci. 7. Marques, et al. (2020), Nature.

Mesoscopic functional connectivity, defined as the pairwise correlation of neuronal activity 
across brain regions, exhibits striking similarity with the underlying connectome. Correlations 
increase with the number of structural pathways between regions, and a linear model of 
structural properties explains 78.4% of the measured temporal correlations.

To investigate transient changes in mesoscopic dynamics, we used an unsupervised 
clustering approach at the single frame level to identify recurrent patterns of regional activity, 
or brain states. We observed a rich repertoire of states with different activity configurations.

Brain states identified using clustering are typically short-lived, but some can last over ten 
seconds. State transitions are stochastic but not uniform: some states are more likely to 
transition into each other. The coactivation patterns of individual states exhibit striking 
modularity which overlaps significantly with structural modules from the connectome.

We measured very stable functional networks and states in 6-8 dpf larvae, replicated across 
2-photon and light-sheet modalities5 (not shown). Individual larvae could be recognized 
across consecutive imaging days using functional connectivity fingerprinting6 (n = 9 fish).

Some states are directly associated with ongoing motor activity. Linear regression with tail 
tracking to retrieve motor-correlated cells highlights a spatial domain similar to the main 
motor state. Our next goal is to study if some internal states can predict upcoming behavior.

Using immunofluorescence to retrieve neuromodulators, our preliminary data shows DA and 
NE cells are unsurprisingly active during swim events. Our next goal is to study their more 
subtle  influence on internal state transitions7, sensory processing, and behavior.

Figure 3: a) Example of region-averaged fluorescence time series; b) group-averaged functional connectivity (left) 
compared with mesoscopic axonal projections (right); c) bidirectionality of structural pathways is associated with increased 
correlations (KS test for distributions, t-test for means, p < 0.001); d) a linear model of structural properties reproduces the 
observed correlations (spatially-constrained connectivity null model, p < 0.01).

We have combined mesoscopic functional and structural measurements in the larval 
zebrafish brain to replicate many observations from the human neuroimaging literature, 
including the well-known connectome fingerprinting of individuals. Our state-based approach 
is inspired by recent efforts to understand mesoscopic networks at a finer temporal scale, 
revealing multiple recurrent patterns of activity with rich temporal and spatial features. By 
expanding our experimental framework, we will study how these internal state fluctuations 
are guided by neuromodulatory signalling.  
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Figure 6: a) Similar brain states and transitions are measured on consecutive days; b) top view of a functional network on 
consecutive days (left), identity recovery using functional connectivity (right, 8/9 fish identified, max correlation criterion).
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Figure 7: a) Behavioral regressors are generated by identifying swim events in the cumulative trace angle signal, then 
convolving with a slow GCaMP kernel. Significantly correlated cells are identified using a temporal permutation test (p < 
0.01); b) average motor state projected in a zebrafish brain atlas. 

Figure 8: Manually identified DA and NE neuron 
centroids from anti-th stainings, retrieved in 
calcium imaging data, then projected in 
Mapzebrain atlas (left, n=10 fish); example region-
average time series of neuromodulatory cells 
during spontaneous behavior, from one 
representative individual (right).
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Figure 5: a) Markov graph of transitions between brain states identified through consensus clusering; b) heavy-tailed 
distribution of state durations; c) 4 structural communities identified using consensus modularity maximization; d) average 
state coactivation matrix and individual states; black boxes correspond to structural modules in c).
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Figure 4: a) Regional time series are clustered along the temporal axis to identify recurrent states of activity across time 
and individuals, 30 min experiments; b) subset of cluster centroids (k = 20) registered in brain atlas, ordered by prevalence.
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Figure 2: a) Brain atlas registration pipeline using ANTs registration; b) post-mortem brain registration pipeline; stainings are 
warped on top of piezo imaging planes while preserving single-cell precision (circular inset). Scale bars: 100 microns.
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We use a dual registration approach to map calcium imaging volumes in a brain atlas3 and 
to identify neuromodulators in functional imaging planes. Larvae are stained for dopamine 
(DA), norepinephrine (NE) and serotonin (5HT) after imaging experiments, then their brains 
are re-imaged and warped onto in vivo data4.
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