
Experimental results

Encouraging advances in fabrication of microcavities let
foresee technological applications of high Q directional
cavities. New medium deformations might be designed
to optimize or possibly dynamically control directional
emission.

Fig. 7: Disk cavities. Inset:
An annular cavity with hole
radius of 5µm.
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Fig. 8: Transmission spec-
trum for a microcavity.
Measurement from evanes-
cent coupling with fiber ta-
per.

Numerical results

We present results of scattering numerical simulations on
annular cavity. We set nin = 1.5, nex = 1, R0 = 1,
R1 = 0.3 and use d (or α) ranging from 0.35 to 0.55 as
a control parameter. Fig. 5 present delay values (∝
stored energy) for eigenstates of reference circular cavity
in region k = [26.5, 28.5]. We select WGM (36, 1) as our
high Q mode (with regards to equation (6), m = 36 and
1 is the number of radial maxima inside Ωc).
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Fig. 5: Delay spectrum for the disk cavity. Mode
(36, 1) is highlighted.

Husimi distributions and FF patterns for mode (36, 1)
are shown in Fig. 6 for 3 increasing values of d. Although
delay time suffers a significative loss of a factor ∼ 20
from d = 0.35 to d = 0.55, the mode at d = 0.50 is only
slightly affected (factor 2) while presenting peaks along
well-defined directions.
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Fig. 6: (Left) Husimi distribution in emission
area of phase space (Red line: Total inter-
nal reflection limit) and (Right) FF pattern
of corresponding mode. Top to bottom: d =
{0.35, 0.50, 0.55}.

The annular cavity

The annular cavity consists in a disk cavity (nin = const)
with a circular hole (nhole = nex) located at a distance
d from the geometrical center of Ωc (see Fig. 2). The
Whispering Gallery Modes (WGMs) of the disk cavity

ψWGMs(r) ∼ Jm(ninkr)e
imφ (6)

may still be found in the annular cavity if their center-
most extremum is located inside the “safe zone” of radial
length α = R0 − (d +R1) (see Fig. 3 and 4).
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Fig. 2: Construction of annular cavity. Parame-
ter α is critical for WGMs.
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Fig. 3: Green region can with-
stand WGMs. Modes inside
red region are likely to be
chaotic.
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Fig. 4: Some Jm(nkr) Bessel
functions with n = 1.5 and
k = 27.29.

Correspondingly, we find a limit angle at which a classical
particle might impact the inner circle (hole)

sinχlim ≡ (R0 − α)/R0 (7)

hence defining a

•Regular region: |p| > sinχlim,

•Mixed region: |p| < sinχlim

with p = sinχ the canonical momentum coordinate. Be-
cause of dynamical tunnelling, the WGMs located
above the line sinχlim in classical phase space (φ, p) may
connect with modes in the chaotic region below. These
modes being partially localized inside emission region
limited by the lines | sinχc| = nex/nin, the FF is then
strongly influenced by them. Such behaviour in depicted
by the Husimi distribution restricted to emission re-
gion.

A difficult compromise

Historically, the first optical 2D microresonators were of
symmetrical shape (microdisks): their corresponding
classical billiard phase space is completely integrable.
They are characterized by high quality modes (Q� 1)
of isotropic emission in the FF region. In order to
obtain directional emission in FF, it has been considered
to geometrically deform the cavity: many geometries
have been proposed such as quadrupolar and stadium
shapes. The end result is a gain in directionality and
important losses in quality factor.

Recent developments in the understanding of transport
properties of quantum (wave) billiards [3] suggest that
it is possible to couple two modes of a given cavity and
to obtain a hybrid state exhibiting characteristics of
both. We are then led to reconsider the integrable disk
cavity (high quality modes) with enclosed defects leading
to disruption of underlying phase space regular structures
and emergence of classical chaos. To illustrate our
point, we have chosen, out of simplicity, the annular
cavity.

[3] J. Wiersig and M. Hentschel, Phys. Rev. Lett, 100 (2008), 033901-4
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Fig. 1: Scattering approach for resonant mode
calculation.

The pivotal quantity of the scattering theory is the scat-
tering matrix S whose elements Sij are probability am-
plitudes connecting incoming partial wave j to outgoing
partial wave i. Once calculated [1], this matrix can be
used to express the outgoing wave relative to the incom-
ing one. We choose the incident wave according to the
eigenstates of mean electromagnetic energy matrix
[2]

Q = −iS†∂S
∂k

. (5)

Normalizing the incoming energy flux enables us to com-
pare energy levels of those “energy modes”: the more
energy gets trapped inside the cavity, the longer the
residence time (delay) of the corresponding mode, and
hence, the higher the quality factor. Of particular in-
terest are resonant states which maximize the stored
electromagnetic energy.

[1] A. I. Rahachou and I. V. Zozoulenko, Appl. Opt, 43 (2004), 1761-

1772

[2] F. T. Smith, Phys. Rev, 118 (1960), 349-356

System description

For optically thin systems, we obtain Helmholtz equa-
tion for the transverse magnetic (TM) polarization (elec-
tric field ψ along Oz axis)[

∇2 + n2(r)k2
]
ψ = 0, r ∈ R2 (1)

where

n(r) =

{
nin(r) r ∈ Ωc
nex(r) = const r ∈ R2\Ωc

(2)

is the (real) refractive index and k, the wavenumber. The
region Ωc with boundary ∂Ωc defines the cavity. The
field on ∂Ωc must satisfy continuity up to the first normal
derivative:

•Continuity: ψ|∂Ω+
c

= ψ|∂Ω−c
,

•Normal derivative continuity: ∂nψ|∂Ω+
c

= ∂nψ|∂Ω−c
.

In the exterior region, equation (1) may be solved exactly
in polar coordinates in terms of partial waves

ψ(r) =
∑
l

[
AlH

(2)
l (nexkr) +BlH

(1)
l (nexkr)

]
eilφ (3)

where H
(1,2)
ν (z) are Hankel functions of first and second

kind. These functions are especially well suited to meet
outgoing and incoming wave conditions for large argu-
ments (Far Field region (FF), r →∞):

H
(j)
ν (z) ∼

√
2

πz
exp[(−1)ji(−z + νπ/2)− iπ/4] . (4)

Two conceptually different approaches can be used to
extract modal characteristics of the field:

•Emission approach: The field is supposed to have
existed inside the cavity since t → −∞: {Al} = 0 (no
incoming field), k ∈ C, Im{k} < 0 in (3),

• Scattering approach: The incoming field is a con-
tinuous wave: {Al} 6= 0 at least for some l, k ∈ R.

We propose a novel method of extracting light beams from 2D microcavities. The concept is based on inhomogeneous dielectric cavities (IDC) where the
inhomogeneities arise from a space-dependent refractive index whose variations may be continuous (e.g. a localized induced gaussian profile of the index) or
discontinuous (e.g. holes or refractive steps in the cavity material). Instead of the so-called asymmetric resonant cavities (ARC), which are smooth deformations
of a circular cavity and produce directional output while sacrificing the quality factor Q, we intend to operate with an integrable geometry (a disk) and induce
directionality through the (possibly reconfigurable) medium while preserving a high Q. The systems are interesting on two counts. Firstly, as classical objects,
the IDC are equivalent to dielectric billiards (i.e. photonic escape is possible) where the broken symmetry of the material can induce a transition from regular to
chaotic dynamics: chaos in an integrable billiard geometry, an almost unique combination. Secondly, guided by the classical phase space information, the wave
dynamics can be “engineered” to produce highly directional emission with tailored optical properties, the grail of microcavity research. We have studied a number
of configurations and will present results on their respective performances.
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Inhomogeneous Dielectric Microcavities
Highly Directional Emission from


