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Conclusion

Other developments (not presented here, see [8])

•Mapping of generations to continuous time.

• Effect of correlations when using discrete representa-
tion of continuous dynamics [9].

Future perspectives

•Development of a formalism simultaneously allowing
continuous dynamics and finite-size effects.

•Additional network characteristics (e.g. clustering).

•Asymptotic limits and other analytical analysis.
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Finite networks

Degree distribution in susceptibles

Since high degree nodes are more likely to get infected,
their susceptible population decreases faster than
the low degree one. To take this into account, we de-
fine susceptible only quantities GS0 (x; s), pSk (s) and zS1 (s),
functions of s and similar to their complete network coun-
terpart, i.e. GS0 (x; s) =

∑
k p

S
k (s)xk and zS1 (s) = GS0

′(1; s).

Normalization considerations and continuity approxima-
tions give the differential equation and solution

dpSk (s)

ds
=
pSk (s)

N − s

(
1− k

zS1 (s)

)
pSk (1)=pk

=⇒ GS
0 (x; s) =

N − 1

N − s
G0

(
xθ(s)

)
.

θ(s) is fixed by evaluation at x = 1, i.e. G0
(
θ(s)

)
= N−s
N−1.

It follows that the PGF for the potential number of in-
fections directly caused by a generation g infectious node
(the finite-network counterpart of Gg(x)) is given
by

G̃g
(
x; s,m

)
=

G0(x) (g = 0)

(N−1)
[
GS

0

(
x;s−m

)
−GS

0

(
x;s
)]

xm (g ≥ 1)
.

Additional loss of transmissions

In contrast to the infinite-size case, neighbours of an
infectious node can be already infected. Hence,
transmissions are “lost” and this lowers the effective trans-
missibility (see details in [8])

T̃s′m′ =
(N − s′)
m′

[
1−GS0

(
1− λs′m′; s′

)]
G̃′g−1

(
1; s′,m′

) .

λs′m′ =
m′

nS + nI + nR

nS = (N − s′)zS1 (s′)

nI = m′G̃′g−1(1; s′,m′)

nR = η(s′ −m′)

dη(s)

ds
=
zS2 (s)

zS1 (s)

[
(1− T )− (2− T )

(N − s)
η(s)

zS1 (s)

]
zS2 (s) = GS

0
′′(1; s)

η(1) = (1− T )zS1 (s)

New recurrence relationship

Combining these two finite-size effects, we obtain

Ψ
g
0(x, y) =

∞∑
s′,m′=0

ψ
g−1
s′m′ x

s′
[
G̃g−1

(
1 + (xy − 1)T̃s′m′; s

′,m′
)]m′

for the recurrence relationship in finite networks. This is
a major improvement over the results of [7].

Infinite networks

Counting neighbours

We define the probability generating function (PGF)
for the degree of a random node [4,5] as

G0(x) =

∞∑
k=0

pkx
k

respecting the normalization G0(1) =
∑
k pk = 1. The

average degree is simply z1 =
∑
k kpk = G′0(1).

Except for generation 0, nodes have higher probability
to become infectious the more so the higher their
degree. The PGF for the number of neighbours of a
generation g node (excluding the node from which it has
been infected, when applicable) is thus

Gg(x) =

G0(x) (g = 0)∑
k(k+1)pk+1x

k∑
k(k+1)pk+1

= 1
z1
G′0(x) (g ≥ 1)

.

Evolution

We introduce the two variables PGF

Ψ
g
0(x, y) =

∞∑
s,m=0

ψ
g
sm x

sym

generating the probability ψ
g
sm that a total of s nodes

have been infected before or at generation g, m of which
have been infected at generation g.

The probability for neighbours of a generation g node to
be already infected at that generation vanishes like
1/N for arbitrarily large networks.

The number of infections directly caused by m′ genera-

tion g− 1 nodes is generated by
[
Gg−1 (1 + (x− 1)T )

]m′
.

We thus have the recurrence relationship

Ψ
g
0(x, y) =

∞∑
s′,m′=0

ψ
g−1
s′m′ x

s′
[
Gg−1

(
1 + (xy − 1)T

)]m′
with the initial condition Ψ0

0(x, y) = xy. The probability
for s nodes to be infected at generation g is given by
ps =

∑
mψ

g
sm. Although obtained differently, this result

is identical to the one in [6].

Results
Results obtained for a power-law network pk ∝ k−τe−k/κ of N = 1000 nodes with τ = 2, κ = 5 and T = 0.8.

Red: numerical simulations; blue: present analytical results [8]; black: previous analytical results (outbreaks) [5].

In
fi

n
it

e
F

in
it

e

g = 2 g = 6 g = 11 Final state

The problem

We use a contact network in order to take into account
the behaviour and interactions of individuals in the pop-
ulation.

• Susceptible nodes
( )

represent individuals that
have not acquired the disease yet.

• Infectious nodes
( )

represent individuals that
can currently transmit the disease.

•Removed nodes
( )

represent individuals that
have once acquired the disease but that can no longer
transmit it (e.g. recovered, dead, quarantined).

•Nodes joined by a link
( )

are said to be neigh-
bours.

•The degree k of a node is its number of neighbours.

•The set {pk}k∈N such that a node selected at random
has probability pk of being of degree k is the degree
distribution of the contact network.

We start with a network of N susceptible nodes respect-
ing a given degree distribution. One of these nodes is
randomly selected and becomes infectious; we refer to
that node as generation 0. The term “generation g”
also refers to the time period when nodes of generation g
are infectious.

Susceptible nodes that are neighbours to an infectious one
of generation g

( )
have probability T (transmis-

sibility) to be infected and become part of generation
g + 1. Nodes of generation g then become removed.

Abstract

In the last decade, many real-world systems have been shown to display complex network structures [1,2,3]. The dynamics on
these networks has attracted considerable attention: for instance, the propagation in human populations of infectious diseases
or of rumours indicates how crucial a good dynamical understanding is. While numerical simulations offer great generality,
they are generally difficult to interpret and one often relies on analytical approaches to provide the necessary insights. Existing
formalisms [4,5,6,7] partly include the full complexity of the systems at hand: structure of the networks (realistic, finite-size),
time evolution and characterization of outcomes (e.g. outbreak vs. epidemics) to name a few. We have developed an analytical
framework that improves over previous works in two complementary directions: i. finite-size effects have been identified and
taken into account for discrete dynamics; and ii. continuous time evolution has been formulated for infinite networks. These
are the first steps towards a formalism unifying continuous dynamics and finite-size networks. We will discuss the quantitative
and qualitative differences with earlier studies and point out directions for further improvements.
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