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Picturing a complex system as a whole and forecasting its long-term evolution often looks like an impossible task. Yet, \ s We propose a Dynamics Approximate Reduction Technique (DART) that maps high-dimensional (complete) dynamics

behind the high-dimensional nonlinear dynamics and the intricate organization that characterize complex systems, - unto low-dimensional (reduced) dynamics while preserving the most salient topological and dynamical features of the
there are essential mechanisms that explain the emergence of macroscopic phenomena. original system. DART generalizes previous approaches [2| and is used to predict the emergence of synchronization [1].
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other nonlinear dynamics on networks [2]. where T is the Moore-Penrose pseudo-inversion.

Application to synchronization Future works
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parameters, initial conditions D11 = P22 = Din, P12 = P21 = Pout
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