

Threefold way to the dimension reduction of dynamics on networks: an application to synchronization

V. Thibeault, G. St-Onge, L. J. Dubé, and P. Desrosiers

Picturing a complex system as a whole and forecasting its long-term evolution often looks like an impossible task. Yet, behind the high-dimensional nonlinear dynamics and the intricate organization that characterize complex systems, there are essential mechanisms that explain the emergence of macroscopic phenomena.

We propose a Dynamics Approximate Reduction Technique (DART) that maps high-dimensional (complete) dynamics unto low-dimensional (reduced) dynamics while preserving the most salient topological and dynamical features of the original system. DART generalizes previous approaches [2] and is used to predict the emergence of synchronization [1].

DART: Dynamics Approximate Reduction Technique

Definitions

	Complete dynamics	Reduced dynamics
Dimension of the dynamics and number of nodes	$N \gg 1$	n < N
Indices	$\begin{vmatrix} \text{Latin} \\ j \in \{1,, N\} \end{vmatrix}$	Greek $\mu \in \{1,, n\}$
Dynamical variable	$igg z_j$	Z_{μ}
Adjacency matrix	A	\mathcal{A}
Degree	k_{j}	κ_{μ}
Dynamical parameter	ω_j	Ω_{μ}
Dynamical parameter matrix	W	\mathcal{W}
Degree matrix	K	\mathcal{K}
Function describing the intrinsic dynamics	F,G	
Function describing the coupling between nodes	H	
Reduction matrix $(n \times N)$	M	

Concrete example: DART

Kuramoto model on networks σ : Coupling constant between the oscillators

 ω_j : Natural frequency of oscillator j

$$\dot{z}_j = i\omega_j z_j + \frac{\sigma}{N} \sum_{k=1}^N A_{jk} [z_j - z_j^2 \bar{z}_k]$$
DART

 $\dot{Z}_{\mu} = i \sum_{\nu=1}^{n} \mathcal{W}_{\mu\nu} Z_{\nu} + \frac{\sigma}{2N} \sum_{\nu=1}^{n} \mathcal{A}_{\mu\nu} Z_{\nu}$ $-\frac{\sigma}{2N\kappa_{\mu}^{2}} \sum_{\nu,\xi,\tau=1}^{n} \mathcal{A}_{\mu\nu} \mathcal{K}_{\mu\xi} \mathcal{K}_{\mu\tau} Z_{\xi} Z_{\tau} Z_{\nu}$

DART can also be applied to other phase dynamics, such as the Winfree and theta models [1], and to other nonlinear dynamics on networks [2].

Construction of the reduction matrix

Threefold problem

To close the system, we need to solve three **compatibility equations**: WM = MW (Dynamical parameters) KM = MK (Local structure) AM = MA (Global structure)

How to choose the reduction matrix M?

Combine eigenvectors of W, K, or A.

M = CV $C: n \times n$ coefficient matrix $V: n \times N$ eigenvector matrix

FIG. 2. In DART, we need to aim one target matrix W, K, or A to solve its compatibility equation.

Once M is chosen, the best solution to the compatibility equations is

 $\mathcal{W} = MWM^+$ $\mathcal{K} = MKM^+$ $\mathcal{A} = MAM^+$ where $^+$ is the Moore-Penrose pseudo-inversion.

Linear combination of eigenvectors CV \mathbf{v}_{D} \mathbf{v}_{SD} Reduction matrix M N_1 $+ C_{12}$ $+ C_{22}$ =

Application to synchronization

Phase synchronization observable

FIG. 3. Global synchronization observable for phase dynamics. Different node colors represent different natural frequencies.

 $\langle \cdot \rangle_t$: Average over time

 $\langle \cdot \rangle$: Average over time, graphs, dynamical parameters, initial conditions

Predict synchronization on random modular graphs

FIG. 4. Synchronization curve of the complete (N=250, black lines) vs. reduced (n=2, gray lines) Kuramoto dynamics on random modular graphs.

Predict bifurcations to chimeras

FIG. 5. Chimera state regions in the Kuramoto-Sakaguchi dynamics on the mean SBM. Each point represents the time average of the phase synchronization observable of the incoherent community obtained with the integration of the complete dynamics (N = 500). The Hopf and saddle-node bifurcations are obtained from the reduced dynamics (n = 2). $p_{11} = p_{22} = p_{in}$, $p_{12} = p_{21} = p_{out}$

Existence of periphery chimeras

FIG. 6. Periphery chimeras exist for the Kuramoto-Sakaguchi dynamics on two star graphs. The existence of these chimeras is restricted to a small range of phase lags α (between the two vertical dashed lines). The time-averaged synchronization observable in periphery p_{μ} is denoted $\langle R_{p_{\mu}} \rangle$.

Predict explosive synchronization

FIG. 7. Hysteresis in the Kuramoto-Sakaguchi dynamics on the star graph. Complete dynamics: N = 11, dark blue (backward branch) and black (forward branch) markers. Reduced dynamics: n = 2, light blue (backward branch) and gray (forward branch) markers.

Future works

Challenges

- Apply DART to dynamics on weighted, directed, and real networks.
- Generalize DART for nonlinear observables.
- Relate DART to existing dimension-reduction methods.

Coming soon

- Find better algorithms to solve the compatibility equations.
- Apply DART to plant-pollinisator dynamics on bipartite networks.
- Apply DART to nonlinear neural dynamics with adaptation.

For more details, see the paper [1]!

[2] E. Laurence, N. Doyon, L. J. Dubé, and P. Desrosiers, Phys. Rev. X, 9, p.011042 (2019).