Analytical Koopman approach to recurrent neural networks

Benjamin Claveau^{1,2}, Vincent Thibeault^{1,2}, Antoine Allard^{1,2}, Patrick Desrosiers^{1,2,3}

- 1. Département de physique, génie physique et d'optique, Université Laval, Québec, Canada
- 2. Centre Interdisciplinaire en Modélisation Mathématique de l'Université Laval, Québec, Canada
- 3. Centre de recherche CERVO, Québec, Canada

KOOPMAN OPERATOR THEORY

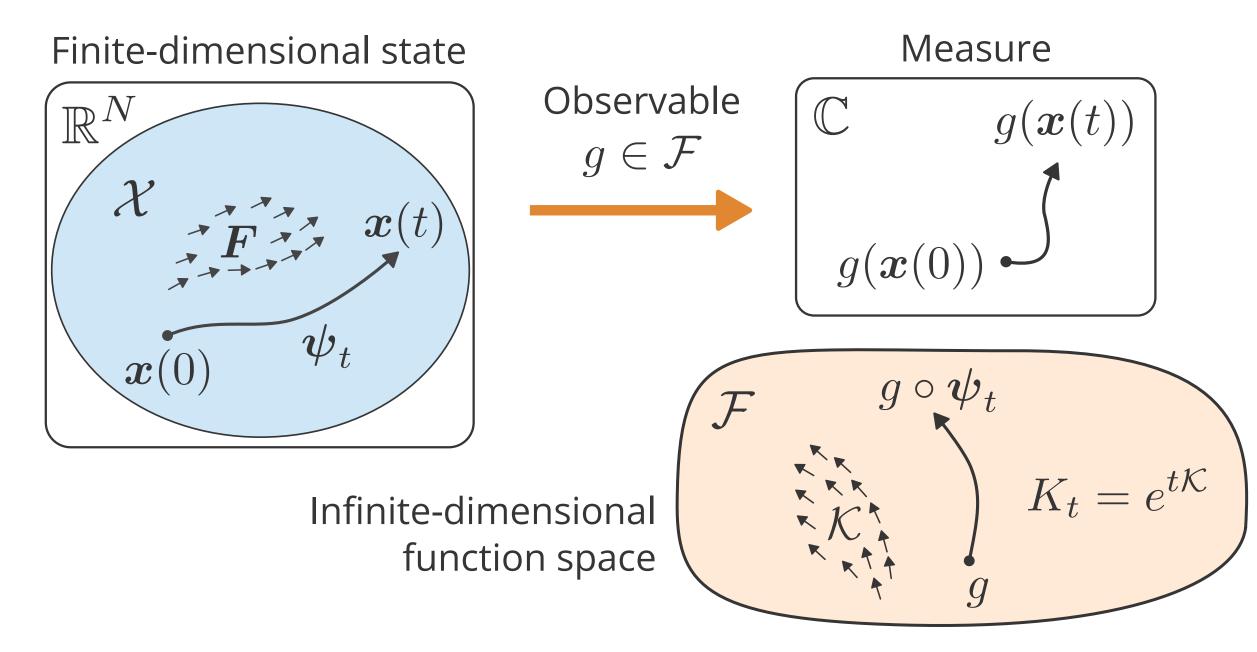
- Inspired by quantum mechanics, Koopman theory provides a mathematical framework that describes the behaviour of observables of dynamical systems [1].
- For linear and nonlinear systems, the linear time-evolution operator of the observables is the Koopman operator K_t . Its generator ${\mathcal K}$ is known from the vector field ${m F}$ as

$$\mathcal{K} = \sum_{i=1}^{N} F_i \frac{\partial}{\partial x_i}.$$

ullet An **eigenfunction** ϕ of the Koopman generator of eigenvalue λ is a particular observable with an exponential behaviour, i.e.

$$K_t[\phi](\boldsymbol{x}(t)) = e^{\lambda t} \phi(\boldsymbol{x}(0)).$$

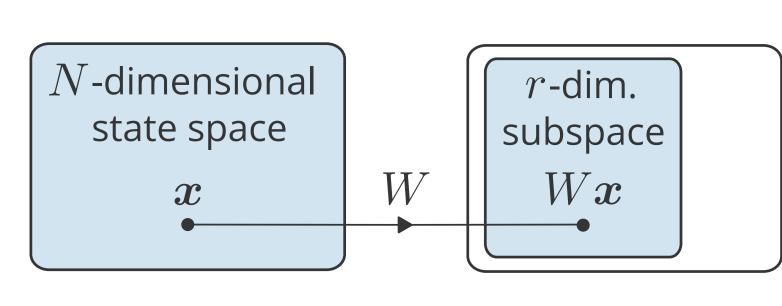
• Koopman eigenfunctions are commonly approximated through data-driven methods [2], but analytical approaches can lead to exact eigenfunctions and symmetries [3, 4].



RESEARCH QUESTION

- ullet We are interested in dynamics of complex networks with weight matrix W.
- Structural property of interest:

The rank of W is the dimension of its image. $rank(W) = r \le N$



- ullet Previous works relate the rank of W to the dimension of the dynamics of complex networks [4, 5], including recurrent neural networks (RNNs) [6].
- The exact effect of a low-rank weight matrix is still unclear in many cases.

Can Koopman eigenfunctions characterize the impact of the rank on the dynamics?

MAIN RESULT

We found two families for which rank deficiencies of W imply Koopman eigenfunctions:

1.
$$\frac{\mathrm{d}x_i}{\mathrm{d}t} = \frac{1}{\zeta_i'(x_i)} \left[-\zeta_i(x_i) + \sum_{j=1}^N W_{ij} h_j(\boldsymbol{x}) \right], \qquad \phi(x) = \boldsymbol{u}^\top \boldsymbol{\zeta}(x)$$

$$\lambda = -1$$

2.
$$\frac{\mathrm{d}x_i}{\mathrm{d}t} = \frac{1}{\zeta_i'(x_i)} \left[-c_i + \sum_{j=1}^N W_{ij} h_j(\boldsymbol{x}) \right], \qquad \phi(x) = \exp\left(\boldsymbol{u}^\top \boldsymbol{\zeta}(x)\right) \\ \lambda = -\boldsymbol{u}^\top \boldsymbol{c}$$

for $i \in \{1, \dots, N\}$ with $W^{\top} u = 0$, x_i the activity of the i-th element, arbitrary functions ζ_i , h_i and arbitrary constants c_i .

RECURRENT NEURAL NETWORKS

- Data-driven Koopman methods can be used to train RNNs without gradient descent [7] and improve performance in some neural network applications [8].
- ullet In our case, for $\zeta(x)=x- heta$, the first family of systems yields the RNN dynamics

$$\frac{dx_i}{dt} = -x_i + \sum_{j=1}^{N} W_{ij}\sigma(x_j) + \theta_i, \qquad i \in \{1, \dots, N\}.$$

• Thus, RNNs with low-rank matrices have affine Koopman eigenfunctions

$$\phi(x) = \mathbf{u}^{\top}(\mathbf{x} - \boldsymbol{\theta}), \qquad W^{\top}\mathbf{u} = \mathbf{0}.$$

• Since the associated eigenvalues are negative, the dynamics of low-rank RNNs converge to low-dimensional affine spaces.

EXAMPLE

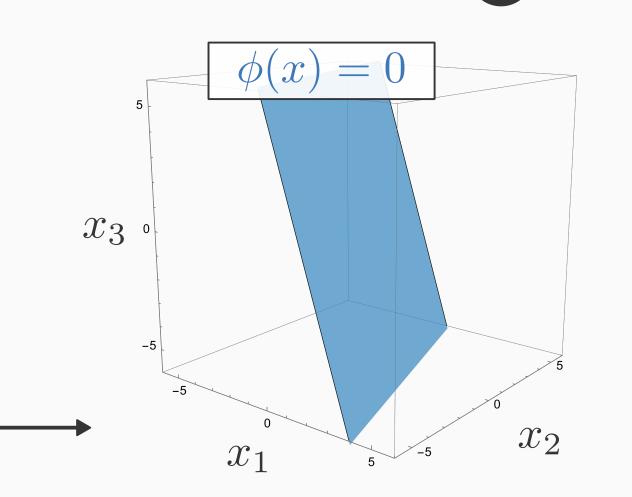
- 3 neuronal populations
- Rank 2 weight matrix
- $W = \begin{bmatrix} -1 & 0 & -2 \\ 3 & 1 & 2 \\ 0 & -1 & 4 \end{bmatrix}$
- $\theta = 0$

From the singular value decomposition $W = U \Sigma V^{\top}$, we compute a **left singular vector** $m{u}_3$ of null singular value. This vector is such that $W^{+}\boldsymbol{u}_{3}=\boldsymbol{0}$.

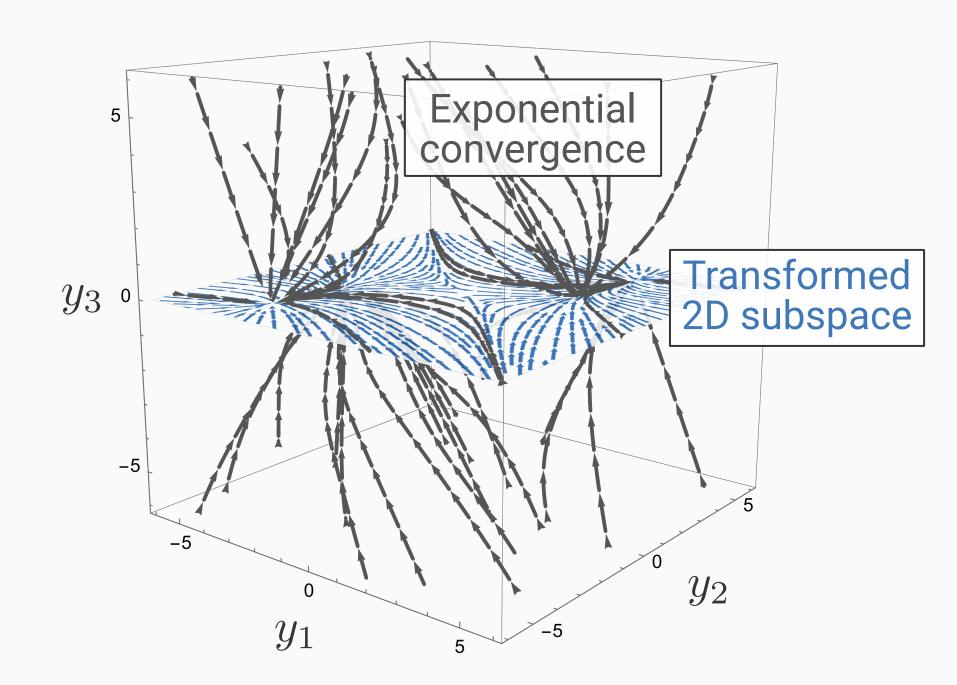
We thus obtain the linear eigenfunction

$$\phi(\mathbf{x}) = \mathbf{u}_3^{\mathsf{T}} \mathbf{x} = 3x_1 + x_2 + x_3, \qquad \lambda = -1.$$

The kernel of the Koopman eigenfunction defines a globally attractive invariant subspace.



There is a useful **linear change of variables** $y = U^{\top}x$, where y_3 is the eigenfunction.



After the change of variables:

- Invariant subspace is now at $y_3 = 0$
- Exponential decrease of y_3 magnitude
- Long-term behaviour described by y_1, y_2

TAKEAWAYS AND FUTURE WORK

- We found two families of dynamics of complex systems for which rank deficiencies of the weight matrix imply Koopman eigenfunctions.
- In recurrent neural networks, these eigenfunctions describe the convergence of the activity towards invariant affine subspaces.
- This approach can be extended by identifying general families of dynamical systems which admit Koopman eigenfunctions of specified forms. By choosing a universal approximator as a Koopman eigenfunction, this framework yields dynamics with arbitrary approximate eigenfunctions.

