Analytical Koopman approach to recurrent neural networks
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KOOPMAN OPERATOR THEORY RECURRENT NEURAL NETWORKS

e |Inspired by quantum mechanics, Koopman theory provides a mathematical framework e Data-driven Koopman methods can be used to train RNNs without gradient descent [/] and
that describes the behaviour of observables of dynamical systems [1]. improve performance in some neural network applications [8].

e For linear and nonlinear systems, the linear time-evolution operator of the observablesis e Inour case, for {(x) = @ — 0, the first family of systems yields the RNN dynamics
the Koopman operator K. Its generator /C is known from the vector field F’ as Ao
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e An eigenfunction ¢ of the Koopman generator of eigenvalue A is a particular observable

. . . . e Thus, RNNs with low-rank matrices have affine Koopman eigenfunctions
with an exponential behaviour, i.e.

g | T, —
Ki[gl(@ (1)) = eMo(@(0)). pae)=u(@=0), W u=0.
e Koopman eigenfunctions are commonly approximated through data-driven methods [2], e Since .the as.sociateo.l eigenvalues are negative, the dynamics of low-rank RNNs converge to
but analytical approaches can lead to exact eigenfunctions and symmetries [3, 4]. low-dimensional affine spaces.
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E g o, From the singular value decomposition W = UXV ',
~ / R we compute a left singular vector w3 of null singular
Infinite-dimensional :'/\C\ K, = eth value. This vector is such that WTu3 = 0.
function space K’\ .\ﬁ TP
Y9 We thus obtain the linear eigenfunction .
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RESEARCH QUESTION () =ugx =3z +22+23, A=-1.
e We are interested in dynamics of complex networks with weight matrix W . The kernel of the Koopman eigenfunction definesa ——»

e Structural property of interest: globally attractive invariant subspace.

The rank of W'is N -dimensional r-dim. There is a useful linear change of variables y = U ' &, where ¥3 is the eigenfunction.
the dimension of its image. Slkeits spas subspace
rank(W) =r < N L VY Wz SN — ,
i ) \ J Exponential /
COMSTIENC | After the change of variables :
e Previous works relate the rank of W to the dimension of the dynamics of complex ' / . .
| / e Invariant subspace is now

networks [4, 5], including recurrent neural networks (RNNs) [6]. WY Transformed at 13 = 0

2D subspace

e The exact effect of a low-rank weight matrix is still unclear in many cases.

e Exponential decrease
of Y3 magnitude

{ Can Koopman eigenfunctions characterize the impact of the rank on the dynamics? J .
e Long-term behaviour

described by y1, Y2

MAIN RESULT

/We found two families for which rank deficiencies of W imply Koopman eigenfunctions: L 5 )
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dt Gi (i) ] A=—1 e We found two families of dynamics of complex systems for which rank deficiencies of the
) ) weight matrix imply Koopman eigenfunctions.
i N i : : : .
dx; 1 ) = exp (u'! C(r e |n recurrent neural networks, these eigenfunctions describe the convergence of the activity
2. d - = ; —Cj T Z Wijhj (37) ; gb( ) pT( C( )) towards invariant affine subspaces.
- - e This approach can be extended by identifying general families of dynamical systems which
T E {1 o N} with WTu = 0. z. the activity of the i-th element, arbitrary admit Koopman eigenfunctions of specified forms. By choosing a universal approximator
functions 7( h; and arbitrary constan'ts CZZ | as a Koopman eigenfunction, this framework yields dynamics with arbitrary approximate
(Y *

J eigenfunctions.
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