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Numerical simulations

Functional connectivity (FC) describes statistical dependencies between the activity of (Exam le. SCFC simulated on zebrafish mesoscale networks compricing 70 brain regions [6]\
neurons or groups of neurons [1]. Comparing FC with anatomical or structural pre. P | g 5
connectivity (SC) has emerged as a promising avenue to study how brain structure . a) Kuramoto . . b) Firing rate
supports function and how both change in disease or with cognition [2]. However, | . | ©
empirical studies across species and recording modalities have reported a wide range _0.8] o 0.8 ———
of FC-SC correspondence values, typically assessed using Pearson correlation [1,3]. : 07 . : re = 0.64 E
Recent theoretical work further suggests that fundamental limits on the information S et 807 4@
shared among structure and dynamics may constrain our ability to relate FC to SC [4,5]. =04 0.5 ¢ =04 3%3
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Interpreting structure-function relationships thus remains challenging and raises key
questions: how expected is a strong FC-SC correspondence, and how do different dynamical
models shape the nature and strength of this relationship ? 9 y
This project aims to identify specific dynamical regimes in which the structure-function - ~
correspondence is maximized, using established models of neural activity. It further y | o).
seeks to determine how this relationship depends on the underlying dynamical model a) Kuramoto (low coupling):
and to characterize it trough nonlinear measures that go beyond simple correlations. Covariance Con(T) ~ (A4T) + . EN: K Kklg 5 1" : duration
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Computational framework. We developped a computational framework (see SIMBA Ty , 5. _1_5
library) that systematically simulates the ordinary differential equations governing Phase C2 (T) ~ sinc? (A 4T/2) 1+§22 (_ﬂgl, K Slk) Ik = Ik
these models. By sweeping across relevant parameters, randomizing initial conditions, coherence. g ! —\ Ay 7 Ay sinc(x) = Smf)
and monitoring observables from spectral graph theory and order parameters [6], we
identified and characterized regimes exhibiting strong structure-function b) Firing rate (covariance):
correspondence. Weak C a(W—1)2 (Stochastic) € = % : inverse coupling
coupling. . .
Analytical investigations. To evaluate how structural connectivity shapes functional PG o : noise amplitude
dependencies, we derived approximate nonlinear relationships between the covariance Strong . | : o |
of neural activity and the underlying SC across different models. coupling. C~WW  (Mean-field) C~I1+<(WW') (Chaotic)
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Models of neural activity
-

a) Kuramoto's coupled oscillators:

N
wj + §Z Ky sin(z; — x ),
I=1

w; . natural frequency

g 9

~ - reduced coupling

b) Firing rate with and inhibitory connections:
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Takeaways and future work

e Each model has its own optimal dynamical regimes for strong SC-FC correspondence.

— Kuramoto: FC correlates most with SC before transition to synchronization [7].
— Firing rate: FC globally aligns more with as SC as interneuronal coupling increases,
except near the transition to chaos where this alignement reaches minimum.

e \What's next:

— How do such SC-FC relationships evolve according to bioplausible plasticity rules [8] ?
— Within what structural limits do the closed-form expressions predict activity ?

]

® Python Library. Structure Influence on Models of Brain Activity,
e for simulation of many other models of neural activity.
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