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Models of neural activity

Analytical predictions

Each model has its own optimal dynamical regimes for strong SC-FC correspondence.
   — Kuramoto: FC correlates most with SC before transition to synchronization [7].
   — Firing rate: FC globally aligns more with as SC as interneuronal coupling increases,
        except near the transition to chaos where this alignement reaches minimum.

Takeaways and future work

Structure-function relationship
Functional connectivity (FC) describes statistical dependencies between the activity of 
neurons or groups of neurons [1]. Comparing FC with anatomical or structural 
connectivity (SC) has emerged as a promising avenue to study how brain structure 
supports function and how both change in disease or with cognition [2]. However, 
empirical studies across species and recording modalities have reported a wide range 
of FC-SC correspondence values, typically assessed using Pearson correlation [1,3]. 
Recent theoretical work further suggests that fundamental limits on the information 
shared among structure and dynamics may constrain our ability to relate FC to SC [4,5].

Interpreting structure-function relationships thus remains challenging and raises key 
questions: how expected is a strong FC-SC correspondence, and how do different dynamical 
models shape the nature and strength of this relationship ?

Numerical simulations

a) Kuramoto's coupled oscillators:

Example. SC-FC simulated on zebrafish mesoscale networks comprising 70 brain regions [6]

b) Firing rate with excitatory and inhibitory connections: 
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What's next: 
   — How do such SC-FC relationships evolve according to bioplausible plasticity rules [8] ?
   — Within what structural limits do the closed-form expressions predict activity ?
                        

Project goals and methods
This project aims to identify specific dynamical regimes in which the structure-function 
correspondence is maximized, using established models of neural activity. It further 
seeks to determine how this relationship depends on the underlying dynamical model 
and to characterize it trough nonlinear measures that go beyond simple correlations.
 
Computational framework. We developped a computational framework (see SIMBA 
library) that systematically simulates the ordinary differential equations governing 
these models. By sweeping across relevant parameters, randomizing initial conditions, 
and monitoring observables from spectral graph theory and order parameters [6], we 
identified and characterized regimes exhibiting strong structure-function 
correspondence.
 
Analytical investigations. To evaluate how structural connectivity shapes functional 
dependencies, we derived approximate nonlinear relationships between the covariance 
of neural activity and the underlying SC across different models.

SIMBA Python Library. Structure Influence on Models of Brain Activity, 
for simulation of many other models of neural activity. 
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a) Kuramoto (low coupling):

b) Firing rate (covariance):
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