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Scully: Zombies are just projections of our own repressed cannibalistic and sexual
fears and desires. They are who we fear that we are at heart. Just mindless
automatons who can only kill and eat.
Mulder: Well, I got a new theory. I say that when zombies try to eat people,
that’s just the first stage. You see, they’ve just come back from being dead, so
they’re gonna do all the things they missed from when they were alive. So first,
they’re gonna eat. Then, they’re gonna drink. Then, they’re gonna dance and
make love.

— The X-Files, season 7, episode 19.

Abstract

According to Mulder’s theory, the zombies will eventually fall on each other and make love. How-
ever, be it for love or evil, the cold hard reality remains that the actions of the undead, just as
those of the living, are also structured by simple constraints of social or spatiotemporal nature. In
this chapter, we improve upon the standard zombie outbreak model by considering the underlying
social network of the living and the horde behaviour of the undead. This model is then further
improved by considering the adaptive nature of social interactions: people usually tend to avoid
contact with zombies. Doing so captures the coevolution of the human social network and of the
zombie outbreak, which encourages humans to naturally barricade themselves in groups of survivors
to better fight the undead menace. And then? Better stack goods, arm yourself and be patient,
for the undead hordes are there to stay; hopefully dancing and making love.

Introduction

Whether it is going to work/school (roads and public transport networks), updating a Facebook
status (internet, online social networks, world-wide web), meeting friends or getting a high-profile
job (acquaintance networks), calling abroad or getting directions using a GPS (satellite networks),
or simply turning on the radio (electrical and information networks), we keep encountering networks
in our everyday lives. By improving our understanding of the structure of such networks, we are
increasingly able to derive as much benefit as possible from the advantages that networks have to
offer, while efficiently protecting ourselves from the disadvantages.

Being social animals, people interact with each other for a variety of reasons: friendships, family
bonds, sexual partnerships, business relations and so on. At the population level, these interactions
sum up to form a giant web: the social network. How individuals are connected to one another
in the social network depends on the nature of the considered interactions. Within this structure,
people may exchange or transmit information, opinions or infectious diseases, to name a few, while
the underlying social network shapes the propagation dynamics.

Studying social networks has been quite useful in the recent past to understand and, to a certain
extent, predict the propagation of infectious diseases in human populations. While research has
mostly been focused on containing and fighting “traditional” emerging infectious diseases such as
HIV and influenza, another threat has been grossly underestimated and is now imminent: the
zombie apocalypse.

As the hands of the clock push us inexorably closer to the End Time, experts believe that
preparation is now imperative to ensure any future for humanity. Using concepts from network
theory and contact network epidemiology, we present in this chapter a novel approach that models
zombie outbreaks and human counterattack actions. This model will help authorities to conceive
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Figure 1: A graph of 8 vertices and 11 edges.

and test different resistance strategies beforehand, and be as prepared as one possibly can for when
there will be no more room in Hell and the dead will walk the Earth1.

1 Modelling a zombie invasion: a practical guide

To model a zombie invasion, we first need to introduce some basic notions of network theory. We
will then define rules governing how people and zombies should interact.

1.1 Contact networks 101

A contact network is represented by a graph: a set of dots linked by lines. Dots and lines are gen-
erally referred to as vertices and edges, respectively, and we will use this nomenclature throughout
this chapter. Figure 1 shows a simple example of a graph.

When modelling social networks, individuals are represented by vertices and two individuals
are linked by an edge if they interact with each other. In the case of a zombie invasion, any kind
of direct interaction may lead to infection. Therefore social interactions such as friendship, family
bonds or school/workplace acquaintances are taken into account in the model.

Two vertices sharing an edge are said to be neighbours and the number of neighbours of a
given vertex is called its degree. A property of real social networks that plays a major role in the
disease propagation is their degree distribution, noted as {pk} = [p0, p1, p2, . . .]. Each pk gives the
fraction of the vertices that have k neighbours, which is also the probability for a randomly selected
vertex to be of degree k. For example, the degree distribution of the graph shown in Figure 1 is
{pk} = [0, 0, 1/2, 1/4, 1/4, 0, 0, . . .].

1.2 Building a contact network

The structure of a network contains a lot of information. In order to acquire this information
through a survey, we would have to ask each vertex who their neighbours are. While this might be
simple for a very small network, it is usually not possible for larger populations. Indeed, it would
be much simpler to survey a small fraction of the population and then figure out what information
this gives us about the whole network.

1Dawn of the Dead, George Romero, 1978
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Now suppose that we have the results from a survey that asked 100 people how many neighbours
they have (i.e., what is their degree). If the sole other information you have about the network is
that there are a total of 10,000 people in it, how do you fill in the blanks? How do you obtain the
degrees of the other 9,900 other vertices and how do you join all the vertices together?

The first question is easy to answer by requiring consistency: the degree of all the 10,000 vertices
should be chosen such that if we would ask any randomly chosen 100 of these vertices to answer the
same survey, the result should be similar to the one previously obtained. In practice, this is usually
done by obtaining the degree distribution {pk} of those 100 people who answered the survey and
then assume that the remaining 9,900 follow the same probability distribution. We can thus pick
them one by one, assigning degree k to each new vertex with probability pk.

The second question, how to join these vertices together, may be less intuitive. We could design
a complicated process based on friendship, chances of encounters in the street, who is going to
which supermarket... But if we do not have this information, should we make it up?

In all cases, the best choice is to use the little we do know, and nothing that we do not. In our
case, this comes out as forcing vertices to have the degrees that we earlier chose while randomly
assigning edges between them. One possible algorithm for doing this goes as follows: for each
of the N vertices in the network, place in a bag k pieces of paper each bearing a tag uniquely
identifying that vertex of degree k. Shuffle, draw two pieces of paper, assign an edge between the
two corresponding vertices, destroy the drawn pieces of paper and repeat until the bag is empty.
When it will be required to build a network from this information, we will use a procedure very
close to the one just described. Of course, everything will be automatized in a computer program.
The networks considered in the remaining of this chapter will be constructed by this algorithm and
therefore simply defined by their size N and their degree distribution {pk}.

1.3 The rules of the game

Until now, all the vertices in the network were intrinsically the same. This is clearly undesirable for
our model since we do not expect a zombie to behave the same way as an healthy human. However,
it is probably acceptable to say that all zombies behave as “a typical zombie”, and that all humans
behave as “a typical human”.

We will differentiate individuals into three different states: those who have not been infected yet
(denoted S for survivors), those who have been infected (denoted Z for zombies) and dead zombies
(denoted R for removed2). A zombie can only bite its neighbours that are in state S; conversely, a
survivor can only become a zombie if one or more of her neighbours is a zombie.

Let us now add numbers to this description. During an infinitesimal time period [t, t + dt), a
survivor with one Z-neighbour has a probability α·dt to be bitten by the latter and to become a
zombie. For a survivor with n Z-neighbours, the probability would be n·α·dt.

Survivors also have their say. During the same infinitesimal time period [t, t + dt), a zombie
with m S-neighbours has a probability m·β·dt to be definitively3 killed by one of them, henceforth
being indefinitely confined to the R state.

We now have everything in hand to model a simple zombie invasion. More complexity can be
considered and Section 4 will explore some realistic additions to our basic model. For now, we will
limit ourselves to these simple rules.

2Or rotting in peace.
3Without any possible comeback to “life.”
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1.4 Monte Carlo simulations

Now that the rules of the game are set, we can write a computer program to diligently use them.
This program has three main tasks to perform: build a network, set the initial conditions and apply
the zombie propagation rules.

We have already seen in Section 1.2 how to build a network of known size N from its degree
distribution {pk}. Once the network is built, the initial state of each of its vertices must be chosen.
We will specify this initial condition through the proportion ε of the population that starts out as
zombies. In other words, all vertices are initially survivors except for εN randomly selected ones
that are zombies. There are initially no removed individuals.

In order to apply the rules themselves, we discretize time into small intervals of length ∆t > 0.
Although this quantity is finite (not infinitesimal), we use it instead of dt in the probabilities of
Section 1.3. If ∆t is sufficiently small, the resulting dynamics should be a good approximation of
the continuous time dynamics4.

During each of these time intervals, we count how many Z-neighbours each of the survivors has.
There is then a probability n ·α ·∆t for each survivors with n Z-neighbours to become a zombie
at the next time interval. Similarly, for each zombie, we count the number m of its S-neighbours.
The zombie will then be killed (sent to the R state) at the next time interval5 with probability
m·α·∆t. This is repeated for as many time intervals as required, i.e., until there are no remaining
edges linking S and Z vertices together.

We now have a complete procedure (program) providing the state of each vertex at any time t.
Since the network construction, the assignment of initial conditions and the propagation rules are
all probabilistic in nature, two different realizations of the process (executions of the program) will
typically lead to different results. A process of this kind, relying on randomness, is called a Monte
Carlo simulation.

Usually, one wants to perform many different Monte Carlo simulations using the same param-
eters in order to obtain reliable statistics about the model’s predictions, such as the mean number
of zombies at a given time. How many simulations are required? Depending on the problem and
the precision required, the answer may range from a few hundred to billions or more.

While numerical simulations are a rather easy way to obtain results, they also have their dis-
advantages. For instance, it may happen that the total number of simulations to be performed
becomes prohibitively high or that the average length of each simulation becomes too long. But
perhaps the greatest flaw of such a “brute force” approach is the lack of insight that we gain from it.
We do get results, but they do not offer a good grasp on the underlying mechanics. To address this
issue, we will use in the next section a completely different approach that provides better insights
on the dynamics of the invasion.

2 Mathematical zombies: a theory of the undead

In this section, we basically want to do the same thing as in Section 1.4, but without its principal
drawbacks. The alternative approach is based upon rewriting the problem in terms of a set of
ordinary differential equations (ODEs). Some approximations need to be done, but the results are
in perfect (well, almost) agreements with those obtained by the more direct approach of Section 1.4.
As a bonus, however, what is actually happening in the system comes to light (no pun intended).

4Note that there are better ways to apply these kind of rules, but this will be sufficient at present.
5All changes are applied simultaneously before the next time step.
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2.1 The variables of the system

We shall now write an ensemble of equations following the propagation of a zombie outbreak on
a social network. One may first be inclined to simply follow the behaviour of the fraction of the
population at time t who have survived, S(t), of those who are now zombies, Z(t), and of those
who are now left rotting, R(t). However, this approach pretty much nullifies the original incentive
for using a network structure in the first place; i.e., to consider the importance of heterogeneous
human behaviour on the evolution of the population.

Logically, we need at least to follow the behaviour of survivors Sk(t) and zombies Zk(t) for each
degree k. Since we define our networks through their degree distribution, throwing degrees away
would be a waste. However, this is still far from perfect. Consider how different the behaviour of an
individual hidden with ten friends would be from the behaviour of an individual surrounded by ten
zombies! We therefore need to go a step further and differentiate survivors and zombies according
to both the state and the number of their neighbours. To that effect, let Sm,n(t) and Zm,n(t) be
the proportion of individuals at time t who are survivors or zombies and are currently in contact
with m survivors and n zombies.

Note that the total fraction of survivors and zombies at time t may easily be obtained from
these quantities by summing over both m and n:

S(t) =
∑
m,n

Sm,n(t) (1)

Z(t) =
∑
m,n

Zm,n(t) . (2)

Moreover, the fraction of removed can also be obtained from the fact that S(t), Z(t) and R(t) are
fractions of individuals; as such, they should all sum to 1:

R(t) = 1− S(t)− Z(t) . (3)

Hence, the knowledge of Sm,n(t) and Zm,n(t) for all times t solves our model.

2.2 Moment-closure approximation

An astute reader might have noticed a slight problem from the fact that we do not know everything
about the network. The following example illustrates the essence of this problem.

You are currently one of the S1,0: a survivor with one S-neighbour and no Z-neighbours. You
are therefore safe — or are you? What if your neighbour becomes a zombie? If he has some Z-
neighbours, this may very well occur! On the other hand, if your neighbour is a S1,0 like you, you
form an isolated pair protected from the zombie invasion. Paranoia and suspicion are key factors
when it comes to surviving a zombie apocalypse, and you are thus entitled to know who, apart
from you, is connected to your friends.

In Section 2.1, we could very well have chosen a more complicated set of variables to explicitly
take these situations into account. However, no matter how much you know about the network,
you could always know more: who are the neighbours of the neighbours of your neighbours? And
what about their neighbours?

Increasing complexity has a cost, one that may ruin our ability to obtain anything useful. Ar-
guably, a wise choice is to track only the neighbours of each vertex and then infer the neighbourhood
of these neighbours from the total available information.

Considering our previous example, let us try to guess the state of your unique survivor friend.
Once again, when you do not know much, the best choice is to use all the information you have

5



and nothing else. Should we say that he is in the state Sm,n with m and n chosen at random?
No, because we know more than that. For example, if we know that S5,2(t) = 0, your neighbour
is certainly not6 in the state S5,2 since nobody is in that state right now. The probability for your
neighbour to be in the state Sm,n at time t is thus proportional to the population in the state
Sm,n(t).

Moreover, your neighbour cannot have m = 0, i.e., no S-neighbour, since you are there. In fact,
the probability for your neighbour to be in the state Sm,n at time t is proportional to m: the more
S-neighbours he has, the more likely you are one of them7.

This chain of reasoning leads to the fact that the probability for an individual to be in the state
Sm,n at time t knowing that he is a survivor and has at least one S-neighbour must be proportional
to m·Sm,n(t). Requiring normalization, this probability is then

mSm,n(t)∑
m′,n′

m′Sm′,n′(t)
. (4)

It is now quite easy to obtain quantities such as the mean number of Z-neighbours that each
S-neighbour of a survivor has:

〈z(t)〉s,s =

∑
m,n

n ·mSm,n(t)∑
m′,n′

m′Sm′,n′(t)
. (5)

This is called a moment-closure approximation: basically, the idea is to guess the higher moments
of a distribution such that they are consistent with the already-known lower-order moments.

Other moments may be obtained the same way. Noting 〈i(t)〉j,k the mean number of neighbours
in state i of a vertex in state j, itself being a neighbour of a vertex in state k, we have

〈s(t)〉z,s =

∑
m,n

m ·mZm,n(t)∑
m′,n′

m′Zm′,n′(t)

〈s(t)〉z,z =

∑
m,n

m · nZm,n(t)∑
m′,n′

n′Zm′,n′(t)

〈z(t)〉s,z =

∑
m,n

n · nSm,n(t)∑
m′,n′

n′Sm′,n′(t)
.

The problem raised at the beginning of this section is now solved. We still do not know every-
thing about the network, but with these quantities at hands, we have enough to write differential
equations governing the evolution of Sm,n(t) and Zm,n(t).

6Well, “almost surely not” would be more accurate, but this is another story.
7This is why, on average, your friends always have more friends than you do.
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(a) If B bites X. . . (b) If C bites D. . . (c) If X or A kill B. . .

Figure 2: Processes affecting the population of survivors. Transitions are shown for individual X.

2.3 Writing the dynamical system

We shall now consider every possible processes through which an individual might go from one state
to another, thereby changing the population of its initial and new states. We then write ODEs
providing the rate of change of Sm,n and Zm,n for the time-dependent susceptible and zombie
nodes8.

Here are the transitions that can affect a vertex X together with their occurence probability
during a time interval [t, t+ dt).

(i). X, a survivor, is bitten by a zombie. As seen in Section 1.3, this event causes X to become a
zombie. Hence, the transition Sm,n → Zm,n occurs with a probability nαSm,ndt. An example
case is shown in Figure 2a.

(ii). A surviving neighbour of X is bitten. This is a side effect of the event (i). Since the state in
which X resides depends on the state of its neighbours, the state of X has to change when
one of its S-neighbours becomes a zombie. We thus have the transition Sm,n → Sm−1,n+1

with probability mα〈z〉s,sSm,ndt if X is a survivor and Zm,n → Zm−1,n+1 with probability
mα〈z〉s,zZm,ndt if X is a zombie. Notice the use of 〈z〉s,s and 〈z〉s,z in order to know the aver-
age number of Z-neighbours the S-neighbours of X have. An example is shown in Figure 2b.

(iii). X, a zombie, is killed by a survivor. This causes X to become removed through the transition
Zm,n → R with probability mβZm,ndt. Since we do not explicitly track removed individuals
[but instead obtain them through equation (3)], we simply decrease the population of Zm,n
(Figure 2c).

(iv). A zombie neighbour of X is killed. This is a side effect of event (iii), not unlike (ii) was to
(i). We have the transition Sm,n → Sm,n−1 with probability nβ〈s〉z,sSm,ndt if X is a survivor
and Zm,n → Zm,n−1 with probability nβ〈s〉z,zZm,ndt if X is a zombie. An example is shown
in Figure 2c.

8From here on, we will lighten the notation by removing the time dependence “(t)” on quantities that clearly vary
in time.
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The net effect of these transitions on Sm,n and Zm,n gives rise to a system of ODEs of the form

d

dt
Sm,n = 〈z〉s,s · α [(m+ 1)Sm+1,n−1 −mSm,n]

+ 〈s〉z,s · β [(n+ 1)Sm,n+1 − nSm,n]− nαSm,n
(6)

d

dt
Zm,n = 〈z〉s,z · α [(m+ 1)Zm+1,n−1 −mZm,n]

+ 〈s〉z,z · β [(n+ 1)Zm,n+1 − nZm,n] + αnSm,n −mβZm,n .
(7)

The degree distribution {pk} and the initial fraction of zombies ε are introduced into the system
through the initial conditions

Sm,n(0) = (1− ε) pm+n

(
m+ n

n

)
εn(1− ε)m (8)

Zm,n(0) = ε pm+n

(
m+ n

n

)
εn(1− ε)m . (9)

The binomial coefficients come from the fact that a vertex of degree k has probability
(
k
n

)
εn(1−ε)k−n

to have n Z-neighbours.
Using these initial conditions, we can solve (i.e., by means of numerical integration9) the system

of ODEs given by equations (6) and (7) to trace the future of a zombie outbreak on our social
network.

3 Results: does humanity have the slightest chance?

We now compare the approaches we obtained in Sections 1.4 and 2.3 before extracting meaning
from them. But most importantly, this is where we see if humanity has a chance against a zombie
invasion.

3.1 Choosing the victims

Before proceeding, we must decide the size of the population to model. A small city of N = 10 000
people should suffice, and let us say that one percent of them are already zombies (ε = 0.01), none
of which have yet been killed.

What is the degree distribution {pk} in that city? If we say that everybody has equal chance
to be connected with everybody and, in addition, we know λ, the mean number of acquaintances
people have, then {pk} is provided by the Poisson distribution for large populations (Figure 3):

pk =
λke−λ

k!
. (10)

However, real human populations behave very differently: some people have much more neighbours
than the average. There are not many of them, but they disproportionately influence any spread-
ing processes occuring on the network. The power-law distribution, with parameter τ > 0 and

9For those not familiar with numerical integration techniques, see the introductory notes presented in the appendix
of this chapter.
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Figure 3: Two degree distributions are considered on this semi-log plot. Although both share the
same average degree λ = 3.17, the power-law distribution (τ = 2, kmax = 100) falls very much
slower than the Poisson distribution. The number of friends each individual has in the Poisson
network does not vary much from one person to another. In the power-law distributed network,
some people really have a lot of friends.

truncated at kmax, namely

pk =


0 if k = 0

k−τ∑kmax
k′=1(k′)−τ

if 1 ≤ k ≤ kmax

0 if k > kmax

(11)

exemplifies this behaviour (Figure 3).
We will use these two distributions and collect the corresponding results. However, to make a

fair comparison (to compare “apples with apples” some might say), we use λ = 3.17, τ = 2 and
kmax = 100 such that both distributions have the same average degree λ.

3.2 Body count

Our two approaches, i.e., Monte Carlo simulations and integration of our system of ODEs, are
applied to the two populations differing by their degree distribution. Figure 4 shows10 typical
results for the parameters α = 5 and β = 1. These parameters represent a (sadly likely) case where
zombies are much better at biting survivors than the latters are at killing zombies.

The first observation is the striking agreement between Monte Carlo simulations (symbols) and
the integrated system of ODEs (curves) for both populations [4a and 4c]. What are the implications
of such a match? When a sufficiently small time increment ∆t is used for Monte Carlo simulations,
the results should be arbitrarily close to an exact realization of the rules we chose to model (i.e.,

10The networks snapshots were produced using Eytan Adar, GUESS: The Graph Exploration System,
http://graphexploration.cond.org.
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(a) Evolution for Poisson distribution. (b) Final state for Poisson.
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(c) Evolution for power-law distribution. (d) Final state for power-law.

Figure 4: Time evolution of the zombie invasion for networks with (a) Poisson and (c) power-law
degree distributions (same average degree λ = 3.17). Curves (dotted S, dashed Z and solid R) show
results for the ordinary differential equation formalism while symbols (clear S, grey Z and black
R) represent those obtained through averaging over 100 Monte Carlo simulations. Figures (b) and
(d) show the final state of a single Monte Carlo simulation performed in the same conditions as (a)
and (c) respectively, except that a smaller network size (300 vertices) was used in order to improve
visibility. The visual representations are produced by the GUESS software using an algorithm that
distinguishes vertices by their state (colour) and their degree (size).
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both the network structure and the propagation rules). Thus, if the integrated system of ODEs
agrees with the simulations then they in turn accurately reflect the chosen rules.

This accuracy, despite simplifications and approximations while building the system of ODEs,
means that the ignored information does not have much impact on the propagation dynamics of
the whole system after all. We have therefore gained the important insight that everything of
importance has been included in the model.

A second observation further refines this insight: there is significant differences between the
results for the two degree distributions. In a non-network model, these choices would both give the
same results since they lead to identical average degree for vertices. This sole fact justifies by itself
the need for a network-based approach to the problem.

A third important observation is that both scenarios explored in Figure 4 eventually reach an
equilibrium where survivors and zombies coexist. This may be surprising to some readers who may
be too closed-minded to consider cohabitation with the undead, but it is an unavoidable consequence
of the set of rules we chose and has previously been observed in some particular cases11,12.

No equilibrium can exist in this model as long as there are survivors with zombie neighbours:
either the survivor would eventually kill the zombie or be bitten by the latter. Hence, survivors
can coexist with zombies in the equilibrium state only if the neighbours of their neighbours of
their neighbours... well, all of them, are survivors or if the only paths leading to zombies have
to go through removed vertices. Hence, sub-networks of survivors and sub-networks of zombies
may coexist in the same network as long as they are separated by a “no man’s land” of (probably)
rotting and (really) dead corpses. In order to get rid of zombies, human populations should therefore
develop very efficient tools to eliminate them at the onset of the invasion, or otherwise should bring
themselves to consider and to accept such untypical cohabitation.

An observation that illustrates the uniqueness of a zombie invasion is that things are actually
improving (i.e., there are more survivors at the end) with a power-law degree distribution compared
to the Poisson degree distribution. The presence of high-degree vertices, often called hubs, usually
makes things worse for “normal” diseases. Consider for example the impact of sex workers on
sexually transmitted infections or of hospitals/schools for pulmonary infections. Once infected,
these hubs quickly dispatch the disease to a lot of people, some of these also being hubs, and this
results in many individuals getting infected.

Things are different for zombies, and the difference lies in the very fact that survivors may
obliterate zombies. Once a hub is zombified, it can surely bite its many neighbours, but these
neighbours also get a chance to eradicate the zombie hub. Most of the big vertices, hubs, are thus
eliminated by their neighbours [see Figure 4d]. These removals effectively reduce the average degree
of the remaining vertices, since their degree was originally large compared to the mean. In a more
“balanced” situation such as the Poisson distribution [Figure 4b], hubs are mostly absent. When
a zombie dies, it was just an average zombie and may very well be replaced by another. Had we
chosen β = 0 (or a negligibly small value), the usual effect of hubs would have been observed.

4 The social zombie: adapting for realism

There are some fundamental problems with the dynamics we chose to model. For example, survivors
will fight with any number of zombie neighbours, until the undead perish or until the survivors
themselves join the nightmarish hordes. In real life, an individual will most likely choose to take
flight when the situation becomes too dire and survivors will then try to regroup while avoiding

11Shawn of the Dead, Edgar Wright, 2004
12Land of the Dead, George Romero, 2005
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Figure 5: A case of flight. A survivor runs away from a zombie (no longer being its neighbour) and
reconnects to a random new neighbour, here another survivor.

zombies. On the other hand, the undead are also usually seen in hordes. Zombies are always
inclined to give a hand to their fellow undead friends and help them hunt their remaining targets.
This cooperative behaviour between zombies will be used to emulate the typical formation of zombie
hordes.

While the networks we used up to now were static, i.e., the same edges were always linking
the same vertices, the introduction of new rules will allow the structure of the network itself to
change. By using adaptive networks, we are moving one step further away from the homogeneous
approximation. This level of details comes at additional cost, but as it will be shown, it is well
worth the spending.

4.1 The new rules of the game

The rules introduced in Section 1.3 have to be adapted. Survivors are now allowed to run away
(flight) when facing a zombie and to form groups into barricades for a better defence against the
threat. On the other hand, zombies may form hordes improving their collective biting abilities.

During an infinitesimal time interval [t, t+ dt), a survivor facing a zombie has a probability γdt
to flee from it and to stop at the next individual she encounters (see Figure 5). The survivor then
disconnects from the zombie and reconnects to either a survivor (Sm,n → Sm+1,n−1) or to a zombie
(Sm,n → Sm,n). Like in Section 2.3, this causes “side effect transitions” both to the zombie he flees
from and to its new neighbour. The new neighbour will be in a state whose probability is directly
proportional to the population of that very state.

Both rules for survivors killing zombies or zombies biting survivors are adapted such that an
individual is better at attacking the enemy when she is helped by neighbours of her own type (S or
Z). During the time interval [t, t+ dt), a zombie with n fellow flesh-eaters can bite a survivor with
probability α(1 +h ·n)dt, just as a survivor defending herself alongside m friends will kill a zombie
with probability β(1 + h ·m)dt. We will refer to h as the H-factor13, a parameter determining how
useful friends are in combat. Again, side effect transitions are affected likewise.

The derivation of the system of ODEs is left as an exercise. Here we provide only the final

13“H” may stand for hordes, help, hunting, hellbent or even Hades itself. Pick your poison.
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result:

d

dt
Sm,n = (h〈z〉z,s + 1) 〈z〉s,sα [(m+ 1)Sm+1,n−1 −mSm,n]

+ (h〈s〉s,z + 1) (〈s〉s,z − 1)β [(n+ 1)Sm,n+1 − nSm,n]

+ (1 + hm)β [(n+ 1)Sm,n+1 − nSm,n]− (h〈z〉z,s + 1)nαSm,n

+ γ
S

S + Z
[(n+ 1)Sm−1,n+1 − nSm,n] + γ〈z〉s

Sm−1,n − Sm,n
S + Z

(12)

d

dt
Zm,n = (h〈z〉z,s + 1) (〈z〉s,z − 1)α [(m+ 1)Zm+1,n−1 −mZm,n]

+ [(n− 1)h+ 1] (m+ 1)αZm+1,n−1 − (hn+ 1)mαZm,n

+ (h〈s〉s,z + 1) 〈s〉z,zβ [(n+ 1)Zm,n+1 − nZm,n]

− (h〈s〉s,z + 1)mβZm,n + (h〈z〉z,s + 1)nαSm,n

+ γ [(m+ 1)Zm+1,n −mZm,n] + γ〈z〉s
Zm−1,n − Zm,n

S + Z
.

(13)

For convenience, we defined the average number of Z-neighbours a survivor has:

〈z〉s =
∑
m,n

nSm,n (14)

which appears in the equations since the probability for any individual to encounter a survivor
running away from a zombie depends on that quantity.

Note that the new system encompasses the previous model since equations (12) and (13) reduce
to equations (6) and (7) when one sets the flight rate equal to zero (γ = 0) and chooses a null
H-factor (h = 0).

4.2 Hope is the last thing to die, isn’t it?

Figure 6 is obtained by performing Monte Carlo simulations and integrating the system of ODEs
corresponding to the new rules introduced in Section 4.1. From a quick comparison of the three
different cases studied, it is clear that the H-factor (i.e., the cooperation effect) plays out to the
advantage of the zombies. We could expect it to be the other way around if survivors were more
efficient at killing zombies than the latter are at biting (if only...). On the other hand, allowing
survivors to flee (i.e., γ > 0) from the zombies gives them a better life expectancy, but only
postpones the inevitable. In fact, all three scenarios eventually lead to an equilibrium where
around 15% of the population manages to survive by barricading themselves against the undead
hordes. Again, our results suggest similar conclusions: human populations should develop efficient
weapons and fighting tactics in order to eradicate these nightmarish invaders before they take over
the world.

Notice that the fit between the Monte Carlo simulations and the analytical predictions is some-
what less satisfying in the scenario where flight is possible. Great insights can be gained from this
simple observation: something we either approximated or neglected when obtaining the system of
ODEs becomes important when flight is allowed.

The culprit is most likely correlation. In our system of ODEs, when a survivor flees from a
zombie and then encounters vertex X, we add a new S-neighbour to vertex X. Later on, we consider
this survivor as the average survivor. This is where the shoe pinches: he is not the average survivor,
but the average survivor who just ran away from a zombie, and this additional information tells
us something about his state. He would probably not have been able to get this far had he been
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Figure 6: Monte Carlo (symbols) and integration of the system of ODEs [equations (12) and (13)]
(curves) results for the new set of rules. The “old” parameters are the same as those of Figure
4a, and the Poisson degree distribution was used. For new parameters, three different cases are
studied: h = 0 and γ = 0 (solid curves and ◦); h = λ−1 and γ = 0 (dashed curves and 4); and
h = λ−1 and γ = 2 (dotted curves and �). Survivors are shown in white and zombies in grey.
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in contact with 100 zombies, nor would he be fleeing had he not been in contact with at least one
zombie in the first place. The fact that our equations do not consider these correlations is probably
the principal cause of the observed differences with the Monte Carlo simulations.

In order to improve the results, one could embark on the tedious endeavour of including the
state of the neighbours of the neighbours of each vertex in the description of the system. Doing so
would require something like

Sm0,0,m0,1, m0,2, ..., m1,0, m1,1, ...
n0,0, n0,1, n0,2, ..., n1,0, n1,1, ...

and Zm0,0,m0,1, m0,2, ..., m1,0, m1,1, ...
n0,0, n0,1, n0,2, ..., n1,0, n1,1, ...

(15)

where each mi,j represent the number of survivor neighbours who themselves have i survivor and
j zombie neighbours (ni,j playing the same role for zombie neighbours).

Since a differential equation would be required for each of these quantities, it is easy to imagine
how quickly the complexity of this sort of models can explode. However, considering that the error
observed in the results was not that critical in the first place, the simpler approach that we have
used was appropriate to the problem we chose to tackle.

5 A conclusion on networks...

This was only the tip of the iceberg. As we have witnessed in this chapter, network modelling
(namely, the inclusion of a topology in a model of interaction between a large number of elements)
is useful when considering the effects of local dynamics on the global evolution of the system. What
does this mean for zombie modelling? The model developed here allowed us to consider multiple
local effects:

Heterogeneity of behaviours... and fates. Some individuals can be (or get) disconnected from
the rest of the world while others might end up in the middle of the zombie apocalypse.

Local environment. Individuals are not affected by the global state of the world, but only by
their immediate environment (this can allow a single zombie to start a very virulent, but
localized outbreak).

Social behaviours. Networks do not have to be static: humans can flee from the zombies and
regroup, while the undead will hunt in hordes.

However, a multitude of other similar effects could have been (and should be) incorporated in a
more complex model:

Types of individuals. Not all humans will react the same in a zombie invasion (e.g. the behaviour
of a soldier is likely to differ from that of a child) and network modelling is perfectly suitable
for considering such heterogeneity.

Social structure. We have given very basic behaviour to both the living and the dead, but the
formation of more complex social structure could be taken into account.

Note that, while network modelling is a natural approach to the description of individual and
heterogeneous behaviours, the inclusion of structure in the problem usually complicates its treat-
ment. Furthermore, complexity usually increases rapidly in network theory. This means that our
little exercise in network modelling would have been an entirely different story had we considered
an even more complex system.
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...and zombies

What have we learned from this exercise that could help us survive the imminent zombie apoca-
lypse?

Firstly, we have learned that, in a scenario where the set of rules that we have chosen applies,
any invasion must be stopped at its very beginning or a significant fraction of the population will
be either dead or zombified, thus marking the end of the supremacy of humanity on Earth. We
therefore stress once again the importance of developing efficient and powerful anti-zombie weapons
and defenses14.

Secondly, including a cooperation effect in our model has been shown to accelerate the zombie
invasion (if α > β) while our results show that flight only slows down the progression of the invasion
without significantly modifying its outcome. Therefore, if we consider fighting back the undead in
a “human-to-zombie” fashion, we should use state of the art fighting techniques in order to bring
the cooperation effect to our advantage (i.e., β > α)15.

Finally, within the context in which our model has been developed, it has been shown that any
invasion can be stopped, but cannot be reversed. Once a succesful barricade is established, we can
expect to find a certain number of roaming, isolated zombies. To wipe out these remaining threats,
we believe it is necessary to consider more than fighting at the individual level. Optimistically,
efforts should be deployed in developing antidotes and vaccines. On the other hand, the use of
weapons of mass destruction should be considered once a “stable” condition is reached. In light
of the results presented in this chapter, such strategies may well be our only chance to take these
poor souls back to Hell from whence they spawned... until next time.

Yea, though I walk through the valley of the shadow of death, I will fear no evil:
for thou art with me, you mathematical-physicist; thy model and thy simulation
they comfort me16.

14In our model, such equipment would result in reducing α and increasing β.
15Again, in our model, such a strategy could be studied by using different values of the H-factor for survivors and

zombies.
16Any ressemblance with Psalm 23:4 of the Original King James Bible is purely coincidental.
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Appendix: Numerical Integration

In this chapter, we have followed a modelization approach based on a large set of nonlinear ordinary
differential equations (ODEs) to describe the dynamics of a zombie outbreak on a social network.
Solving this system of ODEs by analytical means would be impossible due to its size and complexity.
Thus, one has to rely on numerical integration to approximate the analytical solution for the time
evolution of our system.

In order to illustrate the basics of numerical integration, let us consider a simple one dimensional
ODE system:

dx(t)

dt
= f

(
x(t)

)
. (16)

with the initial condition x(t0), and for which we do not know any analytical solution. Consider
now the following intuitive reasoning, using an analogy to unidimensional motion. Suppose x(t)
is the position of a particle at time t. At this particular time, its speed (in general, the rate of
change of the variable) is given by f

(
x(t)

)
. Starting from the known initial condition, we are now

interested in finding where this particle will be at time t0+δt based on the knowledge of the position
x(t0) and speed f

(
x(t0)

)
at time t0. For δt sufficiently small, the speed of the particle will remain

approximately constant during this short time step. This results in a linear motion, given by:

x (t0 + δt) = x (t0) + δtf
(
x(t0)

)
. (17)

This procedure can then be used iteratively to generate an approximate solution at later discrete
times; i.e.,

x (t0 + 2δt) = x (t0 + δt) + δtf
(
x(t0 + δt)

)
(18)

and so on.
This numerical integration scheme is known under the name of Euler’s method and is schemat-

ically illustrated in Figure 7. With this method, the approximate solution has a local error, i.e.,
the error made at each time step δt, of order O

(
δt2
)
. Practically, it means that the numerical

approximation gets closer to the real solution as we diminish δt. Formally, this is because equation
(17) corresponds to the first two terms of a Taylor series expansion of x(t0 + δt) around t0:

x(t0 + δt) = x(t0) +
dx(t)

dt

∣∣∣∣
t0

δt+
d2x(t)

dt2

∣∣∣∣
t0

δt2 +
d3x(t)

dt3

∣∣∣∣
t0

δt3 +O(δt4) . (19)

Consequently, if we integrate the equation (16) for a total time T = Nδt, the resulting global error
will be of order O(δt).

Euler’s method can also be easily generalized to system of ODEs of more than one dimension,
as it was the case in our problem:

~x (t0 + δt) = ~x (t0) + δt ~f
(
~x(t0)

)
, (20)

where

~x(t) =


x1(t)
x2(t)

...
xM (t)

 and ~f
(
~x(t)

)
=


f1
(
x1(t), x2(t), . . . , xM (t)

)
f2
(
x1(t), x2(t), . . . , xM (t)

)
...

fM
(
x1(t), x2(t), . . . , xM (t)

)
 . (21)

Other, more accurate, methods are also available. One of the most frequently used family of
algorithms for ODE integration is based on the Runge-Kutta method, which uses several points
in the interval [t, t + δt] to approximate the effective slope of x(t). In this chapter, we have used
an even more complicated technique17 based on a Runge-Kutta algorithm which has an estimated

17Sometimes called the Dormand-Prince method or, more affectively, Runge-Kutta 4–5.
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Figure 7: Schematization of Euler’s method.

global error of order O(δt4) and uses an adaptive time step δt in order to keep the error small even
when the slope of x(t) is very steep. The interested reader can find a wealth of information in the
book Numerical Recipes by Press et al.
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6 Glossary

Adaptive network. A network whose topological structure evolves adaptively with the dynamics
taking place on it, thus creating a feedback loop. In other words, the dynamics on the network
(zombie outbreak) influences the dynamics of the network (social contacts), which in turn
affect the way the dynamics will further evolve on the network.

Degree. The number of neighbours of a given vertex.

Degree distribution. The set of probabilities {pk} for a vertex chosen at random in the graph
to have a degree k.

Edge. A line joining two vertices in a graph. In a contact-network model, it represents a social
contact between two individuals (e.g. family bonds, friends, etc).

Graph. Mathematical abstract representation of a network, consisting of dots (vertices) and lines
(edges).

Moment-closure approximation. A mathematical technique used to approximate higher-order
moments of a system with the knowledge of lower-order moments. It is often used to express
systems of equations in a closed form.

Monte Carlo simulation. A computer algorithm (simulation) relying on the repeated use of
random numbers.

Neighbours. Two vertices linked by an edge.

Network. An interconnected system of things. Those things can be people, electrical components,
words, computers, etc. The way they are connected together defines the topological structure
of the network.

Ordinary differential equation (ODE). A relation involving functions of only one independent
variable and one or more of their derivatives with respect to that variable.

Static network. a system where the interconnections between elements do not change with time
such that its topological structure remains fixed.

Vertex. A dot in a graph. In a contact-network model, it often represents an individual (alive,
dead, or in between) in a population.
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