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Summary

We introduce a new dimension-reduction method to de-

scribe the large scale behaviour of dynamical processes

running on networks, primarily based on the spectral prop-

erties of the weighted adjacency matrices that characterize

the interactions on the networks. The structural complex-

ity of the networks is used to naturally set the adequate

dimensionality of the reduced system. We present and

compare three variants of our method. We show that

our approximation scheme, even when forced to produce

one-dimensional reduced systems, always gives a better

description of the dynamics than the one proposed by Gao

et al.[1].

Introduction

Dynamics of large complex networks can sometimes be

modeled as simpler and lower dimensional systems. These

reduced systems, if properly inferred, should provide intu-

itive insights about the global behaviour of the systems

and help predict their dynamical resilience or breakdown.

We consider a network of N nodes encoded by the

weighted and directed adjacency matrix W = (wij), where

the element wij ≥ 0 indicates the strength of the directed

interaction from node j to node i. Node i has an activity

xi ∈ R that evolves according to

ẋi = F (xi) +

N∑
j=1

wijG(xi, xj). (1)

Recent studies suggest that the global equilibrium states

of such a N -dimensional system can be reduced to a one-

dimensional universal function [1]. Two effective structural

and activity parameters can then be extracted to describe

the evolution of the system. While this is a good approx-

imation for uncorrelated network structures [2], it fails

when degree correlations become important.

Generalizing the dimension-reduction

To reduce the dimensionality of the dynamical system

(1), we introduce new weighted averages that describe

the global dynamics propagating on the network and

the large-scale structure of the network. For each k, let

a(k) = (a
(k)
1 , . . . , a

(k)
N ) be a discrete probability distribu-

tion, i.e., a
(k)
i ≥ 0 ∀ i and

∑
i a

(k)
i = 1. These probability

distributions allow to define weighted average activities,

〈x〉(k) =
∑N

j=1 a
(k)
j xj , as well as the weighted average

in-degrees, 〈w〉(k) =
∑N

j=1 a
(k)
j win

j .

We can show that the dynamics of the weighted aver-

age activities 〈x〉(k), describing the system (1), is approxi-

mately governed by the following system:

˙〈x〉(0) = F (〈x〉(0))+〈w〉(0)G(〈x〉(1), 〈x〉(1))
˙〈x〉(1) = F (〈x〉(1))+〈w〉(1)G(〈x〉(2), 〈x〉(2))

...

where the distributions are transformed according to

〈w〉(k)a(k+1) = W Ta(k). (2)

Transformation (2) is a well-defined map on the space of

probability distributions since it preserves both normaliza-

tion (i.e.,
∑

i a
(k+1)
i = 1 if

∑
i a

(k)
i = 1 ) and positiveness

(i.e., a
(k+1)
i ≥ 0 if a

(k)
i ≥ 0).

At first glance, the new dynamical system is unsolv-

able; it contains an infinite number of dynamical variables.

However, an appropriate choice of the initial probability

distribution a(0) enables us to close the set of differential

equations and get a d-dimensional system. We have devel-

oped three procedures to choose a(0), all of them leading to

a d–dimensional reduced system: (i) the d–period method

(ii) the power iteration method and (iii) the eigenvector

composition method.

The d–period method consists in choosing a(0) such

that a(d+1) = a(0). In doing so, the d-th differential

equation closes the system since ˙〈x〉(d) = f(〈x〉(d), 〈x〉(0)).
We achieve this by letting a(0) be the positive eigenvector

of the d-th power of W T .

We can show that the d–period method always works

for strongly connected networks, i.e., networks in which

there is a path between each pair of nodes. The case

d = 1 is of particular interest since it always leads to a one-

dimensional reduced system in which the distribution a(0)
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Figure 1: Weighted average activity at equilibrium 〈x〉 as a function of the weighted average input degree 〈w〉 using

Gao et al. reduction (first column) and our approach with n = 1 and n = 2 global variables (second and third

columns) for star networks of 6 nodes and Gilbert random graph of 100 nodes of density p = 0.1. Dashed lines are

the predictions of each approach while full lines are obtained from numerical simulations on networks with neural

dynamics.

is identical to the eigenvector centrality. The formalism

proposed by Gao et al. is an approximation of the (d = 1)–

period method.

In the power iteration method, we set a(0) as the

uniform probability distribution, i.e., a
(0)
i = 1/N for all i.

Then, as we apply the transformation (2), a(k) aligns with

the dominant eigenvector of W T . When the convergence

‖a(k+1) − a(k)‖ < ε is reached, the k-th equation of the

reduced system can safely be approximated by ˙〈x〉(k) =

f(〈x〉(k)). In practice, this method should be used only to

obtain the evolution of the uniform activity average.

The eigenvector composition method consists in choos-

ing a(0) as a linear composition of d dominant and lin-

early independent eigenvectors of W T . In doing so,

a(d) =
∑d−1

j=0 cja
(j) is simply a linear composition of the

constructed probability distribution.

Results

We apply our formalism to different network structures

(Fig. 1) on which the activity evolves according to a

well-known dynamics in computational neuroscience [3],

ẋi = −xi +

N∑
j=1

wijσ(xj − µ)

where µ is a parameter and σ(·) is the sigmoid function.

For random networks, the 1–period method performs as

well as the Gao et al. formalism. As expected by the

spectral analysis of the weighted adjacency matrix, higher

dimensions of the reduction do not improve the descrip-

tion.

An impressive demonstration of the power of our for-

malism is given by star graphs where a single core node is

connected to N −1 periphery nodes. The one-dimensional

system of Gao et al. overestimates the activation of the

core node so that large discrepancies are visible, even for

small graphs N = 6, and increase with the size of the

graph. Using our formalism, we describe exactly the star

graph using a two-dimensional system. Moreover, we show

that 〈x〉(0) and 〈x〉(1) describe the activity of the core node

and the periphery nodes respectively.
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